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Abstract

A commonly used assay for studying cell - matrix interactions is the free-floating fibroblast
populated collagen lattice, which was introduced in 1979. Briefly, fibroblasts are seeded within an
initially thin, amorphous, untethered, circular gel consisting of reconstituted fibrillar collagen.
Although the gel remains traction free and circular, the cells typically contract the gel to less than
50% of its original diameter within hours to days. Cellular mechanotransduction mechanisms are
fundamental to this contraction, but there has not been a careful study of the associated mechanics.
In this paper, we model the initial contraction of a circular gel by assuming a homogeneous,
axisymmetric finite deformation while allowing possible radial variations in material properties,
including material symmetry. We show that trivial solutions alone (i.e., no deformation, no
contraction) are admitted by equilibrium and boundary conditions unless radial variations exist in
the material behavior, including cell contraction. Although more complete data are needed to
model better this initial-boundary value problem, the present results are consistent with both the
salient features of the gel assay and recent observations reported in the literature that cells often
introduce regional variations in tissue properties in vivo in an attempt to achieve, maintain, or
restore mechanical homeostasis.
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INTRODUCTION

Tissue engineering is a multi-disciplinary field committed to developing living tissue
constructs that can be used to repair or replace native tissue following injury or disease (cf.
Guilak et al., 2003). Despite remarkable advances in tissue engineering over just a few
decades, many fundamental questions remain regarding how cells interact with both native
extracellular matrix and synthetic polymer scaffolds as they evolve the engineered construct.
One of the first, and simplest, tissue-engineered constructs that remains useful for studying
basic cell - matrix interactions is the so-called free-floating fibroblast populated collagen
lattice (Bell et al., 1979). Typically, reconstituted fibrillar collagen is allowed form a thin
“gel” within a circular mold and fibroblasts suspended in an appropriate cell culture media
are seeded within the gel at prescribed densities (e.g., on the order of 10° cells per ml).
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When the circular gel is released from the mold, and not otherwise tethered, the cells tend to
contract the gel over a period of days, often to less than 50% of the original diameter. Many
studies document effects on the rates and extents of contraction as a function of collagen
type (e.g., I, Il, or I11) and density, cell type and density, the presence of exogenous growth
factors (e.g., transforming growth factor — beta), and various drug treatments designed to
alter cell receptor binding or cytoskeletal integrity. For a nice review of many of these
studies, see Dallon and Ehrlich (2008).

Amongst the many findings, it appears that fibroblasts use multiple but related methods to
contract the gel. In particular, it has been suggested that cells can compact and align
collagen fibers as they (1) spread out on and attach to the gel, (2) draw in the collagen fibers
via cell extensions and integrin-mediated tractions, or (3) exhibit overall contraction (Harris
et al., 1980; Dallon and Ehrlich, 2008). Regardless of the means of contracting the gel,
linear momentum balance must be satisfied in this traction free initial-boundary value
problem. In this paper, we use a simple homogeneous finite deformation to model the
initiation of contraction of an initially thin, amorphous, untethered, circular collagen gel and
show that non-trivial solutions can be obtained only when the material properties are
allowed to vary radially. We submit that these, and similar future, solutions can increase our
ability to interpret the important free-floating collagen gel assay.

The collagen gel initially consists of an amorphous mixture of collagen fibers, cells, and
water. Consistent with formulations in growth and remodeling biomechanics (e.qg.,
Humphrey and Rajagopal, 2002), we use a rule-of-mixtures relation for the Cauchy stress
response. For example, conceptually we let the Cauchy stresst = -l + 55+ ¢&7 where o
is a Lagrange multiplier enforcing intrinsic incompressibility of the solid constituents or
transient motions at a fixed level of contraction, ¢° is the mass fraction of the solid, T¢is the
Cauchy stress response of the solid, $7 (= 1-¢°) is the mass fraction of the fluid, and Tis the
Cauchy stress response of the fluid. Although many report that water is exuded during
contraction of the gel, we assume that the associated momentum exchanges (from the
perspective of mixture theory) are small because of the slowness of the process. Moreover,
consistent with a quasi-static assumption, we let the contribution of the fluid to the overall
stress be a hydrostatic pressure and thus lump its contribution together with the arbitrary
Lagrange multiplier. Hence, we write t = —pl + t5 where the mass fraction of the solid is
embedded in its stress response.

Focusing on early contraction of the gel, we consider homogeneous axisymmetric finite
deformations whereby material particles initially at (/, ®, 2) are mapped to (1, ¢, 2)
according to

r=AR, 9=0©, z=AZ Vre[0,r,],9€[0,2n],z € [-h/2,h/2], @

where r, is the deformed outer radius, /the deformed thickness, and A and A are stretch
ratios (where A.<1 for contraction; see Figure 1). Hence, physical components of the
deformation gradient are (Humphrey, 2002)
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Despite reports that fluid is exuded from the gel as it contracts, there are no data on the rate
or degree of water loss. Because of this lack of data, and our focus on initial gel contraction,
we first assume overall incompressibility. Consequently, det F = 1 and A = 1/A2,

Below, we allow the material properties to vary with radial location, but assume complete
axisymmetry and no variations in the z-direction because of the thinness of the gel.
Assuming the inertial effects are negligible, we thus enforce equilibrium in this plane stress
problem as (Humphrey, 2002)

ot, 1 Oty oty
- trr - t1 1 =0, —ZO, _:O
or * r( ) 09 0z @

The last two of these equations reveal that the Lagrange multiplier may depend on the radial
direction at most; hence, we must only satisfy radial equilibrium. Our traction-free boundary
conditions are: t,{z=+A2) =0and t{r=ry =0.

Let us now contrast results for multiple potential descriptors of the constitutive behavior of
the solid, which consists of hydrated collagen and cells. Given that the gels are initially very
compliant, and the collagen fibers initially distributed randomly, let us begin by considering
a neo-Hookean (isotropic) behavior for collagen, namely t = —pl + 2uB, where p is a mass
averaged shear modulus (i.e., the mass fraction is absorbed within this parameter) and B =
FF 7is the left Cauchy-Green tensor. That is, let us first consider the case when the cells do
not generate any (contractile) stress, for which

1
typ=— p+2,u/12, typ=— p+2u/lz, t,=— p+2/JF. (4)
Enforcing the traction-free condition on the upper and lower faces requires 0 = —p+ 2 / A4,
whereby

1 1
tr=2u (/12 - F)’ lyp =24 (/12 - F)' ®)

Notice that this constant equibiaxial state of plane stress satisfies radial equilibrium
(equation 34) identically, but the traction-free condition at the outer radius £{r=r;) =0
requires further that A = 1, the trivial solution. That is, a thin, traction-free, circular
specimen endowed with a neo-Hookean behavior cannot deform via equation 1.

Without repeating the mathematical details, one arrives at the same conclusion for a mixture
of isotropic collagen (described by a neo-Hookean constitutive relation) and cells that
exhibit an isotropic active (i.e., contractile) stress £ . That is, if t = —pl + 2uB + £], then the
traction-free upper and lower surfaces require 0 = —p+ 2/ A% + £,and the stress state is
identical to that in equation 5; in other words, the only solution possible for this traction-free
problem is again the trivial solution, A = 1 with no isotropic cell contraction.

Among others, Costa et al. (2003) noted that cells tend to align parallel to traction-free
surfaces. Hence, let us consider the stress response for an isotropic collagen matrix plus
circumferentially oriented active cells, namely t = —pl + 2uB + fe3 ® ey, Where #, denotes
an anisotropic cell contraction. The traction-free condition on the upper and lower surfaces
again requires 0 = —p + 2u/ A4, hence the stress field is
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Again, however, the traction-free boundary condition at the outer radius requires A = 1.
Moreover, these two conditions leave t = ey ® ey, which satisfies radial equilibrium if and
only if £,= 0, thus yielding the trivial solution. In other words, a thin, traction-free, circular
specimen endowed with a uniform neo-Hookean response by the collagen and a uniform
uniaxial cell contraction cannot deform via equation 1.

It is also known, of course, that collagen fibers often align parallel to the cells that maintain
them (Costa et al., 2003; Dallon and Ehrlich, 2008), which motivates inclusion of a
transversely-isotropic term for the collagen fibers as well (with the circumferential direction
preferred). For example, consider a stored energy function for collagen of the form WA/,
IV where /o= trC and /V-= M-CM, with C = FF the right Cauchy-Green tensor and M
a unit vector denoting the original orientation of a locally parallel family of fibers (which
give rise to a transverse-isotropy). In this case, the associated Cauchy stress for the collagen
isgiven by t = —pl + 2W1B + 2W3a?m ® m, where W4 = dW/ dlg Wy =0W/I IV, and
a is the stretch of a collagen fiber that was originally oriented in direction M but after
deformation is oriented at direction m. Because of the initial low stiffness of these collagen
gels, we let /¢, IV = w(lc-3) + q(/V— 1) where w and care material parameters;
the first term captures the same neo-Hookean (isotropic) contribution used above. If we let
the direction M be circumferential, then a = A and the material exhibits transverse-isotropy
with the preferred direction being circumferential. Assuming this combined isotropic —
transversely isotropic form of the stored energy for the collagen plus both an isotropic (z4)
and a transversely isotropic (feg ® eg) contribution to the Cauchy stresses by cell
contraction, the associated stresses are

tp=— p+2,u/12+ta, ©)

_ 2 4 2
tgg= — p+2UA”"+1t,+4c(A1” — A7)+, (8)
t=— p+2,u/12+ta. 9)

The traction-free top and bottom surfaces again require 0 = —p+ 2uA2 + ,, whereby the
state of plane stress reduces to

1 1
t,,:2,u (/l2 - F) y 1191_922/.1 (/l2 - F) +4C(/l4 — /12)+lc. (10)

Note again that the isotropic contractile stress is not admitted in the final stress field.
Moreover, it is easy to see that the traction-free condition at the outer radius again does not
admit a contraction of the gel (i.e., A = 1), both with and without isotropic or transversely
isotropic cell activation. Finally, because the two boundary conditions leave t = te3 ® eg,
radial equilibrium requires that .= 0, thus yielding the overall trivial solution yet again.

It appears, therefore, that a homogeneous, axisymmetric contraction of a fully traction-free,
thin, circular specimen under plane stress does not admit a uniform isotropic or transversely
isotropic (circumferential) response for either the collagen or the cells.
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Heterogeneous Properties

Next, consider radially varying material properties, which can be modeled via a rule-of-
mixtures relation for the stress with appropriate mass fractions ¢, varying with radial
location. Consistent with the above, we can assume forms of the stored energy function for
collagen to be Wjs, = p(/c— 3) and Wpiso = d(/V— 1)? and similarly let the contractile
cells exhibit either isotropic (1) or transversely isotropic (Z4m ® m) contractile responses
(such an additive split into isotropic and anisotropic contributions is consistent with that
advocated by Holzapfel and Ogden in other biomechanical applications; Holzapfel and
Ogden, 2006). Hence, we consider the following general form for the stress response,

t= = Plt@iso () UB+ D)+ Guniso(r) (4e4°(4* = Hm @ m+t;m @ m), (1)

where we let m = e herein. For the deformation in equation 1, therefore, the Cauchy stress
response is

tyy=— p+¢iso(r) (2ﬂ/12+ta) 5 (12)
t99=— P+piso(r) (2UA+1a) +aniso(r) (4c(A* — )+t (13)
tZZ: - p+¢iso(r) (2/.1//144-1‘”) 5 (14)

where the mass fractions must sum to unity, namely ¢ s, + ¢ aniso = 1 at each point.

Traction-free upper and lower surfaces require 0 = —p + ¢s(1) (2 / A4 + £;), which reveals
that the Lagrange multiplier can now vary with radial location. The state of plane stress thus
reduces to

1
b =21Piso(r) (12 - F)’ (15)
1
to9=2UPiso(r) (/l2 - F) @ aniso(r) (4C(/l4 - /12)4'1}) . (16)

Note, again, that a possible isotropic cell contraction cannot contribute to the stress field.
Next, consider two specific cases of the regional variations.

First, consider a linear variation in material properties, that is, ¢4,is0 = 1/ rpand thus ¢, =
1-r/ r, In other words, we let the material exhibit an isotropic response at the center (= 0)
but a strongly transversely isotropic response at the outer edge (r= r,); at radial positions
between the center and edge we have an increasingly stronger transverse isotropy (Figure 2).
Notice from equation 15 that the traction-free condition is satisfied identically at r=r,
because ¢ ;s(r= 1) = 0. Radial equilibrium (equation 3) thus requires,

2 (12 - i) (;—1) - (l) (4c(a* — A%)+1)=0 Vr. a7

o o

Consequently, if there is no anisotropic contractile contribution by the cells (i.e., £.=0),
then 2u(1/ A% - A2) = 4c(A* - A2). For arbitrary values of the material parameters . and c,
it can be shown numerically that the only solution is the trivial one, A = 1. In contrast,
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solving equation 17 for a non-zero transversely isotropic active stress, £,= —2u(A2 - 1/A%)
- 4cA2(\2 - 1), with A<1 for contraction of the gel, the final state of plane stress becomes

1 r 1 2r
tr=20 (/12 - F)(l - Z), too=24 (/12 - F)(l - Z) . (18)

Note again that the radial traction-free boundary condition is satisfied automatically at the
outer edge (r= r,). Figure 3 shows associated distributions of stress, normalized with respect
to the material parameter ., for multiple degrees of contraction (A<1). As would be
expected in this traction-free problem, one obtains a “residual-type” stress distribution of
stresses wherein regions of compression balance those of tension for the circumferential
stress.

Second, and finally, consider an exponential regional variation in properties, namely ¢,5,=1
—exp[(rl ry— 1)] and therefore ¢ znis0 = exp[(r/ r,— 1)]. For large enough values of 7, this
distribution again yields essentially an isotropic response at the center (= 0) but a strongly
transversely isotropic response at the outer edge (7= r); at radial positions between the
center and edge we have an increasingly stronger transverse isotropy (Figure 2). Albeit
involving slightly more algebra, one finds a result similar to that for the linear radial
variation in properties. Absence of an anisotropic cell mediated contraction again yields the
trivial solution. In contrast, enforcing radial equilibrium for a non-zero £ yields a non-trivial
solution. In particular, f,=—p(A2 - 1/ A% (nr! r,) = AcAA2(A2 - 1). Hence, the final state of
plane stress becomes

1
ty=2p(1 — "7~y (/12 - /1—4), (19)
o1 = e (2~ L
tgg=2u (1 —( +r—)e 4 -3/ (20)

Figure 4 shows illustrative results for 7= 10 and multiple levels of contraction (A <1), again
normalized with respect to the material parameter . The results are qualitatively similar to
those for the case of linear variations in material properties, but as expected, focusing the
anisotropy near the outer edge creates stronger gradients in the radial distribution of stress.

DISCUSSION

Prior studies of fibroblast populated collagen lattices have focused on what cells do when
various experimental conditions are altered, but they have not addressed the more
fundamental question, Why do cells contract the gels and thus compact the collagen? We do
not claim to resolve this issue, but consider the following. Although the are traction free
when in suspension, and thus when introduced into the traction-free gel, once they contact
the gel they appear to spread out and begin to pull on the extracellular matrix; indeed, they
continue to pull on the matrix for long periods. By pulling on the matrix, which in turn pulls
back, the cells can establish a stressed environment in which to reside under stress
themselves. Note, therefore, that diverse observations consistently suggest that cells seek to
establish and maintain a “tensional homeostasis” in connective tissues (Brown et al., 1998;
Tomasek et al., 2002), that is, a target state of mechanical loading (Humphrey, 2008). We
suggest that the contraction of the gel may be an attempt by the cells to establish such a
preferred, or at least a favorable, mechanical environment that is fundamental for optimal
cell function. Similar processes appear to be operative in diverse clinical settings, including
lens epithelial cell responses following cataract surgery (Pedrigi et al., 2009).

Int J Non Linear Mech. Author manuscript; available in PMC 2013 March 01.
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The present analysis revealed that cells within a thin, circular, traction-free gel cannot satisfy
both equilibrium and boundary conditions by uniformly contracting isotropically. Indeed,
they similarly cannot satisfy these fundamental mechanical requirements by uniformly
contracting transversely-isotropically or by uniformly organizing the collagen
circumferentially. Rather, it appears that one way to satisfy both equilibrium and boundary
conditions, while avoiding a non-trivial situation (i.e., no deformation, no contraction), is to
generate a radially varying contractile response that becomes increasingly transversely
isotropic with respect to the circumferential direction with increasing radius (i.e., moving
toward the edge of the gel). This simple consequence of the mechanics is consistent with
observations that myofibroblasts (which generate greater contractile stresses) tend to be
found only near the outer edge of free-floating collagen gels (Ehrlich, 1988) and that the
collagen similarly tends to align only near the outer edge in moderate cell density free-
floating collagen gels (Ehrlich and Rittenberg, 2000). Indeed, this consequence of the
mechanics is also consistent with clever in vitro observations in tethered collagen gels
reported by Costa et al. (2003) wherein they found that fibroblasts tend to align parallel to a
traction-free surface. Based on their observations, Costa and colleagues further suggested
that “Similar to Saint-Venant’s principle in linear elasticity theory, it appears that the
influence of boundary conditions decreases with increasing distance from the boundary.
Therefore, heterogeneity of cell alignment naturally arises.” Our theoretical results support
their fundamental claim. The values of the transversely-isotropic active stresses, at a given
level of contraction, were also required by equilibrium and boundary conditions to increase
in proportion to the matrix stiffness (gel parameters . and ¢). This finding also appears to be
consistent with some reports that contractility is higher on or in stiffer matrices (Discher et
al., 2005).

In addition to in vitro experimental findings, it is becoming increasingly evident in vivo that
cells often deposit and/or organize matrix in a regionally heterogeneous manner to offset
complexities in geometry and applied loads that would otherwise result in a
nonhomogeneous state of stress and, by definition, a mechanical environment that is not
equally optimal for all cells in different regions. Examples of such regional heterogeneities
can be found both in health (e.g., the native lens capsule; Pedrigi et al., 2007) and in disease
(e.g., cerebral aneurysms; Ryan and Humphrey, 1999), and also appear to be consistent with
the existence of residual stresses in arteries that help homogenize the transmural distribution
of stress (Cardamone et al., 2009).

The free-floating collagen lattice preparation has proven convenient for studying many
aspects of cell-matrix interaction (cf. Dallon and Ehrlich, 2008), yet the present analysis
reveals that it imposes highly restrictive mechanical constraints on the cells. Because the
outer edge and the upper/lower surfaces remain traction free, the gross state of stress must
either be zero (trivial case) or residual (with self-equilibrating compressive and tensile
circumferential stresses), neither of which can satisfy the potential cellular goal of
establishing a uniform, non-zero state of mechanical loading that is homeostatic. Indeed, it
may be for this reason that the fibroblasts tend to enter the cell death cycle prematurely (i.e.,
undergo apoptosis) in free-floating but not in constrained collagen gels (Grinnell, 2003). We
emphasize, however, that the present analysis reveals that such an unfavorable fate for the
cells need not arise because the cells and matrix remain stress free, as suggested by many
(e.g., Grinnell, 1994; Tomasek et al., 2002; Bride et al., 2004; John et al., 2009). Rather, the
unfavorable fate may result from the residual-type stress field that is admitted by the
mechanics, but is nevertheless not optimal biologically. We note, however, that a residual-
type stress field does allows tensile circumferential stresses at and near the outer traction-
free edge (cf. Figures 3 and 4), hence the collagen fibers could align in the direction of the
maximum tensile stress consistent with many observations (cf. Baaijens et al., 2010) and not
be forced to behave differently at a traction-free surface (cf. Costa et al., 2003). Indeed,
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allowing strong gradients in the material properties and hence stresses (cf. Figures 2 and 4),
may allow the majority of the collagen fibers to remain nearly isotropically distributed (in
the central region) as reported by some (cf. Grinnell, 2003). In other words, the simple
solution offered herein yields results consistent with many seemingly confusing
experimental findings (cf. Dallon and Ehrlich, 2008). It is interesting in this regard that
Winer et al. (2009) note the importance of accounting for the nonlinear elasticity under finite
deformations as we did. They write “local strain stiffening [due to nonlinear elasticity]
allows an initially isotropic matrix to reinforce cell-applied mechanical anisotropy and
transmit forces between cells up to half a millimeter apart. In this way isolated cells can
create far-reaching mechanical gradients and produce a global pattern.” In other words,
consistent with the findings herein, cells may, under particular conditions, create gradients in
matrix stress (and thus stiffness) that enable cooperative behaviors, perhaps as they seek
together to establish or maintain a mechanical homeostasis.

To the best of our knowledge, there has not been another mechanical analysis of this
experimental preparation. Among others, Barocas and colleagues (e.g., Ohsumi et al., 2008)
have considered cell-driven compaction of collagen and fibrin gels that are tethered to
fixtures, but this is a very different situation. Independent of differences in the basic initial-
boundary value problems considered, the mechanical model used by Barocas and colleagues
is also very different from that used herein. For example, they model the collagen matrix as
a homogeneous Maxwell fluid to endow the highly hydrated gel with viscoelastic behavior.
It is not clear that viscoelasticity plays a strong role in the cell-mediated contraction of the
free-floating gel considered herein. John et al. (2009) modeled the collagen as linearly
elastic, homogeneous, and isotropic. The associated contractile response was simulated
using an equivalent “thermal contraction,” which necessarily resulted in a uniform zero
stress field.

Theory should always guide experiments. The present analysis suggests that regional
material properties and cell behaviors may be needed to satisfy equilibrium and boundary
conditions in the free-floating collagen gel assay, which gives rise to a nonuniform
(residual-type) stress field. We suggest, therefore, that there is a need to measure carefully
potential radial gradients in collagen orientation, cell phenotype, and cell status (e.g.,
contractile or apoptotic). In other words, because of the expected gradients in the stress field
— with radial gradients in the always compressive radial stresses and similarly radial
gradients in the self-equilibrating tensile and compressive circumferential stresses — and the
mechanosensitivity of fibroblasts (e.g., Laurent et al., 2007), there is a need to determine if
similar gradients exist in cell response. Indeed, if different cell responses exist at different
radial locations, then more complete correlations of cell response with mechanical stress
may be possible within a single experiment. We emphasize, therefore, that although the
present study can provide both insight into prior reports of evolving tissue equivalents and
additional guidance for new experiments, there is clearly a need for more data to refine the
theoretical framework. Even in the first report by Bell et al. (1979), it was suggested that
“When cells are incorporated into hydrated collagen lattices, the lattice is contracted and
water is squeezed out.” Whereas the time-course of changing gel diameter, or area, has been
measured and used as a primary indicator of cell activity, complete information on the
amount and rate of fluid loss is not available. There is clearly a need for such data and an
associated refinement of the analysis to exploit poroelastic or mixture descriptions of the
behavior of the gel. Regardless, continued use of a rule-of-mixtures approach, wherein radial
gradients in properties can be introduced via mass fractions rather than by allowing material
parameters to vary regionally (cf. equations 18-20), appears to confer some utility. It has
also been reported that when contracting the gel, the fibroblasts repress their synthetic
capability (Payne et al., 1987). For this reason, we did not consider potential growth and
remodeling of the gel (cf. Humphrey and Rajagopal, 2002). Ultimately, however, the desire
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to understand the initial mechanics of a tissue engineered construct is to understand the
stimuli that eventually begin to drive growth and remodeling. There will be a need,
therefore, to extend the present studies to include subsequent evolution of the construct as
additional matrix is produced and removed (cf. Niklason et al., 2010).
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Figurel.

Representative contraction of an initially circular collagen gel by fibroblasts: initial gel (top)
and gel 5 days after seeding with fibroblasts (bottom). Note the retained circularity. Scale
bars are 5mm.
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Figure2.

Radial distributions of the mass fractions ¢ s, and ¢ 455, for an assumed linear (top) or
exponential (bottom) variation. The exponential case is shown for the parameter n=1, 5,
and 10, which reveals that for 77 large enough one can model a material that transitions from
purely isotropic at the center to strongly transversely isotropic at the edge similar to that for
the linear variation.
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Figure 3.

Predicted distributions of radial (top) and circumferential (bottom) stress in a model
fibroblast seeded collagen gel for a linearly changing radial heterogeneity in material
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properties (¢aniso = 1/ rpand ¢;50=1 — rl ry) and different degrees of contraction (A = 0.9,

0.7, and 0.5). Note that stress is non-dimensionalized using the material parameter .
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Figure 4.

Predicted distributions of radial (top) and circumferential (bottom) stress in a model
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fibroblast seeded collagen gel for an exponentially changing radial heterogeneity in material

properties (¢p;s0 =1 — exp[r! ro— 1)] and ¢ zpiso = expl(r/ r, - 1)] with n=10) and

different degrees of contraction (A = 0.9, 0.7, and 0.5). Albeit not shown, results for other
values of 771arge were similar.
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