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ABSTRACT

Objective: Sporadic, genetically complex essential tremor (ET) is one of the most common move-
ment disorders and may lead to severe impairment of the quality of life. Despite high heritability,
the genetic determinants of ET are largely unknown. We performed the second genome-wide
association study (GWAS) for ET to elucidate genetic risk factors of ET.

Methods: Using the Affymetrix Genome-Wide SNP Array 6.0 (1000K) we conducted a two-stage
GWAS in a total of 990 subjects and 1,537 control subjects from Europe to identify genetic
variants associated with ET.

Results: We discovered association of an intronic variant of the main glial glutamate transporter
(SLC1A2) gene with ET in the first-stage sample (rs3794087, p � 6.95 � 10�5, odds ratio [OR] �

1.46). We verified the association of rs3794087 with ET in a second-stage sample (p � 1.25 �

10�3, OR � 1.38). In the subgroup analysis of patients classified as definite ET, rs3794087
obtained genome-wide significance (p � 3.44 � 10�10, OR � 1.59) in the combined first- and
second-stage sample. Genetic fine mapping using nonsynonymous single nucleotide polymor-
phisms (SNPs) and SNPs in high linkage disequilibrium with rs3794087 did not reveal any SNP
with a stronger association with ET than rs3794087.

Conclusions: We identified SLC1A2 encoding the major glial high-affinity glutamate reuptake
transporter in the brain as a potential ET susceptibility gene. Acute and chronic glutamatergic
overexcitation is implied in the pathogenesis of ET. SLC1A2 is therefore a good functional candi-
date gene for ET. Neurology® 2012;79:243–248

GLOSSARY
ET � essential tremor; GWAS � genome-wide association study; OR � odds ratio; QC � quality control; SNP � single
nucleotide polymorphism; TRIG � Tremor Investigation Group.

Sporadic, genetically complex essential tremor (ET) is one of the most frequent neurologic
disorders with a prevalence between 0.9% and 4.6% in the population older than 65 years.1

The clinical hallmark of the disease is a postural or kinetic tremor of the upper extremities.
Severe ET not only causes permanent disability but often also social stigmatization. In a large
proportion of patients, ET can be acutely alleviated by moderate doses of ethanol.2,3 The
diagnosis of ET is based on the clinical examination because no biomarker or specific diagnos-
tic test exists. The most stringent research diagnostic criteria for ET are the consensus criteria
proposed by the Tremor Investigation Group (TRIG).1 Family history studies and twin studies
demonstrated high heritability with concordance rates of up to 95% in monozygotic vs 29% in
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dizygotic twins.4 The pathogenesis of ET is
largely unknown. Two competing hypothesis
based on neurophysiologic, pathologic, and
animal data state that ET could either be a
neurofunctional disorder caused by abnormal
oscillations possibly generated in the inferior
olivary nucleus or a neurodegenerative disor-
der of the cerebellum.5 However, it can also
not be excluded that both hypotheses apply,
e.g., that permanent longstanding abnormal
oscillations transmitted to the cerebellum ul-
timately lead to neurodegeneration. The first
genome-wide association study (GWAS) for
ET identified an association between a variant
in the LINGO1 gene and ET in a first-stage
sample composed of Icelandic patients.6 This
finding was confirmed by several but not all
other groups attempting replication.7–9 Here,
we present the second GWAS for ET.

METHODS Standard protocol approvals, registra-
tions, and patient consents. The local ethics committees
approved the study. Written informed consent was obtained
from all participants.

Study samples. ET was diagnosed according to the TRIG
criteria.1 In the first stage we analyzed 436 patients and 928
control subjects of German origin. The second-stage indepen-
dently collected verification sample consisted of 554 patients
and 609 control subjects of European (Germany, Denmark, and
Austria) origin. Control samples were of German, Austrian, and
Danish origin. Recent publications only found minor genetic
differences between Germans, Austrians, and Danes.10,11 There-
fore, we combined the samples from these 3 different popula-
tions in stage 2. In this study we analyzed only patients with
definite or probable ET but not possible ET, which is the weak-
est diagnostic category according to the TRIG criteria, to achieve
maximal diagnostic certainty. All control subjects were screened
negative for ET by a validated screening procedure.12 Control
subjects were not matched to patients regarding the sex ratio,
and no adjustment for gender was performed because no sex-
specific differences in epidemiologic data, pathogenesis, or clini-
cal presentation are known. The 847 German patients from Kiel
used in stages 1 and 2 were recruited by movement disorder
specialists at the Department of Neurology of the University
Hospital of Schleswig-Holstein, campus Kiel, and also in coop-
eration with the PopGen Biobank.13 The 928 German control
subjects for the genome-wide scan were obtained from the Pop-
Gen Biobank.13 For the second-stage analyses, 75 healthy Ger-
man spouses were recruited as control subjects at the University
Hospital of Schleswig-Holstein, Kiel campus, and 478 German
control subjects were recruited from the Kiel aging project
within PopGen.14 The recruitment of the Danish patient and
control sample (stage 2) has been described elsewhere.4 German
patients with ET from Tübingen (stage 2) were recruited from
the movement disorder clinic at the Center of Neurology, Uni-
versity of Tübingen. Patients were systematically examined, and
ET was diagnosed by movement disorder specialists. After the
initial diagnosis, patients were followed for at least 5 years to
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exclude diagnoses other than definite ET. Patients showing clin-
ical signs or imaging abnormalities not compatible with a diag-
nosis of ET, such as progressive cerebellar dysfunction,
parkinsonism, dystonia, or MRI abnormalities, were excluded. A
total of 64 Austrian patients were recruited by movement disor-
der specialists from the movement disorder clinic at the Depart-
ment of Neurology, Innsbruck Medical University.

Genotyping and quality control. Samples with �10%
missing genotypes in the single nucleotide polymorphism (SNP)
sets analyzed were excluded in all analyses in the first and second
stage and in the LINGO1 analysis. The first-stage genotyping of
this study was performed using the Affymetrix Genome-Wide
SNP Array 6.0 (1000K) (Affymetrix, Santa Clara, CA). Af-
fymetrix processed more than 99% of the samples. Genotypes
were called using the Affymetrix Birdseed v2 algorithm. We used
visual inspection of cluster plots to exclude false-positive associa-
tions among the highest ranking SNPs typed in the first stage. As
part of the comprehensive quality control (QC) of the first stage,
only markers with a call rate �95% in patients and control subjects,
with a minor allele frequency (MAF) �0.05 in control subjects, and
with p � 0.0001 for Hardy-Weinberg equilibrium were considered
for association analysis. We investigated the first-stage sample for
population stratification as well as for identical or related individuals
based on pairwise identity-by-state distance and calculated the
genomic inflation factor with the use of PLINK (version 1.04;
http://pngu.mgh.harvard.edu/�purcell/plink/) and of R (version
2.10.0; http://www.r-project.org/).15,16 Quantile-quantile plots were
created using the qq.chisq function of the R package snpMatrix
(version 1.0.33, http://www-gene.cimr.cam.ac.uk/clayton/software/).17

Genotyping of samples for the second verification step and subse-
quent fine mapping was performed with SNPlex (Applied Biosys-
tems, Foster City, CA), MassARRAY iPLEX platform (Sequenom
Inc, San Diego, CA) and TaqMan technology (Applied Biosystems)
following standard protocols. QC criteria for second-stage genotyp-
ing were minimal genotype call rate �95% for each SNP, MAF
�0.05, and p � 0.01 for Hardy-Weinberg equilibrium. Multiple
testing correction for the second-stage SNPs was performed using
the mperm 1000 permutation command of PLINK. SNPs for sub-
sequent fine mapping were selected from the European HapMap
CEU reference data (http://hapmap.org/).

Statistical analysis. All association analyses were performed

using R (version 2.10.0)16 and PLINK (version 1.04).15

Genotype-phenotype associations were assessed for statistical sig-

nificance using a �2 test. In addition to the comparison of the

allelic frequencies of patients and control subjects, association

was also calculated using genotype frequencies as well as recessive

and dominant genetic models. The different models did not dif-

fer significantly from the allelic model, and therefore these mod-

els were disregarded.

RESULTS To identify additional ET susceptibility
loci, we performed a two-stage GWAS. The demo-
graphical data for all samples are found in table 1.
The first-stage sample had 80% power to detect a
disease-associated variant with an odds ratio (OR) of
�1.6 at the 5% significance level, assuming a MAF
of �0.1 in healthy control subjects (figure e-1 on the
Neurology� Web site at www.neurology.org). After
extensive QC, 620,077 SNPs were tested in the ex-
ploratory first stage. The estimated genomic inflation
factor of � � 1.077 indicated very low population
substructure in the sample, obviating the need for
correction. In the first stage, no marker reached
genome-wide significance (p � 8 � 10�8). An over-
view of the GWAS p values in form of a Manhattan
plot is given in figure e-2. The quantile-quantile plot
(figure e-3) showed only a slight excess of signal. Vi-
sual inspection of the cluster plots of all 535 SNPs
with p � 10�4 led to removal of 462 SNPs with bad
genotyping quality. The first-stage association results
for all SNPs p � 10�4,which passed the visual in-
spection of the cluster plots, are shown in table e-1.
All remaining SNPs with p � 10�5 (n � 17) as well
as SNPs with p � 10�4 (n � 9), which showed sup-
port of at least 1 additional correlated SNP with p �

10�4 and 4 SNPs located in functional candidate
genes (SLC1A2, GARB1, KCNU1, and SMOC2)
with p � 10�4 were selected for second-stage geno-
typing in an independent verification sample of 554
patients and 609 control subjects of European origin.
Four SNPs were excluded from the analysis because
of insufficient genotyping quality, leaving 26 SNPs
for the second-stage analysis (table e-2). Two SNPs
showed nominally significant p values. Only one of
these variants (rs3794087), located in intron 4 of the
SLC1A2 gene (OMIM 600300) on chromosome
11p13, passed the correction for multiple testing and
reached a corrected allelic p � 0.037 in the second-
stage sample (table e-2). SNP rs3794087 yielded a
nominal p � 1.16 � 10�7 in the combined first- and
second-stage sample (table 2). In the subgroup anal-
ysis of the most stringent phenotype of definite ET
(n � 658), the SNP rs3794087 achieved a genome-
wide significant p � 3.44 � 10�10 in the combined
sample (table 2). The sample sizes are too small for a
meaningful further subgroup analyses (e.g., patients

Table 2 Association results for rs3794087

Control
subjects

Patients
with ET

OR (95% CI)
Nominal
p valueNo. MAF No. MAF

Stage 1 (panel A)

All 919 0.215 410 0.287 1.46 (1.21–1.77) 6.95 � 10-5

Definite ET 919 0.215 350 0.304 1.59 (1.31–1.94) 2.87 � 10�6

Stage 2 (panel B)

All 571 0.231 496 0.292 1.38 (1.13–1.67) 1.25 � 10�3

Definite ET 571 0.231 308 0.319 1.56 (1.26–1.95) 5.75 � 10�5

Stages 1 and 2

Panel A and B 1,490 0.221 906 0.290 1.43 (1.26–1.64) 1.16 � 10�7

Definite ET 1,490 0.221 658 0.311 1.59 (1.38–1.84) 3.44 � 10�10

Abbreviations: CI � confidence interval; ET � essential tremor; MAF � minor allele fre-
quency; OR � odds ratio.
a All data (stage 1, 2, and 1 and 2) refer to calculations performed on the 26 single nucleo-
tide polymorphisms for which verification was attempted after genotyping quality control.
Therefore, the numbers of patients and control subjects are lower than those in table 1.
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with a positive family history or patients with a posi-
tive alcohol response).

For fine mapping, we tested 7 SNPs in high link-
age disequilibrium with rs3794087 (r2 � 0.8) and in
addition 8 nonsynonymous coding SNPs located in
the SLC2A1 gene (figure 1). Seven of these 15 SNPs
tested for fine mapping were monomorphic in the
study population. None of the remaining 8 SNPs
showed a stronger association with ET than
rs3794087. The genetic region of the SLC1A2 gene
is characterized by a weak linkage disequilibrium
structure (figure 1).

We also investigated 3 published LINGO1 SNPs.6,8

These SNPs were not included on the Affymetrix
SNP Array 6.0, and no other SNP in the region of
LINGO1 present on the array showed a significant
association in the first GWAS stage. We were just

able to replicate the association of the LINGO1 SNP
rs9652490 with ET in the combined sample of the
first and second stage with p � 0.0135 and OR �
1.20. The other 2 SNPs (rs8030859 and rs11856808)
showed no significant association (data not shown).
Recently, we replicated the association of variants in
the LINGO1 gene in a German sample of ET pa-
tients, which partly shared subjects with the first and
second samples used in this GWAS.8

DISCUSSION The present GWAS revealed an asso-
ciation between the SNP rs3794087 in intron 4 of
the SLC1A2 gene and ET. The estimated OR of
�1.5 is in the typical range of ORs found in GWAS.
However, it should be kept in mind that it does not
allow any risk prediction on an individual patient
basis. The function of this noncoding SNP is unknown.

Figure 1 Disease associations and linkage disequilibrium (LD) structure of the genomic region containing SLC1A2

(A) The nominal allele-based p values (�log10 P) of all genotyped single nucleotide polymorphisms (SNPs) were plotted against their physical position (in
megabases) on chromosome 11. Red rhombi, first-stage (genome-wide scan) SNPs; green squares, finemapping SNPs; triangles, results for SNP
rs3794087; black triangle, first stage; blue triangle, second stage; lilac triangle, combined first and second stage; yellow triangle, combined first and
second stage in the subsample with definite essential tremor (ET). (B) Schematic representation of SLC1A2 gene structure. (C) LD plot of the locus based
on the measure r2 in CEU HapMap (http://hapmap.org/).24
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Independent replication studies are needed, especially
because rs3794087 did not achieve genome-wide signif-
icance in the first-stage analysis. However, it is inter-
esting to note that the association of rs3794087 was
consistently stronger if only patients with the highest
diagnostic certainty (definite ET) were included in
the analysis and reached genome-wide significance in
the smaller subgroup of 658 patients with definite
ET after genotyping QC in the combined first- and
second-stage samples. The SLC1A2 gene encodes the
predominant glutamate reuptake transporter (excit-
atory amino acid transporter 2), which removes glu-
tamate from the synaptic cleft. Glutamate is the
major excitatory neurotransmitter in the CNS. Pro-
longed elevated glutamate concentrations in the syn-
aptic cleft are neurotoxic (so-called “excitotoxicity”)
and thought to contribute to neurodegenerative dis-
orders such as Alzheimer disease and amyotrophic
lateral sclerosis. Based on the acute harmaline animal
model of ET, a widely recognized hypothesis assumes
that the abnormal oscillations causing the tremor are
generated in the inferior olive and transmitted
through the cerebellum to other brain areas.18 The
inferior olivary neurons but not the cerebellar Pur-
kinje neurons that are involved contain abundant
NMDA-type glutamate receptors.19 Harmaline-
induced tremor is blocked by NMDA receptor an-
tagonists, suggesting that NMDA receptor activation
is necessary to generate the abnormal olivary oscilla-
tion.20 In addition, sustained glutamatergic excita-
tion of climbing fiber terminals in the cerebellum
might be toxic to Purkinje neurons.19 Interestingly,
SLC1A2 is strongly expressed in the inferior olive but
not in other structures of the brain stem.21 Ethanol,
which acutely alleviates ET in many patients signifi-
cantly increases SLC1A2 expression and glutamate
uptake activity.22 Furthermore, elevated glutamate
concentrations are present in the CSF and serum of
patients with ET.23 For further progress in the genet-
ics of sporadic ET, 2 prerequisites have to be met.
First, sample sizes have to be increased, either in sub-
sequent studies or by pooling data of current and
future studies. Second, detailed clinical assessment
using the same diagnostic criteria in all studies as well
as the assessment of intermediary phenotypes, first
and foremost alcohol responsiveness, might lead to
genetically more homogeneous ET samples. A
standardized test to assess alcohol responsiveness is
currently under development in our group. In con-
clusion, this is the first report showing an association
of the glutamatergic amino acid transporter SLC1A2
and ET.
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