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Purpose: Mutation of the autophagy gene FYVE (named after the four cysteine-rich proteins: Fab 1 [yeast orthologue of
PIKfyve], YOTB, Vac 1 [vesicle transport protein], and EEA1) and coiled coil containing 1 (fycol) causes human cataract
suggesting a role for autophagy in lens function. Here, we analyzed the range and spatial expression patterns of lens
autophagy genes and we evaluated whether autophagy could be induced in lens cells exposed to stress.

Methods: Autophagy gene expression levels and their spatial distribution patterns were evaluated between microdissected
human lens epithelium and fibers at the mRNA and protein levels by microarray data analysis, real-time PCR and western
blot analysis. Selected autophagy protein spatial expression patterns were also examined in newborn mouse lenses by
immunohistochemistry. The autophagosomal content of cultured human lens epithelial cells was determined by counting
the number of microtubule-associated protein 1 light chain 3B (LC3B)-positive puncta in cells cultured in the presence
or absence of serum.

Results: A total of 42 autophagy genes were detected as being expressed by human lens epithelium and fibers. The
autophagosomal markers LC3B and FYCO1 were detected throughout the newborn mouse lens. Consistently, the
autophagy active form of LC3B (LC3B II) was detected in microdissected human lens fibers. An increased number of
LC3B-positive puncta was detected in cultured lens cells upon serum starvation suggesting induction of autophagy in lens
cells under stress conditions.

Conclusions: The data provide evidence that autophagy is an important component for the function of lens epithelial
and fiber cells. The data are consistent with the notion that disruption of lens autophagy through mutation or
inactivation of specific autophagy proteins could lead to loss of lens resistance to stress and/or loss of lens
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differentiation resulting in cataract formation.

The eye lens is an avascular encapsulated organ whose
function is to focus light on to the retina where visual
information is translated into nerve signals and ultimately
perception of images by the visual cortex of the brain.
Disruption of lens transparency as a consequence of
developmental defect or damage to lens cells and their
components causes cataract formation [1-3] which is opacity
of the eye lens and is the leading cause of world blindness
[4]. The lens contains only a layer of cuboidal undifferentiated
epithelial cells on top of a layer of elongated and differentiated
lens fiber cells [5]. Lens fiber cells and their components are
not renewed and must remain intact to maintain lens
transparency throughout the life of the organism. The lens is
exposed to photo-oxidative and other environmental damage
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making the lens an excellent model to study how
environmental and oxidative stresses cause cellular and
intercellular damage associated with aging [3,6—8]. The lens
grows throughout the life of the organism through the slow
differentiation of lens epithelial cells into lens fiber cells,
which also makes the lens an excellent model for
understanding those events important for cellular
differentiation and longevity. Damage to the lens and its
protein components results in cataract formation [3,7-9]. The
differentiation of lens epithelial cells into mature lens fiber
cells is accompanied by the degradation of mitochondria,
nuclei and other organelles [5]. Failure of lens cells to
complete the differentiation process can result in aberrant lens
cell structure and inherited cataract formation [10]. Cataract
also occurs as a consequence of environmental damage to lens
cells and their components as a result of inadequate
functioning of protective and repair mechanisms [3,9].

One intriguing system that may be important for lens
differentiation and resistance to environmental damage is
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macroautophagy (hereafter termed autophagy) which
operates in the degradation and recycling of damaged
organelles and proteins in many other tissues [11]. Autophagy
is characterized by the formation of autophagosomes which
are double-membrane structures that engulf damaged cellular
components and traffic them to lysosomes where the
components are degraded/recycled [11-13]. Autophagy has
been shown to be important for development [14], aging
[15,16], and neurodegeneration [17,18]. Mitophagy, a
specialized form of autophagy is a selective process whereby
damaged mitochondria are specifically degraded in cells
[19,20]. Both autophagy and mitophagy could be important
for the removal of damaged lens cells, proteins and organelles.
Loss of autophagy and/or mitophagy could, therefore, result
in cataract formation.

To date, autophagy has not been extensively studied in
the lens. Although autophagic vesicles containing
mitochondria and other components were detected by electron
microscopy as early as 1984 [21,22] the only paper to address
autophagy in the lens reported that, deletion of the autophagy
induction gene autophagy related 5 (A7G5) did not disrupt
lens fiber cell differentiation despite the occurrence of
autophagy in lens cells [23]. Since autophagy is now known
to involve ATGS5-dependent and ATG5-independent
pathways [24] the conclusion that autophagy is not required
for lens cell differentiation is no longer supported by the
literature.

We have recently demonstrated that mutations in the gene
encoding FYVE (named after the four cysteine-rich proteins:
Fab 1 [yeast orthologue of PIKfyve], YOTB, Vac 1 [vesicle
transport protein], and EEA1) and coiled coil containing 1
(FYCOI) are associated with the inheritance of autosomal
recessive human cataract [25] suggesting that autophagy is
likely required for the maintenance of lens transparency.
FYCO1 is aFYVE and coiled-coil domain containing protein
that has been demonstrated to be important for transport of
autophagosomes to lysosomes where autophagosomal cargo
is degraded [26]. In lens cells, FYCO1 was demonstrated to
co-localize with the autophagosomal marker microtubule-
associated protein 1 light chain 3B (LC3B) and lysosomes
[25]. Thus FYCOI1 could be important for removal of
organelles during lens fiber cell differentiation and/or removal
of damaged lens proteins.

Based on this study, and the potential importance of
autophagy in lens function, we hypothesized that autophagy
is important for lens function and resistance to cataract
formation. To test this hypothesis, we analyzed the spectrum
and range of autophagy genes expressed in microdissected
human lens epithelium and fibers, we confirmed the mRNA
and protein expression levels of functional subsets of
autophagy genes in these lens sub-regions, we examined the
spatial expression patterns of the autophagosomal marker
LC3B and FYCOI in whole mouse eyes and we monitored
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numbers of LC3B positive puncta in cultured human lens cells
exposed to serum starvation which is a well characterized
autophagy inducer in multiple cell types [12].

Our analysis revealed the lens epithelium and fiber
expression of 14 genes involved in the induction of autophagy,
eight genes involved in expansion and closure of
autophagosomes, six genes involved in autophagosome
fusion to lysosomes and eight genes involved in specific
autophagy sub-pathways including mitophagy and
chaperone-mediated autophagy. Consistent with a function
for these genes in lens cells, the autophagosomal marker
LC3B and the autophagy protein FYCO1 were detected to be
present throughout the newborn mouse lens by
immunohistochemistry and the active form of LC3B (LC3B
II) was detected in microdissected human lens fibers,
suggesting that autophagy is an actively occurring process in
the lens fibers. Consistently, increased numbers of LC3B-
positive puncta were detected in serum-starved lens epithelial
cells relative to untreated cells suggesting that autophagy is
an important response of the lens to environmental stress.
Collectively, these data provide evidence that autophagy is
required for lens function and that its disruption could lead to
loss of lens stress resistance, loss of lens cell differentiation
and ultimately cataract formation.

METHODS

Gene expression analysis of specific autophagy transcripts:
The levels of autophagy transcripts were analyzed from
Affymetrix (U133A) microarray (Affymetrix, Santa Clara,
CA) gene signature intensities detected upon hybridization
with reverse transcribed and fragmented total lens RNA
isolated from pooled microdissected human lens epithelium
(7-9 mm central) and fibers (rest of lens; average age 57.8,
age range 47—69). These data were previously reported in part
[27]. Raw affymetrix chip data were normalized between lens
epithelium and fiber cell populations using the housekeeping
genes GAPDH (glyceraldehyde-3-phophate dehydrogenase),
PGK (phosphoglycerate kinase), and TRP (tricosphate
isomerase) as standards. Selected autophagy transcripts were
further evaluated by semi-quantitative real-time PCR (RT—
PCR) using the SuperScript® III one-step RT-PCR system
with Platinum Taq polymerase (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions and GAPDH as
control. We assayed 50—100 ng of total RNA from human
microdissected lens tissue. RNA was isolated from
microdissected human lens epithelium and fiber cells as
previously described [28] using the Total RNA kit (Ambion,
Woodland, Tx) according to the manufacturer’s instructions.
A summary of primers used is provided in Table 1. PCR cycle
numbers were chosen to be linear at the indicated amounts of
RNA and cycle numbers (Table 1).

The corresponding levels of autophagy proteins were
further analyzed by western analysis. Protein samples were
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mixed with 2x Laemmli sample buffer (0.5 M Tris-HCI, pH
6.8, Glycerol 10% [w/v], SDS 0.1% [w/v], 0.0025%
Bromophenol Blue, and 5% 2-Mercaptoethanol) at a 1:1
volume ratio and heated at 100 °C for 5 min. Samples were
separated by electrophoresis on 8%, 10%, and 15% sodium
dodecyl sulfate-polyacrylamide gels where appropriate at
room temperature using a Bio-Rad mini Protean® vertical
electrophoresis system (Bio-Rad, Hercules, CA). Proteins
were transferred onto Hybond™ ECL™ nitrocellulose
membrane (GE Healthcare, Buckinghamshire, UK) using a
Bio-Rad mini Trans Blot® electrophoresis system (Bio-Rad)
for 1.5 h at 100 V. Following transfer immunoblots were
rinsed in phosphate buffered saline (PBS) pH 7.2 for 2 min.
Immunoblots were then blocked in 5% milk in Tris Buffered
Saline with Tween (TBST; 5% fat-free dry milk, 0.1%
Tween-20, 150 mM NaCl, and 50 mM Tris at pH 7.5) for 1 h
before incubation with the appropriate primary antibody
diluted in 5% milk TBST (anti-LC3B antibody [Abcam,
Cambridge, MA] 1:1,000, anti-RB1CCI1/FIP200 [Bethyl
Labs, Montgomery, TX] 1:1,000, anti-FYCO1 [Bethyl
laboratories] 1:1,000 and anti-BNIP3L/NIX [Enzo Life
Sciences, Plymouth Meeting, PA] 1:2,000). Blots were
washed in TBST and incubated for 1 h with 1:5,000 DyLight
goat anti rabbit 800 conjugated secondary antibody (Thermo
Scientific, Rockford, IL) followed by rinsing in PBS pH 7.2
for 2 min. Immunoblots were imaged for 2 min on the Odyssey
Imaging System (LI-COR Biosciences, Lincoln, Nebraska).

Spatial localization of LC3B and FYCOI proteins in mouse
lens: Animal husbandry and experiments were conducted in
accordance with the approved protocol of Animal Institute
Committee (Albert Einstein College of Medicine, NY) and the
Association of Research in Vision and Ophthalmology
(ARVO) Statement for the Use of Animals in Ophthalmic and
Vision Research. Noon of the day that the vaginal plug was
observed was considered as E0.5 of embryogenesis.

Pregnant female mice were euthanized by CO, and
sacrificed following standard procedure. Mouse embryos
were dissected and then fixed in 10% neutral buffered
paraformaldehyde overnight at 4 °C before paraffin
embedding. Serial sections were cut in 5 pm thick sections
through the mid-section of the lens. Immunohistological
staining was performed following standard procedures
described below. Antigen retrieval was performed to unmask
the paraffin embedded tissues before antibody incubation.

Whole mouse head sections were processed from a
postnatal day 1 (P1) mouse, and LC3B and FYCO1 proteins
were visualized by immunohistochemistry using the
ImmPRESS Reagent kit according to the manufacturer’s
instructions (Cat no. MP-7401; Vector Laboratories,
Burlingame, CA). Briefly, tissues were deparafinized and
hydrated using xylene and ethanol gradients and then rinsed
in tap water for 5 min. The sections were blocked with 2.5%
horse serum for 1 h. Primary FYCO1 (Cat no. A302-796A;
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rabbit polyclonal; Bethyl Labs) and LC3B antibodies (rabbit
polyclonal; Sigma-Aldrich, St Louis, MO) were both diluted
in 2.5% horse serum at 1:250, added to the sections and
incubated overnight at 4 °C. The sections were washed in
phosphate buffered saline contiatween 20 (PBS-T) for 5 min
and incubated with the ImmPRESS reagent (Cat no.
MP-7401; anti-rabbit immunoglobulin peroxidase, Vector
Laboratories) at room temperature for 30 min according to the
manufacturer’s instructions. The sections were washed again
in PBS-T and incubated with InmPACT DAB Peroxidase
Substrate (Cat no. SK-4105; Vector Laboratories) for 4 min
at room temperature. For the sections that were
counterstained, Vector’s Hematoxylin QS (Cat No H-3404)
was used according to the manufacturer’s instructions. Tissue
sections were incubated with hematoxylin counterstain for 30
s at room temperature and dipped in tap water for 10 s to
remove excess stain. Sections were cleared and mounted with
VectaMount Permanent Mounting Medium (Cat no. H-5000;
Vector Laboratories). Identical procedures were performed
using only rabbit secondary antibody as a control. Sections
were visualized using an Olympus Provis AX70 (Olympus,
Center Valley, PA) fluorescent microscope and images
captured using Magnafire software (Optronics, Goleta, CA).
Lens cell culture: A human lens epithelial cell line (HLEB3)
[29] (a gift from Dr. Majorie Lou, University of Nebraska-
Lincoln, Lincoln, NB) was grown and cultured in Dulbecco
Modified Eagle Medium (Invitrogen, Carlsbad, CA)
supplemented with 15% fetal bovine serum (Invitrogen),
gentamicin (50 units/ml; Invitrogen), penicillin-streptomycin
antibiotic mix (50 units/ml; Invitrogen), and amphotericin B
(1.25 pg/ml; Invitrogen) at 37 °C in the presence of 5% COs.
For induction of autophagy by serum starvation HLEB3 lens
cells were plated in 24 well plates at a density of 50,000 cells
per well overnight. For serum starvation, HLEB3 cells were
transferred to serum-free media with or without addition of
50 uM chloroquine, an autophagy inhibitor that prevents
autophagosome fusion with lysosomes [30], and assessed for
autophagy at 24 h post treatment by staining with an LC3B
specific antibody and fluorescent confocal microscopy as
described below.

LC3B accumulation assays: HLEB3 lens cells were plated
onto coverslips and treated as described above for induction
of autophagy using serum starvation. Immunofluoresence
staining was conducted by fixing cells with 3.7%
formaldehyde in PBS, blocking with 1% BSA and
permeabilizing with 0.25% TritonX-100 in PBS. Following
permeabilization, a rabbit polyclonal anti-LC3B (Sigma-
Aldrich) at 1:1,000 was incubated overnight at 4 °C. Cells
were washed three times with PBS, and subsequently
incubated with Alexa Fluor 488 goat anti-rabbit secondary
(Invitrogen) for 1 h at room temperature at a 1:2,000 dilution.
HLEB3 cells were washed three times with PBS and the
nucleus counterstained using 300 nM DAPI (Invitrogen) for
2 min. Cells were washed three times with PBS and mounted
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onto glass slides using ProLong Gold antiFade reagent
(Invitrogen). Immunofluoresence staining was visualized
with a Zeiss LSM 700 Confocal microscope (Zeiss,
Thronwood, NY). LC3B puncta were quantified in at least 50
cells per treatment using the AxioVision 4 software (Zeiss) by
manual visual selection of “events” as described below and
the mean and standard deviation calculated. Fully rounded
intense green staining of LC3B was counted as a single puncta
or “event” representing an autophagosome; diffuse staining is
believed to be cytoplasmic LC3 1 and was not counted as
puncta. Data presented is representative of 3 independent
experiments. Differences between treatments and controls
were determined using Tukey's test following one-way
ANOVA. A p-value less than 0.001 was considered
statistically significant.

RESULTS

Repertoire of autophagy genes expressed by the human lens:
Autophagy-associated gene expression levels were compared
between human microdissected lens epithelium (7-9 mm
central) and remaining fiber cells through analysis of
microarray, semi-quantitative RT-PCR and western blot data.
Autophagy-associated transcript levels were first determined
through analysis of previously obtained microarray data [27]
from 34 pooled human lens epithelium and fiber cell samples
(average age 57.8, age range 47-69) analyzed on affymetrix
U133A chips. Autophagy gene expression levels were
normalized between lens epithelium and fiber cell samples
relative to the housekeeping genes GAPDH, PGK, and TRP.
This analysis identified the measurable expression in lens
epithelium and lens fibers of 42 autophagy-associated genes
including autophagy adaptor proteins (proteins involved in
linking autophagy components and processes) and autophagy
inhibitors. The data are shown in Figure 1A and a summary
of the identified genes and their autophagy functions with
references is shown in Table 2.

Of the genes identified in both lens epithelial and lens
fiber cells, 14 genes were involved in autophagy induction
(Bcl-2 interacting myosin/moesin-like coiled coil protein 1
[beclin 1], tuberous sclerosis complex 1 [tsc 1], UV irradiation
resistance-associated gene [uvrag], astrocyte-elevated gene-1
[aeg-1], high temperature requirement factor A2 [omi/
htrA42], phosphatase and tensin homolog [pten], autophagy
related 14 [atgl4], Bax-interacting factor 1 [bifI], high
mobility group box 1 [Amgbl], v-ral simian leukemia viral
oncogene homolog B [ralB], retinoblastoma 1 inducible
coiled coil-1/focal adhesion kinase (FAK) family interacting
protein of 200 kDa [rblccl/fip200], forkhead box Ol
[foxO1], forkhead box O3 [foxO3], and PKR-like ER kinase/
eukaryotic translation initiation factor 2-alpha kinase 3
[perkieif2alpha3k]), eight genes were involved in expansion
of autophagic vesicles (mitogen activated protein kinase 1
[mapkl], autophagy related 12 [atgl2], WD repeat domain
phosphoinositide-interacting protein 1/autophagy related 18

© 2012 Molecular Vision

[wipil/atgl8], autophagy related 3 [atg3], atg5, microtubule-
associated protein 1 light chain 3B/autophagy related 8
[map1lc3b/atg8], autophagy related 4a [atg4a], and the small
GTP-binding protein rab33b), six were genes involved in
autophagosome fusion to lysosomes (fycol, two members of
the ras oncogene family; rab7 and rab9, vesicle-associated
membrane protein 7 [vamp7], valosin-containing protein/p97
[vep], and presenilin 1 [psenl]) and eight genes were involved
in specific autophagy sub- pathways including mitophagy
(extracellular signal-regulated kinase 2 [erk2], Bcl-2/
adenovirus E1B 19-kDa interacting protein 3-like/NIP3-like
protein X [bnip3l/nix], PTEN-induced kinase 1/PARK6
[pinkl], and presenilin associated rhomboid-like [parl]) and
chaperone mediated autophagy (lysosome-associated
membrane protein type 2 [lamp2], Bcl-2-associated
athanogene [bag3], heat shock cognate 70 kDa protein 4
[Asc70-4], and heat shock protein 90 [hsp90]; Figure 1A,
Table 2).

Of these, the expression levels of 12 autophagy-
associated genes were further analyzed by semi-quantitative
RT-PCR using a separately prepared RNA sample isolated
from a second population of microdissected human lens
epithelium and fiber cells (n=5, average age 42.6, age range
15-60; Figure 1B). One additional gene, mammalian target of
Rapamycin (mtor), which was present on the microarray but
not definitively identified to be expressed, was also analyzed.
These genes included the autophagy induction genes beclin 1,
atgl4, fip200, ralb, the autophagy expansion/closure genes
atgda, atgl2, mapllc3b/atg8, the autophagy fusion/
degradation genes rab7, fycol, the mitophagy genes nix/
bnip3L, pinkl and the adaptor gene sequestosome 1 (p62). The
data confirmed that all of the analyzed genes were expressed
in human lens epithelium and fiber cells (Figure 1B).
Differences in absolute levels of the genes between
microarray and RT-PCR data are consistent with variability
in populations of human lenses and differences in techniques
used.

Since protein levels of lens autophagy genes could differ
from mRNA levels, the protein levels of four selected
autophagy genes were also examined in protein extracts
isolated from a third pool of separately isolated human lens
epithelium and fiber cells (n=34, average age 57.8, age range
47-69; Figure 1C). Consistent with their detection at the
mRNA level, autophagy proteins RB1CC1/FIP200, LC3B,
and FYCOI and the mitophagy-associated protein BNIP3L/
NIX were detected in both lens epithelium and lens fiber cells.
Interestingly, three bands were detected for LC3B in the fiber
cells. The 18 kDa band is consistent with the unprocessed
cytoplasmic LC3B I [53] while one of the two smaller bands
likely represents the activated LC3B — LC3B II at
approximately 16 kDa [53,55]. Although we do not know the
exact LC3B modification in these two lower molecular weight
bands, cytoplasmic LC3B I is known to be cleaved and
lipidated during activation leading to a 16 kDa molecular
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Figure 2. Spatial localization of LC3B and FYCO1 in whole mouse lenses. Immunostaining of LC3B and FYCO1 in postnatal day 1 mouse
lens with LC3B-specific antibody and FYCO1-specific antibody. Secondary antibody alone is shown as control. Lens epithelium (LE), lens
cortical fibers (CF) and nuclear fibers (NF) are indicated. Brown staining show positive antibody cross reactivity and blue hematoxylin staining
is nuclear staining.

weight band (LC3B II). LC3B II is specifically inserted into
the autophagosomal membrane and is, therefore, a classic
marker for the presence of autophagosomes [12,55].
Collectively, these data suggest the presence of an autophagy
function in both lens epithelium and lens fiber cells.

Spatial localization of LC3B and FYCOI in the mouse eye
lens: To determine the localization of some of the autophagy
components in the lens and the rest of the eye, day one mouse
lenses were sectioned and immunostained with LC3B- and
FYCOl-specific antibodies (Figure 2). LC3B is a well
characterized marker for autophagosomes [53-55,86,87], and
FYCOILl is an autophagy protein associated with cataract
[25]. The lens fiber cells consist of cortical fiber cells (CF)
that are actively differentiating and still contain mitochondria
and nuclei and nuclear fiber cells (NF) which lack nuclei and
other organelles and are terminally differentiated. Since our
RNA data (above) does not distinguish between cortical and
nuclear fibers data using whole lens allows this distinction.
The LC3B autophagosomal marker was detected throughout
the lens in both lens epithelium and fiber cells although,
interestingly, the highest level of LC3B immunoreactivity was
detected in the lens nuclear fibers, indicating that autophagy

may have played a role in lens fiber cell differentiation. Mouse
lens sections were also immunostained with antibody specific
to FYCO1 (Figure 2) since its mutation is associated with lens
cataract formation [25]. FYCO1 was localized throughout the
lens and exhibited a very similar staining pattern to LC3B
(Figure 2). The data are consistent with our previous study
which demonstrated co-localization of LC3B and FYCO1 in
cultured human lens epithelial cells [25].

Induction of autophagy in human lens epithelial cells by serum
starvation: The detection of expression of multiple autophagy
genes in lens epithelium and fibers along with the presence of
activated LC3B (LC3B 1II) in lens fibers suggests that
autophagy is a functional process throughout the lens. Since
autophagy is a response to stress in many tissues [12] we
examined whether it could be induced in lens cells upon
serum-starvation. We therefore attempted to detect increased
levels of autophagosomes in lens cells by measuring increased
numbers of LC3B-positive puncta in cultured human lens
epithelial cells exposed to serum starvation and 50 pM

chloroquine.  Chloroquine is known to prevent
autophagosomal  fusion  with  lysosomes allowing
visualization = of accumulated LC3B II  stained
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Figure 3. LC3B levels in serum starved human lens epithelial cells. A: LC3B levels in lens epithelial HLEB3 cells exposed to serum starvation
and chloroquine (50 uM) detected by immunoflourescent confocal imaging (green). The nucleus is shown by DAPI staining (blue). B: Mean
number of LC3B puncta are shown for each treatment (n=50 cells; error bars represent standard deviations). The data are statistically significant

at p<0.001 by Tukey analysis.

autophagosomes that would otherwise be turned over and the
signal lost. Human HLEB3 epithelial cells were serum starved
for 24 h and levels of LC3B monitored by fluorescent confocal
microcopy. Quantitative analysis of LC3B-positive puncta
revealed that LC3B-positive puncta numbers increased almost
fourfold in lens epithelial cells upon serum starvation and
chloroquine addition compared to cells incubated for the same
time in complete media with identical chloroquine addition
(Figure 3). Statistical analysis of LC3B-positive puncta

1781

numbers obtained by direct counting in 50 cells per treatment
demonstrated significant differences (p<0.001) in LC3B
positive puncta number between untreated control lens
epithelial cells and lens epithelial cells exposed to serum-
starvation.

DISCUSSION

Autophagy has been shown to be important for the
development, differentiation and protection against oxidative
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stress in multiple tissues [14,88], however, to date its role in
lens function has remained unexamined. The lens requires the
removal of mitochondria and other organelles for fiber cell
differentiation and requires multiple protective and repair
systems to protect against damage. Since autophagy and
mitophagy are critical for these functions in other tissues it is
surprising that autophagy and mitophagy have not been
explored for their likely role in lens differentiation, lens stress
resistance and cataract formation. Recently, it was discovered
that mutation of the autophagy gene fycol causes human
cataract [25], suggesting that autophagy is indeed important
for lens differentiation and/or resistance to damage.
Consistent with this hypothesis, FYCO1 co-localizes to
lysosomes and autophagosomes in cultured lens epithelial
cells [25].

As a first step toward examining the potential function of
autophagy in the lens, we analyzed the expression levels of
autophagy genes in microdissected human lens epithelium
and fiber cells. Our analysis revealed the lens epithelium and
fiber cell expression of 14 genes involved in autophagy
induction, eight genes involved in expansion of autophagy
vesicles, six genes involved in autophagosome fusion to
lysosomes and eight genes involved in specific autophagy
sub-pathways including mitophagy and chaperone mediated
autophagy (Figure 1A). The data suggest that all components
of the autophagy pathway, including those involved in
induction, expansion/closure, and fusion degradation, as well
as mitophagy and chaperone-mediated autophagy are present
and likely functional in lens cells. Since both lens epithelium
and fiber cells express these genes they are likely to have
functions in both of these lens sub-components. The fiber-
preferred expression of some of these genes also provides
confidence that their presence in fiber cells is not an artifact
of lens epithelial cell contamination or their persistence
subsequent to lens cell differentiation. This interpretation is
supported by the detection of high levels of LC3B and FYCO1
throughout the newborn mouse lens including lens fibers
(Figure 2) and the detection of activated LC3B in the fiber
cells by western analysis (Figure 1C). Consistent with an
active autophagy pathway in lens cells we detected increased
numbers of LC3B-positive puncta and therefore
autophagosome number in lens cells exposed to serum
starvation which is a well characterized autophagy inducer in
a multitude of other studies and cell types (Figure 3). This
observation also suggests that autophagy is a response of lens
cells to exogenous stress that is likely involved in removing
oxidized and aggregated proteins that are known to
accumulate in lens cells upon oxidative and other stress
conditions.

To date, few reports on the role of autophagy in lens
function have been published. Matsui et al. [23] reported that
the lenses of mice containing a homozygous knockout of the
autophagy inducer ATGS still developed organelle-free fiber
cells, suggesting that this individual autophagy induction

© 2012 Molecular Vision

pathway was not required for organelle loss during lens cell
differentiation. The data did, however, demonstrate that
autophagy occurred in the embryonic mouse lens. Recently,
Nishida et al. [24] discovered that an alternative, Atg5/7-
independent, autophagy pathway operates in conjunction with
the ATGS pathway in non-lens cells to initiate autophagy. The
lack of effect of ATGS deletion on lens fiber cell organelle
degradation suggests that the ATGS/7-independent pathway
may operate to clear lens organelles during lens cell
differentiation. Consistently, two members of the ATG5/7-
independent pathway, Rab9 and beclin-1, were detected in
both lens epithelium and lens fiber cells in the present study
(Figure 1A). Recently Menko and Basu (Thomas Jefferson
University, Philadelphia, PA, personal communication)
reported autophagy was required for degradation of organelles
during lens cell differentiation, providing even more evidence
that autophagy is indeed involved in lens fiber cell organelle
degradation.

In addition to the ATG5 mouse knockout, other knockout
mice have been made for some of the genes we detected in the
lens but unfortunately no lens or eye phenotype has been
described for any of the mice. These include mapiic3b [89],
bnip3il/nix [90,91], beclinl [92], rblccl/fip200 [93], bif-1
[39], and lamp2 [94]. Of these, beclin 1 and fip200 were
embryonic lethal and atg3 was neonatal lethal. Lamp?2
knockout mice were viable but exhibited increased mortality
and bif-1, maplLC3b and bnip3i/nix were viable. Only two
genes (apart from fycol) that were identified in the present
report have a previously reported lens function; these are
fox01 and fox03 [95] which were implicated in lens oxidative
stress resistance. Another autophagy gene, not detected in the
lens in the present study, called ataxia telangiectasia mutated
(atm), has also been reported to be important for lens
resistance to cataract [96]. It is intriguing to speculate that the
known autophagy functions of these genes could play a role
in oxidative stress resistance by lens cells.

In summary, the present data provide evidence for a
significant role for autophagy in lens function. Autophagy and
mitophagy are likely important for lens cell removal of
damaged proteins that could cause cataract upon their
accumulation and the degradation of lens organelles during
epithelial cell differentiation into fiber cells. Further studies
on the role of autophagy in lens resistance to stress and lens
cell differentiation are likely to provide additional insight into
our understanding of lens development, maintenance and
cataract formation.
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