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It is increasingly important in life sciences that many cell-scale and tissue-scale measurements are quantified from confocal

microscope images. However, extracting and analyzing large-scale confocal image data sets represents a major bottleneck

for researchers. To aid this process, CellSeT software has been developed, which utilizes tissue-scale structure to help

segment individual cells. We provide examples of how the CellSeT software can be used to quantify fluorescence of

hormone-responsive nuclear reporters, determine membrane protein polarity, extract cell and tissue geometry for use in

later modeling, and take many additional biologically relevant measures using an extensible plug-in toolset. Application of

CellSeT promises to remove subjectivity from the resulting data sets and facilitate higher-throughput, quantitative

approaches to plant cell research.

INTRODUCTION

Confocal laser scanning microscopy (CLSM) has become a

major source of cellular- and subcellular-scale image data. Many

fluorescent probes and dyes are now available to allow the

observation of various features of specimens, such as cell walls,

organelles, and numerous proteins (Cutler et al., 2000; Pawley,

2006). The challenge has shifted from image acquisition to image

analysis and is compounded by the automation of the acquisition

process via time-series or automated, feature-driven image

capture (Conrad et al., 2011).

To address the emerging bottleneck in data analysis, a number

of automated image analysis methods have been developed to

extract information from cell-scale data, the most successful

requiring special data acquisition techniques to improve data

quality (Fernandez et al., 2010) or preprocessing of the image

data to ease the segmentation problem (Santuari et al., 2011). In

plant science, CLSM images of living tissues reveal individual

cells embedded in the implicit network-like structure of the plant

tissue. An approach that utilizes this structure to guide further

cellular and subcellular segmentation and analysis would make

themost use of the implicit structural information available within

these plant images.

To this end, the CellSeT software has been developed, which

takes advantage of the surrounding cells within a network to

extract more reliably individual cell geometry. After segmenta-

tion, cells can be semantically tagged from a custom extensible

library of biological terms. Further automated analysis can be

developed by the user via a plug-in interface. We will describe

and demonstrate three plug-ins that can measure fluorescence

intensity in cell walls and nuclei and resolve with subpixel

accuracy an asymmetrically localized plasma membrane-bound

protein.

RESULTS AND DISCUSSION

Overview of CellSeT Software

CellSeT provides an automated cell segmentation stage that

identifies cell boundaries in cell wall/plasma membrane–marked

two-dimensional confocal images through a series of image-

processing routines (Figure 1; see Supplemental Movie 1 online).

An image (Figure 1B) is first filtered to reduce noise (Figure 1C)

and is then segmented into regions representing each cell using

a variant of the watershed (Beucher and Lantuejoul, 1979)

approach (Figure 1D). In many cases, automatic segmentation

is sufficient to correctly identify the structure of all cells of

interest. Where image quality is poor (e.g., where some cells are

poorly focused), manual user adjustment can correct segmen-

tation in these regions. This manual refinement stage is often

brief, with most of the cells of interest having been correctly

identified automatically (Figures 1E and 1F).

Allowing user interaction during segmentation is a trade-off

between fully automated and fully manual approaches. The

manual adjustment of the results should be viewed as an

optional, additional step in the segmentation process, rather

than as an alternative to automatic segmentation. Automated

segmentation is significantly faster and will successfully identify
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most cells. Fully manual segmentation, with the aid of a users’

domain knowledge, will produce highly subjective results and

should not be relied upon beyond correcting a small number of

cells after automatic segmentation; additionally, the manual

approach is very labor intensive. The combination of manual

and automated approaches is integrated seamlessly by CellSeT,

resulting in an efficient and precise cell identification process.

The resulting network of cells is refined using network snake

techniques (Butenuth and Heipke, 2010; Sethuraman et al.,

2011) that act to pull each cell wall into the optimum location

on the image (Figure 1G). Network snakes consist of a set of

active contours or “snakes” (Kass et al., 1988) connected to-

gether at node points, which mimic the junctions present in plant

cell wall images. Each snake has internal parameters, which

control its shape (e.g., how much it is permitted to deform or

stretch), and external parameters related to image features,

which pull the snake toward points on the image. Optimizing

these internal and external parameters on all snakes in the

network produces a model-driven best local fit of the snake

network onto the image data, in this case the network of cell

walls. The network snakes improve accuracy and help reduce

any subjectivity introduced by the user during manual refine-

ment. Technical details about the network snake implementation

are available in previous work (Sethuraman et al., 2011).

CellSeT can perform quantitative analysis of the resulting

cellular geometry data quickly, converting the two-dimensional

positions of all cell walls into biologically relevantmeasurements,

including cell area and wall length. CellSeT can be easily ex-

tended using plug-ins to perform almost any additional mea-

surement required. These plug-ins may utilize markers in

additional image channels or additional parameters from the

user. The plug-in system is designed to be highly modular; each

Figure 1. The CellSeT Processing Pipeline.

(A) The steps involved in confocal image analysis using CellSeT.

(B) A typical input CLSM image. Cell walls have been stained with propidium iodide (green) to reveal their cellular organization.

(C) A zoomed portion of the input image after filtering.

(D) Two-level watershed segmentation is used to initially distinguish cells. In cases where cell walls are poorly defined, this may lead to under- or

oversegmentation.

(E) The refinement graph structure generated using the segmented image.

(F)Manual refinement of the graph structure; oversegmentation in the epidermal cells has been removed, and undersegmentation in the stele cells has

been corrected.

(G) CellSeT uses a network snake algorithm to refine the results of manual segmentation.

(H) Cells can be semantically tagged by the user to provide additional information during the output stage (see also Supplemental Movie 1 online).

Bar in (B) = 100 mm; bar in (C) = 30 mm.
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plug-in can be added, removed, or altered as necessary, and

creation of additional plug-ins is straightforward.When theCellSeT

software is run, existing and newplug-ins are loaded automatically,

and the user interface is altered to accommodate any additional

features the plug-ins request. Diagrams showing the data flow for

eachplug-in canbe found inSupplemental Figure 1 online.A library

of plug-ins will be maintained alongside the main project release.

CellSeT’s geometrical representations canalsobeexported for use

in othermodeling packages, such asOpenAlea (Pradal et al., 2008)

To demonstrate howCellSeT exploits thewealth of information

associated with networks of cells, we have applied the software

to three common image analysis challenges presented by con-

focal images of plant roots: (1) the automatic detection and

quantification of a nuclear reporter, (2) quantification of fluores-

cently tagged cell membranes and walls, and (3) determining the

subpixel location of asymmetrically localized membrane pro-

teins. In the following three sections, a description of the plug-in-

based processing within CellSeT is presented. Details of the

technical implementation of the approaches can be found in the

Methods.

Quantifying the Fluorescence of Nuclear Reporters

Quantification of fluorescence-based measures is a frequently

used technique within biological science. Nuclear-localized re-

porters are widely used to generate spatiotemporal maps of

responses to signals, such as hormones (Heisler et al., 2005).

However, quantification of such nuclear-localized reporters at a

cellular resolution has proved challenging to date. This is typically

performed in a low-throughput manner, at best using semiauto-

matic segmentation to define cells, followed by manual selection

of individual nuclei from image stacks (Brunoud et al., 2012). For

larger data sets, the time required to process the images becomes

prohibitive. The CellSeT nuclei plug-in is capable of quickly

detecting nuclei in any number of presegmented cells. CellSeT

allows image processing to be targeted on a per-cell basis; this

local processing vastly decreases the complexity of the required

image analysis implementations. Previous work (Vylder et al.,

2010) has shown that restricting nuclei detection to each cell

individually can improve detection accuracy; in a scenario where

nuclear intensity varies greatly over the image, with some nuclei

almost indistinguishable from background, a targeted threshold-

ing approach will outperform a global one. The nuclei plug-in uses

targetedOtsu thresholding on each cell individually, distinguishing

nuclei from background where a human observer might fail to see

a nucleus at all because of low intensity of signal, leading to

missing or biased data. Segmentation is further improved through

noise-reduction using a connected component algorithm. The

size, position, and mean intensity of each nucleus is calculated

and combined into the CellSeT output.

We have validated our nuclei detection plug-in on an image of a

root tip of Arabidopsis thaliana expressing the nuclear-localized

auxin response reporter DII-VENUS (Figure 2; see Supplemental

Movie 2 online) (Brunoud et al., 2012). The key challenges of this

image are a wide variation in nuclear intensity between cells and

some nuclei fluorescing too dimly for visual recognition. Figure

2B shows the results of nuclei detection after connected com-

ponent noise removal. Supplemental Figure 2 online shows the

improved nuclei detection rate for Figure 2A using local thresh-

olding. Local thresholding identified 94% of cells when com-

paredwith a user-defined ground truth; a similar global approach

identified only 62%. The nuclei intensity information is then

combined with the geometry provided during the CellSeT seg-

mentation stage to produce a heat map representing the nuclei

intensity of all cells in the image (Figure 2C). CellSeT software

reveals that the DII-VENUS auxin-responsive reporter (whose

stability is inversely proportionate to cellular auxin levels) is low in

the quiescent center, initial, and columella cells, whereas its

signal is much higher in root initial daughter cells (Figure 2C).

These results are in good agreement with the published maps

(Brunoud et al., 2012) generated manually from the same image

sets. CellSeT promises to remove subjectivity and facilitate the

use of DII-VENUS and other hormone-responsive reporters in a

more quantitative manner.

Figure 2. Output of the CellSeT Nuclei Plug-in.

(A) The root previously segmented in Figure 1. Red channel: cell walls

stained with propidium iodide. Yellow channel: DII-VENUS nuclear

marker.

(B) Local Otsu thresholding of the nuclei followed by noise removal using

a connected-component algorithm.

(C) A heat map generated using the intensities of each nucleus combined

with cell geometry. Brighter colors represent higher levels of DII-VENUS

detected in the nuclei of each cell. This reporter is inversely proportionate

to the level of auxin; thus, darker regions represent cells containing a

higher concentration of auxin (see also Supplemental Movie 2 online).

Bar in (A) = 100 mm.
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Quantifying Fluorescence of Membrane Reporters

Because the positions of cells and their walls have been deter-

mined by CellSeT, this information can be exploited to evaluate

fluorescence levels within cells quickly and with minimal user

interaction. Although care is required when quantifying fluores-

cence levels in confocal images (Pawley, 2000; French et al.,

2008), changes in fluorescence are increasingly being used as a

form of quantitative measure, and if interpreted conservatively,

can yield useful data. The CellSeT intensity plug-in quantifies the

mean and integrated intensities of cells and walls in any selected

image channels. For walls, the plug-in traverses each segment

using a line-drawing algorithm, ensuring that pixels are sampled at

regular intervals and are never sampled twice. Themean and total

intensities of highlighted walls and cell areas are calculated, with

the results combined into the standard CellSeT output. The plug-

in can also output a heat map showing the average intensity for

highlighted cells overlaidwith text giving individual wall intensities.

To demonstrate the application of this plug-in, we have eval-

uated it on images of Arabidopsis roots expressing a green

fluorescent protein (GFP) tagged to the auxin efflux carrier PIN2

expressed in root epidermal and cortical tissues (Xu and

Scheres, 2005). Quantification of the wall intensities of PIN2-

GFP–expressing cortical cells gives information about the re-

porter’s localization within a cell. Expressing fluorescence as a

ratio between the intensity of the reporter channel and the channel

used to define the cell wall geometry (in this case propidium iodide

staining) allows normalization of the reporter signal to an indepen-

dent signal located in the sameposition. This ratiometric approach

corrects for any differences in signal caused by walls across the

image not lying in the same focal plane. As canbe seen fromFigure

3F, the normalized fluorescence of anticlinal walls shared between

cortical cells within a file are approximately two times greater than

the periclinal walls abutting epidermal or endodermal tissues,

suggesting a polar spread of the PIN2-GFP signal. The intensity of

the outer periclinal walls is approximately double that of the inner

walls, presumably because the fluorescence of the former is com-

posed of contributions from the plasmamembranes of both cortical

and epidermal cells, whereas the latter only represents cortical cell

membranes (see PIN2-GFP expression profile in Figure 3B).

Although this plug-in is able tomeasure the integrated intensity

of shared boundaries between cells, we may wish to locate the

peak in intensity of the component membrane markers at a finer

resolution (e.g., to determine the polarity of a membrane-bound

Figure 3. Output of the CellSeT Fluorescence Plug-in.

(A) and (B) Confocal images used to evaluate the plug-in. Red channel: cell walls stained with propidium iodide. Green channel: PIN2-GFP.

(C) Merged image.

(D) A zoomed portion of the input image marked in (C).

(E) CellSeT cell map showing two selected cortical cells.

(F) Average normalized intensities for the cell walls of selected cortical cells expressing PIN2-GFP; fluorescence of the anticlinal walls is approximately

twice that of periclinal walls.

Bar in (A) = 50 mm; bar in (D) = 15 mm.
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marker). To address this, the following super-resolution plug-in

was developed.

Super-Resolution Localization of Membrane Markers

Asymmetric localization of membrane proteins within a cell

allows transport of signals and nutrients and the establishment

of hormone gradients. The close proximity of adjacent plasma

membranes makes the determination of the polarity of proteins

such as PIN2 problematic within the given pixel resolution of

confocal microscopy. We created a plug-in that provides super-

resolution localization of a protein marker relative to a cell wall

(Figure 4; see Supplemental Movie 3 online). Super-resolution in

this sense relates to an estimate of location at a higher resolution

Figure 4. Output of the Super-Resolution Plug-in.

(A) A zoomed section of a confocal image showing the PIN2-GFP protein residing on one side of an epidermal anticlinal cell wall. Red channel: cell walls

stained with propidium iodide. Green channel: PIN2-GFP.

(B) Example plot of two normal distributions fitted to the wall and PIN2-GFP channels of (A). The offset (0.195 pixels; 0.04 mm) of the means of these two

distributions reveals which side of the wall the protein resides.

(C) and (D) Input image of epidermal and cortical cells files of a root expressing PIN2-GFP.

(E)Output of protein localization plug-in with the direction and size of the offset (in pixels) of the PIN2-GFP channel overlaid in epidermal and cortical cell

files. Overlaid arrows indicate rootward and shootward polarities. In three locations, no value is shown where this offset is below the detection limit set at

0.1 pixels, and so would not be used for further analysis. PIN2-GFP polarity is correctly detected as shootward in all epidermal cells and rootward in the

majority of cortical cells. See also Supplemental Movie 3 online.

Bar in (A) = 5 mm; bar in (C) = 30 mm; bar in (E) = 30 mm.
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than the native hardware of the imaging system can provide and

is possible by fitting models to the raw data and using these

models to make predictions.

The CellSeT protein localization plug-in can estimate the offset

of a fluorescent membrane marker from the cell wall (assuming

the wall is marked with a different fluorophore) to subpixel

accuracy and can identify the direction of this offset. Regression

is used to fit one-dimensional Gaussian distributions to the point-

spread function-derived “blur” present orthogonally to the wall in

both marker signals along the length of each wall (Figure 4B).

Gaussian distributions are commonly used to model point-

spread functions from confocal microscopes (Santos and

Young, 2000; Betzig et al., 2006). The offset of these distributions

represents the relative position of the protein with respect to the

wall. Figure 4B shows the fits to the data in Figure 4A; the signal

channel is offset by20.195 pixels (;0.04 mm). The plug-in uses

this information to produce an image detailing the offset direction

and magnitude for each selected wall (Figure 4C). This is an

important result, because this is traditionally a very subjective

process that is hard to verify independently because of the

limited resolution of the images available.

The auxin efflux carrier PIN2 is localized to the shootward face

of epidermal cells in Arabidopsis root apices (Müller et al., 1998).

The results of the plug-in shown in Figure 4E show PIN2-GFP

polarity correctly detected as shootward in all epidermal cells

and rootward in themajority of cortical cells (15 out of 18). In three

cases, shown as darker gray bars, the offset has been calculated

to be >0.1 pixels, which represents a distance of 0.02 mm.

Empirical observation suggests that offsets of this size are often

too small to bemeasured reliably and so aremarked as unreliable

(see Supplemental Figure 3 online).

Further testing of this plug-in was conducted on artificial data

sets, in which the exact offset of the membrane protein could be

adjusted. Supplemental Figure 4A online shows a section of root

stained with propidium iodide. An artificial protein channel was

generated by duplicating the cell walls into a separate channel

and then translating the pixel values by a specified amount. A

range of distances was tested, from 0.1 pixels to 1.0 pixels. The

results, shown in Supplemental Figure 4C online, show that the

plug-in correctly observed the direction of the offset in all tests.

We define a successful test as one in which the direction of the

offset determined by the plug-in was identical to the direction of

the artificially produced offset. Success in this instance was not

defined in terms of a match in magnitude, because the plug-in is

primarily concerned with direction. Supplemental Figure 4C

online reveals that the magnitude of the offset values are in fact

often slightly lower than those in the ground truth data, causing if

anything an excess of data to be rejected as unconfident (i.e.,

below the minimum offset threshold). This is preferable to

accepting more offsets as being above threshold when they

are in fact not. However, it does suggest that although the

direction of offset is reliable, the magnitude should not be used

as a quantitative measure at this time.

Conclusions

In summary, we have described a novel software tool for the

segmentation, tagging, and analysis of network-structured im-

ages of plant cells. The tool assists users in the measurement of

both geometry and fluorescence levels, providing a streamlined

process that is more repeatable and efficient than the laborious

manual alternative. The resulting cellular geometry information

can be exported for use in multiscale modeling packages, such

as OpenAlea (Pradal et al., 2008). Multiscale models that inte-

grate realistic cell and tissue geometries with key subcellular

processes, such as auxin transport, are set to become increas-

ingly important in plant developmental biology research. CellSeT

software will greatly facilitate such efforts.

The ability to create plug-ins for customized image analysis

applications is an important feature of other popular programs,

such as ImageJ (Abràmoff et al., 2004). Cell wall and nuclei

fluorescence measurements are presented as examples of the

further processing made possible by CellSeT’s plug-in architec-

ture. The CellSeT nuclei plug-in is capable of quickly detecting

nuclei in any number of presegmented cells and will greatly aid

efforts to quantify nuclear-localized reporters (Figure 2). Such

reporters are increasingly being used to generate spatiotemporal

maps of responses to signals, such as auxin in confocal images

of plant tissues (Heisler et al., 2005; Vernoux et al., 2011;

Brunoud et al., 2012). Further uses of the nuclei plug-in can

include the calculation of ratios between different fluorescent

markers (such as a constitutive reporter versus a response

marker) in the same nuclei to quantify responsiveness on a per

cell basis.

A more complex plug-in, using super-resolution techniques

that estimate the offset of fluorescent markers in the membrane

versus cell wall to identify the direction of this offset, is also

described (Figure 4). This represents an important step forward

in objectively measuring the polarity of cell membrane proteins

from images taken on a conventional confocal microscope. Such

subcellular-scale data sets will greatly aid populating multiscale

models with information about the direction of flux of signals

such as auxin. Creation of a CellSeT plug-in is simple, and users

are encouraged to write and distribute their own plug-ins to

enhance the capability of the tool, providing a future-proof and

flexible analysis pipeline for biologists wishing to analyze similar

confocal images of cellular structures. Further detailed informa-

tion on the CellSeT plug-ins and the basics of creating custom-

ized plug-ins is available, along with the CellSeT software, at

www.cellset.net.

METHODS

Plant Material and Growth Conditions

Seedlings were grown vertically on one-half-strength Murashige and

Skoog media (Murashige and Skoog, 1962) supplemented with 1% (w/v)

agarose (Type PGP, Park Scientific) for 6 d in controlled environmental

conditions of 248C and continuous light of 150 mmol m22 s21 (Holman

et al., 2010). Plants were imaged at 6 d after germination.

Confocal Microscopy

Live imaging was performed using an SP5 spectral detection confocal

microscope (Leica). All images were taken with an HCX PL APO CS

2030.7 numerical aperture air objective. Roots were stained by incubat-

ing for 1 min in 5 mg/mL propidium iodide solution (Sigma-Aldrich) to
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visualize cell wall organization. Imageswereacquiredusinga514-nmargon

laser line for yellow fluorescent protein (acousto-optical beam splitter

[AOBS] setting, 520 to 548 nm) and a 488-nm argon laser line for GFP

(AOBS settings, 493 to 551 nm). Propidium iodide staining was imaged

using either the 514-nm or 488-nm lines, depending on the other fluoro-

phore present (AOBS settings for each case, 609 to 727 nm).

CellSeT Image Analysis Implementation Details

The CellSeT software uses a specific chain of procedures to generate

networks of cells from confocal images. First, the images are processed

using a variety of common image filtering techniques.Commonly, amedian

filter is used to remove speckle noise, followed by a Gaussian blur to

remove any larger artifacts. The size of the filter can be changed at the

user’s discretion, depending on the levels of noise in the input images.

Once filtered, the input image is segmented using the two-level watershed

segmentation algorithm (Vincent and Soille, 1991; Sethuraman et al., 2011).

Watershed segmentation is a common approach used to segment

images with clear intensity peaks at edges within the image; these peaks

are interpreted as peaks in a physical landscape, which determines the

boundaries of different catchment basins; hence, “watersheds.” A flood-

ing of the landscape is simulated, and where different pools meet as the

water rises, boundaries are determined. Here, an extension of the

traditional approach means the water always floods over boundaries

within a threshold of the current limit, which helps prevent oversegmen-

tation, a common problem with the watershed approach. The difference

between the lower water level and the upper threshold can be set by the

user and will generally affect the amount of oversegmentation that

occurs. This process can be performed iteratively by the user, quickly

producing a sufficient segmentation. The advantage of watersheds is that

the approach runs quickly and without user interaction, can segment any

number of regions, and provides continuous region segments. Here it

performs better than other common approaches, such as global thresh-

olding, because it does not rely on a small number of fixed intensity values

to identify the boundaries. It is also simpler to initialize than other more

advanced techniques, such as level set methods (Sethian, 1999), and is

easier to control than graph-cut methods (Shi and Malik, 2000).

Once initial segmentation is complete, region information is used to

generate a graph structure that represents the cell walls. Each wall is

represented by a series of interconnected node points, with wall end points

connected to others via junction nodes. Where cell boundaries cross the

edge of the image, walls are anchored to the image edge by another

junction node. If necessary, the user can enter a manual segmentation

procedure at this point, removing or adding walls to correct any errors in

segmentation.Oncemanual refinement has beencompleted, or if itwas not

necessary, CellSeT uses the cell network to initialize a network snake

algorithm (Sethuraman et al., 2011). A network snake is a series of

interconnected active contours, similar in structure to the refinement graph.

Active contours, or snakes, bend and move to position themselves toward

image features while also adhering to other physical constraints about their

shape. Each active contour has an associated energy function that is

minimized to achieve this. Each node is moved to an optimal position near

to its current location, whereby the overall energy of the snake is reduced.

Once the majority of nodes have settled in optimum locations, the process

is complete. The result of minimizing the energy terms is that snakes will

attempt to stay straight and evenly distributed, but will also bend andmove

slightly to fit onto the underlying image. The energy function becomesmore

complex where junctions join multiple snake nodes.

A number of alternative extensions to the snakes technique exist,

including the ability to model the snakes as an expanding balloon to aid

segmentation (Cohen, 1991). In this case, the structured nature of the

cells in a plant root makes treating individual snakes as a network an

appropriate assumption. Full details of the implementation of the network

snakes are provided in previous work (Sethuraman et al., 2011).

The resulting network snake structure does not make the structure of

cells themselves explicit. Instead, it consists of a series of interconnected

walls, which together mark cells’ boundaries. A right-hand–rule maze-

solving algorithm is used to extract the locations and walls associated

with any cells in the graph and proceeds as follows. For each junction

node, the algorithm searches for a cell by traversing the graph, turning

right at each junction. Where a cell exists, this right-hand walk will return

to the original junction after a few steps. More formally, this algorithm

returns all chordless cycles in the graph structure. Each unique cell is then

recorded alongwith the list of junction nodes associatedwith it. From this,

information on the locations of any intermediate contour nodes can be

extracted.

Cellular Analysis

CellSeT provides an interface whereby users can semantically tag cells of

various types and highlight walls as candidates for further analysis.

CellSeT itself performs a number of direct measurements on the cell

network, such as cell area and perimeter, wall length, and wall junction

locations. Geometry and numerical data can be exported via XML or plain

text files, and imported intomodeling software, such asOpenAlea (Pradal

et al., 2008). Powerful further analysis can be easily achieved using the

plug-in interface, which provides a means of executing custom image

analysis and statistical analysis routines on individual cells or groups of

cells. In this article, we have detailed the results of three separate plug-

ins. In this section, we provide an overview of the image and statistical

analysis techniques required for each plug-in.

The wall intensity plug-in has been designed to calculate the mean and

total integrated intensities of each individual wall segment and for each

cell. Information on any cell or wall highlighted by the user is passed to the

plug-in, which uses Bresenham’s line-drawing algorithm (Bresenham,

1965) to sample intensities at each pixel along each wall. Using a raster

line-drawing algorithm ensures that each pixel is only sampled once, with

no pixels being omitted between samples. Bresenham’s algorithm is also

extremely fast, which ensures that hundreds ofwalls can be analyzedwith

no noticeable delay. The plug-in will also sample from identical positions

in other image channels depending on the requirements of the user.

The nuclei analysis plug-in first detects and then analyzes the mean

intensity of a single nuclei in any cell highlighted by the user. A targeted

Otsu thresholding (Otsu, 1979) algorithm is used on each cell indepen-

dently to calculate the optimum threshold for that region. The image is

then segmented, and a connected component flood fill is performed on

the foreground region to distinguish between the nucleus and any

remaining noise. The position of the nucleus is then recorded for output

by CellSeT, and the mean intensity of the nucleus is calculated. This

information is combined with the existing cell geometry from CellSeT and

used to produce the heat map, which is also output by the plug-in.

The protein localization plug-in is aimed at analyzing the offset of an

asymmetric transporter protein signal from a cell wall signal. This is

achieved by sampling a large number of pixels orthogonal to the cell wall

on either side and then fitting one-dimensional Gaussian models to the

data (Santos and Young, 2000), modeling the blur present in the signal

localization. From these, the model’s mean values can be calculated,

locating the peak of the curve, and hence protein location can be

predicted to subpixel accuracy. This process begins by traversing the

snake wall using Bresenham’s algorithm, and then, at each pixel, addi-

tional line-drawing routines are started perpendicular to the direction of

travel. The result is the sampling of themajority of pixels traveling outward

from the snake line up to a fixed distance away, which is specified by the

user. Not every pixel visited will lie an exact pixel distance away from the

snake wall when measured as a straight line to the nearest wall element.

When a pixel is sampled, the Euclidean distance between it and the

nearest point on the snake wall is calculated. This effectively allows

sampling of continuous rather than discrete distances, which provides
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interpolated data to themodel-fitting algorithm. At each pixel, the cell wall

image and the signal image are both sampled, separate Gaussian

distributions are fitted to each set of data, and thus the positions of the

signal means can be compared. A least squares approach is taken to fit

the Gaussian distributions, after which the offset is calculated as the

positive or negative distance between the two peaks. Using real data with

an artificial offset, we have evaluated the sensitivity of the offset size

prediction (see Supplemental Figure 4 online). Using artificial data fol-

lowing a Gaussian distribution with a known offset, and with added noise

components resembling those found in confocal data (Roberts et al.,

2009), the success of predicting an offset direction was tested. With this

data, at 0.1 pixel offset, the modeled offset predicted the correct offset

direction;75% of the time (see Supplemental Figure 3 online), with the

success rate increasing quickly up to 100% at a distance of 0.4 pixels.

Whether the offset is positive or negative indicates on which side of the

centerline of the walls the signal resides. This directional value is resolved

with the direction of travel of the algorithm along the snake wall and is

used to calculate the angle of offset. Finally, every offset is combinedwith

the original confocal image to produce a map detailing the offset sizes

and directions for each highlighted wall.

Software Availability

The software is open source with a Berkeley Software Distribution license

and will be distributed on SourceForge (http://sourceforge.net), along

with Visual Studio project files. A link to the SourceForge distribution page

is available via www.cellset.net. CellSeT is written in C# utilizing the

Windows Presentation Foundation and .NET frameworks and so is

available only for Windows operating systems.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Flow Diagrams for Each Existing CellSeT

Plug-in.

Supplemental Figure 2. Evaluation of Local Otsu Thresholding

against Global Otsu Thresholding.

Supplemental Figure 3. Quantitative Analysis of the CellSeT Protein

Localization Plug-in Using Artificial Data.

Supplemental Figure 4. Quantitative Analysis of the CellSeT Protein

Localization Plug-in.

Supplemental Movie 1. An Overview of the CellSeT Processing

Pipeline.

Supplemental Movie 2. An Overview of the CellSeT Nuclei Detection

Plug-in.

Supplemental Movie 3. An Overview of the CellSeT Protein Local-

ization Plug-in.
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