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Abstract

The Bacille-Calmette Guérin (BCG) vaccine does not provide consistent protection against adult pulmonary tuberculosis (TB)
worldwide. As novel TB vaccine candidates advance in studies and clinical trials, it will be critically important to evaluate
their global coverage by assessing the impact of host and pathogen variability on vaccine efficacy. In this study, we focus on
the impact that host genetic variability may have on the protective effect of TB vaccine candidates Ag85B-ESAT-6, Ag85B-
TB10.4, and Mtb72f. We use open-source epitope binding prediction programs to evaluate the binding of vaccine epitopes
to Class I HLA (A, B, and C) and Class II HLA (DRB1) alleles. Our findings suggest that Mtb72f may be less consistently
protective than either Ag85B-ESAT-6 or Ag85B-TB10.4 in populations with a high TB burden, while Ag85B-TB10.4 may
provide the most consistent protection. The findings of this study highlight the utility of bioinformatics as a tool for
evaluating vaccine candidates before the costly stages of clinical trials and informing the development of new vaccines with
the broadest possible population coverage.
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Introduction

The Bacille-Calmette Guérin (BCG) vaccine is the single most

widely administered vaccine in the world. More than half of the

world’s population–over three billion people–had received the

BCG vaccine by 2010 [1,2]. Despite mass vaccination campaigns,

however, tuberculosis (TB) has persisted as a serious public health

problem in many areas [1]. This is in part because although BCG

is effective against TB in early childhood, it offers only variable

protection against adult pulmonary TB, the most infectious form

of the disease [1]. As a result, it is estimated that one third of the

world’s population is infected with Mycobacterium tuberculosis, and

between two and three million people die from the disease every

year [3].

Novel TB vaccines that aim to boost and/or replace BCG are

currently in development, and some have shown promising results

in in vitro studies, animal models, and phase I and II clinical trials

[1,2,3,4,5,6,7,8,9,10]. Success in these studies and trials may not

accurately represent a vaccine’s protective coverage on the diverse

global stage, however, as clinical trials are often limited in

geographic area. Researchers have thus started to study the global

coverage of novel vaccine candidates through interdisciplinary,

pre-clinical approaches that integrate comparative genomics and

bioinformatics in vaccine testing [11,12,13,14]. Such integrated

strategies have demonstrated great potential in their ability to

harness readily accessible information on human and pathogen

diversity to understand potential vaccine coverage.

A recent study from our laboratory sought to elucidate the joint

impact of host and pathogen genetic variation on the predicted

protective coverage of the polyprotein fusion TB vaccine

candidate Mtb72f [13]. Building on previous work that found

significant variations in the PPE18 protein of Mtb72f in a sample

of clinical isolates [12], McNamara et al. performed in silico

epitope binding predictions for Mtb72f epitopes and Class II

Major Histocompatibility Complex (MHC) molecules, also known

as Human Leukocyte Antigen (HLA) in humans. This study

uncovered a set of Class II HLA alleles of high frequency in TB-

endemic areas that were predicted to bind no or very few

conserved Mtb72f epitopes. Given the importance of Class II HLA

molecules in the human immune response to M. tuberculosis [3], the

findings of this study point to high-TB burden populations where

the protective effect of Mtb72f may be compromised by regional

variation of Class II HLA alleles.

The present study employs in silico epitope binding predictions

to assess and compare the predicted coverage of Ag85B-ESAT-6,

Ag85B-TB10.4, and Mtb72f in populations with a high burden of

TB. Expanding on our previous work [13], this study considered

both Class I HLA-A, B, and C, and Class II HLA-DRB1 alleles.

There are several reasons for examining Class II HLA-DRB1

diversity. Class II HLA proteins are responsible for stimulating

CD4+ T cell-mediated destruction of phagocytosed pathogens,

making Class II HLA especially important to the clearance of M.

tuberculosis from macrophages [1]. Furthermore, proteins from the

Class II HLA locus have been shown to have a predominant effect
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in the immunologic response to BCG [15]. Among Class II HLA

genes, DR alleles bind the vast majority (90%) of the 500 known

M. tuberculosis epitopes, and among DR alleles, DRB1 surface

expression is five times greater than DRB3, DRB4, and DRB5

genes [16,17]. Finally, epitope binding predictions for DRB1

alleles are more frequently available than other HLA Class II in

prediction programs.

Although CD4+ T cell-mediated immunity is essential to

combat M. tuberculosis infection, there is also evidence that CD8+
T cells are essential to the immune response to M. tuberculosis [18]

and can recognize and eliminate M. tuberculosis-infected cells [19].

For this reason, we also investigated epitope binding to the major

HLA Class I proteins, HLA–A, HLA–B, and HLA–C.

Figure 1. Supertype Class I HLA-, -B, and –C alleles. A comparison of the number of Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f vaccine epitopes
predicted to bind to each of the nine Class I HLA supertype alleles.
doi:10.1371/journal.pone.0040882.g001

Figure 2. Supertype Class II HLA-DRB1 alleles. A comparison of the median number of Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f vaccine
epitopes predicted to bind to each of the eight HLA-DRB1 supertype alleles. Median and interquartile ranges of the epitopes predicted to bind by
each of the eight prediction programs used are shown.
doi:10.1371/journal.pone.0040882.g002
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The Ag85B-ESAT-6 subunit vaccine candidate is composed of

antigen 85B (Ag85B) and 6 kDa early secretory antigenic target

(ESAT-6). Ag85B is a protein of the Ag85 complex that has been

shown to be both highly conserved across mycobacterial species

and highly immunogenic in animal models and humans

[8,9,10,20]. ESAT-6 is a virulence factor of low molecular mass

that is restricted to bacteria of the TB complex and has been

shown to be immunodominant among M. tuberculosis antigens [2].

This subunit vaccine demonstrated safety and immunogenicity in

Phase I trials in human volunteers [21]. In addition, the H56-IC31

vaccine candidate developed by the Statens Serum Institut,

Denmark, combines Ag85B and ESAT-6 with Rv2660 and

IC31H adjuvant (Intercell). H56-IC31H is currently being tested

for safety in a small group of healthy adults and adults with latent

TB as part of Phase I clinical trials in South Africa [21].

Subunit vaccine candidate Ag85B-TB10.4 was created by the

replacement of the ESAT-6 component of Ag85B-ESAT-6 with

TB10.4. TB10.4 is a member of the ESAT-6 protein family and,

like ESAT-6, is a low molecular mass, immunodominant protein

[6]. The motivation behind exchanging ESAT-6 with TB10.4 is

the high value of ESAT-6 as a diagnostic reagent and its previous

use in commercially-available diagnostic tests [6]. Interestingly,

TB10.4 has been shown to provoke a higher secretion of interferon

gamma than ESAT-6 in TB patients [22]. H4-IC31H, a vaccine

developed by SSI and Sanofi Pasteur (SP), combines Ag85B-

TB10.4 (H4 antigen) with IC31H adjuvant in a BCG prime-boost

regimen. H4-IC31H has completed Phase I clinical trials in

Sweden, Finland, and South Africa, and is currently in a Phase I

clinical trial in Switzerland [21,23]. This vaccine will next be

tested in Phase II infant efficacy trials and large Phase III

adolescent and infant trials. Ag85B and TB10.4 have also been

used in combination with Ag85A in an adenovirus vector (Ad35)

BCG booster. This vaccine candidate, AERAS-402/Crucell Ad35,

has completed three Phase I trials in the U.S. and is in ongoing

Phase I and II clinical trials in South Africa, Kenya, and the U.S.

[21].

Mtb72f, in contrast to the Ag85B vaccines, was found to have

twenty-two populations of great concern and thirty-four popula-

tions of moderate concern for HLA–A alleles, one population of

great concern and seven populations of moderate concern for

HLA–B alleles, twenty-eight populations of moderate concern for

HLA–C alleles, and two populations of great concern and one

population of moderate concern for HLA-DRB1 alleles (Tables 3,

4, 5, 6, 7). In total, it is predicted that 30% or more of the

population in twenty-five populations from high TB burden

countries will be homozygous for HLA molecules that bind four or

Table 1. Populations of moderate and great concern for Ag85B-ESAT-6.

Gene Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Phenotype
Frequency

HLA–A China Guangxi Region Maonan A*1101 0.352 A*0207 0.134 0.236

China Guizhou Province Bouyei A*1101 0.314 A*0207 0.227 0.293

China Guizhou Province Miao pop 2 A*1101 0.359 A*0207 0.165 0.275

China Guizhou Province Shui A*1101 0.295 A*0207 0.175 0.221

China South Han A*1101 0.277 A*3303 0.115 0.154

China Southwest Dai** A*1101 0.391 A*0207 0.185 0.332

China Yunnan Province Bulang A*1101 0.543 0.295

China Yunnan Province Han A*1101 0.317 A*0207 0.183 0.250

China Yunnan Province Hani pop 2** A*1101 0.613 A*0207 0.107 0.518

China Yunnan Province Jinuo** A*1101 0.367 A*0207 0.188 0.308

China Yunnan Province Wa** A*1101 0.584 A*3303 0.160 0.554

India Kerala Hindu Pulaya** A*1101 0.531 A*0301 0.063 0.353

India New Delhi A*1101 0.235 A*0301 0.098 0.111

India Tamil Nadu Nadar A*0301 0.205 A*3101 0.189 0.155

Indonesia Java Western A*1101 0.164 A*3303 0.162 0.106

Indonesia Sudanese and Javanese A*3303 0.169 A*1101 0.164 0.111

Pakistan Baloch A*1101 0.222 A*3303 0.127 0.122

Pakistan Burusho A*3303 0.179 A*0301 0.130 A*1101 0.125 0.188

Thailand A*1101 0.299 A*0207 0.109 0.167

Thailand Northeast A*1101 0.271 A*0207 0.157 0.183

Thailand Northeast pop 2 A*1101 0.233 A*0207 0.144 0.142

Vietnam Hanoi Kinh pop 2 A*1101 0.229 A*3303 0.115 0.118

HLA–B None None –

HLA–C None None –

HLA-DRB1 None None –

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t001
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fewer Mtb72f vaccine epitopes for at least one HLA locus, and

ninety-five populations from high TB burden countries are

estimated to have a population frequency of 10% or greater of

individuals homozygous for HLA molecules that are predicted to

bind four or fewer vaccine epitopes for at least one HLA locus.

The Mtb72f subunit vaccine is composed of the two proteins

PPE18, a member of the PPE protein family with an as yet

unknown function, and pepA, a putative serine protease [12].

GSK M72, a vaccine candidate containing Mtb72f, is in ongoing

Phase II clinical trials in a small cohort of infants in The Gambia

and has completed Phase I clinical trials in Belgium and Phase II

clinical trials in South Africa. GSK M72 was developed by

GlaxoSmithKline as a BCG prime-boost candidate, and will next

undergo testing in a cohort of 45 healthy, BCG-vaccinated adults

in South Africa [21].

Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f have all shown

the potential to induce protective immunity against TB infection.

The aims of this study are twofold. First, we hope to model a

novel, cost-effective, and open-access method for the assessment of

promising TB vaccine candidates as they progress into the costly

stages of clinical trials. Second, we wish to provide additional

insight into the predicted coverage of these three TB vaccine

candidates in a manner that may inform the selection of test

populations for future clinical trials.

Results

MHC Class I binding Predictions for Ag85B-ESAT-6,
Ag85B-TB10.4, and Mtb72f

Binding predictions for Ag85B-TB10.4, Ag85B-ESAT-6, and

Mtb72f were generated for 89 Class I HLA alleles representing the

three most common alleles of each of the three Class I genes –

HLA–A, HLA–B, and HLA–C – in populations with a high

burden of TB identified by the World Health Organization

(WHO) [24]. Class I allele frequencies in these populations were

determined using the online database Allele*Frequencies in

Worldwide Populations [25]. Epitope binding predictions were

generated with NetMHCcons, a consensus method server that

integrates artificial neural network (ANN), pan-specific ANN, and

matrix-based methods for high-accuracy predictions [26].

NetMHCcons was recently determined to be the best available

method for generating MHC Class I predictions [27].

Epitope binding predictions were generated for conserved

vaccine epitopes. Recent studies from our lab reported that sixty

percent of PPE18 epitopes and all pepA, Ag85B, ESAT-6, and

TB10.4 epitopes are conserved [11,13]. The number of vaccine

epitopes predicted to bind any one MHC I allele ranged from 1 to

43 for Ag85B-ESAT-6, from 1 to 52 for Ag85B-TB10.4, and from

0 to 43 for Mtb72f. Only minor differences were observed in the

number of predicted bindings between Ag85B-ESAT-6 and

Ag85B-TB10.4, while greater discrepancies were observed be-

tween Mtb72f and the Ag85B vaccines. Four Class I HLA alleles

were predicted to bind zero conserved Mtb72f epitopes (HLA–

A*3301, A*7401, B*4002, and B*4006), and 36 of 89 (40%) Class I

HLA alleles were predicted to bind four or fewer conserved

Mtb72f epitopes–a designation termed ‘‘allele of concern’’ by

McNamara et al. [13]. In contrast, all Class I HLA alleles were

predicted to bind at least one epitope of Ag85B-ESAT-6 and

Ag85B-TB10.4. Ag85B-ESAT-6 was found to have 14 (16%)

alleles of concern while Ag85B-TB10.4 was found to have 11

(12%) (Tables S1, S2, S3).

MHC Class I Alleles of Greatest Concern
Four Class I HLA alleles were predicted to bind no Mtb72f

epitopes: HLA- A*3301, A*7401, B*4002, and B*4006. These

alleles are among the three most prevalent alleles in the following

populations: Bangladesh Dhakha Bangalee; China Harbin Korean

and Inner Mongolian; India Andhra Pradesh Golla, Delhi, Kerala,

Khandesh Region Parwa, Mumbai Maratha, North, West Bhil;

Kenya; Pakistan Karachi Parsi; Russia Bering Island Aleut and

Table 2. Populations of moderate and great concern for Ag85B-TB10.4.

Gene Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Phenotype
Frequency

HLA–A Bangladesh Dhaka Bangalee A*3301 0.170 A*1101 0.156 0.106

China Yunnan Province Bulang A*1101 0.543 0.295

China Yunnan Province Hani pop 2** A*1101 0.613 0.376

China Yunnan Province Wa** A*1101 0.584 A*3303 0.160 0.554

India Kerala Hindu Pulaya** A*1101 0.531 A*0301 0.063 A*3301 0.063 0.432

India New Delhi A*1101 0.235 A*0301 0.098 0.111

India Tamil Nadu Nadar A*0301 0.205 A*3101 0.189 0.155

Indonesia Java Western A*1101 0.164 A*3303 0.162 0.106

Indonesia Sudanese and Javanese A*3303 0.169 A*1101 0.164 0.111

Pakistan Baloch A*1101 0.222 A*3303 0.127 0.122

Pakistan Brahui A*1101 0.252 A*3201 0.092 0.118

Pakistan Burusho A*3303 0.179 A*0301 0.130 A*1101 0.125 0.188

HLA–B None None –

HLA–C None None –

HLA-DRB1 None None –

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t002
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Tuva; South Africa Natal Tamil; Uganda Kampala (Tables S1,

S2). All of these populations belong to one of the 22 high TB

burden countries identified by the WHO [24].

MHC Class I Supertype Alleles
Nine HLA Class I supertypes, or supermotifs with binding

properties similar to a large number of Class I HLA allelic

variants, were used to compare the predicted bindings of Ag85B-

ESAT-6, Ag85B-TB10.4, and Mtb72f (Figure 1). These alleles

were: HLA- A*0101, A*0201, A*0301, A*2601, B*0702, B*1501,

B*2705, B*4001, and B*5801 [28]. Ag85B-TB10.4 had the

highest number of epitopes predicted to bind to supertype alleles

for six of the nine supertypes: A*0201, A*2601, B*0702, B*1501,

B*2705, and B*4001. Ag85B-TB10.4 and Ag85B-ESAT-6 had the

same number of epitopes predicted to bind B*5801, and all three

vaccines had the same number of epitopes predicted to bind to

A*0301. Finally, Mtb72f had a higher number of predicted

bindings than either Ag85B vaccine for just one supertype:

A*0101. Three of the nine supertype alleles – A*0301, B*2705,

and B*4001– were alleles of concern for Mtb72f, while only

A*0301 and B*2705 were alleles of concern for Ag85B-ESAT-6

and Ag85B-TB10.4.

MHC Class II Binding Predictions for Ag85B-ESAT-6,
Ag85B-TB10.4, and Mtb72f

Binding predictions for Ag85B-ESAT-6, Ag85B-TB10.4, and

Mtb72f were generated for 34 HLA-DRB1 alleles representing

the three most common DRB1 alleles in each of the populations

in the Allele*Frequencies in Worldwide Populations databank

from the 22 countries with the highest burden of TB as identified

by the WHO [24,25]. Epitope binding predictions were

generated with ARB, NetMHCII, NetMHCIIpan, ProPred,

SVRMHCII, MHCPred, RankPEP, and Vaxign [13]. Like

NetMHCcons, the selection of programs for Class II predictions

took a consensus-method approach that included ANN, support

vector machine regression, matrix-based, and partial least

squares methods. Wherever possible, multiple epitope prediction

programs were used to generate a median number of binding

Table 3. Populations of moderate and great concern for Mtb72f based on HLA–A allele.

Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Phenotype
Frequency

Bangladesh Dhaka Bangalee A*2402 0.163 A*1101 0.156 0.102

Brazil Parana Oriental A*2402 0.227 A*1101 0.121 0.121

Brazil Terena A*6801 0.250 A*3101 0.183 0.187

China Canton Han A*1101 0.267 A*2402 0.163 0.185

China Guangdong Province A*1101 0.303 A*2402 0.137 0.194

China Guangdong Province Meizhou Han** A*1101 0.303 A*2402 0.222 A*2420 0.116 0.411

China Guangxi Region Maonan** A*1101 0.352 A*0207 0.134 A*2402 0.134 0.384

China Guizhou Province Bouyei** A*1101 0.314 A*0207 0.227 A*2402 0.139 0.462

China Guizhou Province Miao pop 2** A*1101 0.359 A*0207 0.165 A*2402 0.147 0.450

China Guizhou Province Shui** A*1101 0.295 A*2402 0.243 A*0207 0.175 0.508

China Harbin Manchu A*2402 0.166 A*1101 0.162 0.108

China Inner Mongolian Region A*2402 0.196 A*1101 0.162 0.128

China Qinghai Province Hui A*2402 0.164 A*1101 0.159 0.104

China Shaanxi Province Han A*1101 0.187 A*2402 0.158 0.119

China Shandong Province Linqu County A*1101 0.204 A*3002 0.186 0.152

China Shanghai A*1101 0.226 A*2402 0.173 0.159

China South Han** A*1101 0.277 A*2402 0.172 A*3303 0.115 0.318

China Southwest Dai** A*1101 0.391 A*0207 0.185 0.332

China Tibet Region Tibetan A*2402 0.272 A*1101 0.130 0.162

China Wuhan A*1101 0.293 A*2402 0.178 0.222

China Yunnan Province Bulang** A*1101 0.543 A*2402 0.237 A*2407 0.103 0.780

China Yunnan Province Han pop 2 A*2402 0.316 A*1101 0.123 0.193

China Yunnan Province Han** A*1101 0.317 A*0207 0.183 A*2402 0.163 0.440

China Yunnan Province Hani pop 2** A*1101 0.613 A*0207 0.107 A*2402 0.090 0.656

China Yunnan Province Jinuo** A*1101 0.367 A*0207 0.188 A*2402 0.183 0.545

China Yunnan Province Lisu** A*1101 0.455 A*2402 0.118 0.328

China Yunnan Province Naxi** A*1101 0.380 A*2402 0.176 0.309

China Yunnan Province Nu** A*1101 0.481 A*2402 0.114 0.354

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t003
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predictions for each allele. The median number of vaccine

epitopes predicted to bind any one DRB1 allele ranged from 3 to

83 for Ag85B-ESAT-6, from 5 to 82 for Ag85B-TB10.4, and

from 0 to 79 for Mtb72f (Table S4).

Epitope binding performance followed a trend similar to the

one observed in the Class I HLA binding predictions. Minor

differences in the number of epitopes predicted to bind each allele

were observed between Ag85B-ESAT-6 and Ag85B-TB10.4,

while greater discrepancies emerged between Mtb72f and the

Ag85B vaccines. Mtb72f was found to have seven alleles of

concern (DRB1*0302, *0403, *0411, *0807, *1401, *1403, and

*1502). Ag85B-ESAT-6 was found to have two alleles of concern

(DRB1*0801 and *0807), while Ag85B-TB10.4 had no alleles of

concern.

MHC Class II Alleles of Greatest Concern
Two Class II HLA-DRB1 alleles were predicted to bind no

Mtb72f epitopes: *0302 and *1403. These alleles are among the

three most prevalent in the Venda population of South Africa,

China Yunnan Province’s Drung, and the Evenki and Ket

populations of Russia (Table S4). All of these populations belong

to one of the 22 high TB burden countries identified by the WHO

[24].

MHC Class II Supertype Alleles
Eight Class II HLA supertype alleles, or supermotifs with

binding properties similar to a large number of Class II HLA

allelic variants, were used to compare binding predictions among

Ag85B-ESAT6, Ag85B-TB10.4, and Mtb72f. The eight supertype

alleles were: DRB1*0101, *0301, *0401, *0701, *0801, *1101,

*1301, and *1501 [29]. Mtb72f was predicted to have fewer

binding epitopes than either Ag85B-ESAT6 or Ag85B-TB10.4 for

five of the eight supertype alleles (DRB1*0101, DRB1*0401,

DRB1*0701, DRB1*1101, and DRB1*1501) (Figure 2). However,

Mtb72f had more epitopes than the Ag85B vaccines that were

predicted to bind to DRB1*0801 and DRB1*1301. Ag85B-

TB10.4 was predicted to have more binding epitopes than Ag85B-

ESAT-6 or Mtb72f for three of the eight alleles (DRB1*0101,

Table 4. Populations of moderate and great concern for Mtb72f based on HLA–A allele (continued).

Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Allele of
concern 4 f*

Phenotype
Frequency

China Yunnan Province Wa** A*1101 0.584 A*3303 0.160 A*2402 0.130 0.764

India Kerala Hindu Nair A*2402 0.232 A*0301 0.146 0.143

India Kerala Hindu Pulaya** A*1101 0.531 A*2402 0.250 A*0301 0.063 0.712

India Khandesh Region Pawra A*1101 0.210 A*2402 0.160 0.137

India Mumbai Maratha A*2402 0.167 A*3303 0.130 A*1101 0.123 0.176

India New Delhi A*1101 0.235 A*2402 0.114 A*0301 0.098 0.200

India North pop 2 A*2402 0.192 A*1101 0.125 0.100

India North pop 3 A*2402 0.198 A*1101 0.172 0.137

India Tamil Nadu Nadar** A*0301 0.205 A*3101 0.189 A*2402 0.156 0.303

India West Bhil A*3303 0.180 A*2407 0.150 0.109

Indonesia Java pop 2 A*2407 0.264 A*1101 0.139 A*2402 0.139 0.294

Indonesia Java Western** A*2407 0.222 A*1101 0.164 A*3303 0.162 0.300

Indonesia Sudanese and Javanese A*2407 0.207 A*3303 0.169 A*1101 0.164 0.292

Pakistan Baloch A*1101 0.222 A*3303 0.127 0.122

Pakistan Burusho** A*3303 0.179 A*0301 0.130 A*1101 0.125 A*2402 0.125 0.312

Russia Arkhangelsk Pomor A*0301 0.160 A*2402 0.160 0.102

Russia Bering Island Aleut A*2402 0.241 A*0301 0.129 0.137

Russia Chuvash A*2402 0.189 A*0301 0.158 0.120

Russia Murmansk Saomi Mixed A*2402 0.260 A*0301 0.180 0.194

Russia Nenet Mixed A*2402 0.375 A*0301 0.172 0.299

Russia Sakhalin island Nivkhi** A*2402 0.509 A*3002 0.057 0.320

South Africa Natal Tamil A*1101 0.180 A*2402 0.160 0.116

Thailand A*1101 0.299 A*0207 0.109 0.166

Thailand Northeast pop 2** A*1101 0.233 A*2402 0.188 A*0207 0.144 0.319

Thailand Northeast** A*1101 0.271 A*2402 0.196 A*0207 0.157 0.389

Thailand pop 4 A*1101 0.277 A*2402 0.173 0.203

Vietnam Hanoi A*1101 0.330 A*2402 0.130 0.212

Vietnam Hanoi Kinh pop 2 A*1101 0.229 A*2402 0.138 A*3303 0.115 0.232

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t004
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DRB1*0401, and DRB1*1101) (Figure 2). Ag85B-ESAT-6 had

the most epitopes predicted to bind to DRB1*0701. Both Ag85B

vaccines had the same number of epitopes predicted to bind to

DRB1*1501, while Mtb72f had fewer epitopes predicted to bind

this allele. Finally, Mtb72f and Ag85B-TB10.4 had the same

number of epitopes predicted to bind to DRB1*0301 while

Ag85B-ESAT-6 had fewer. Only Ag84B-ESAT-6 was found to

have a supertype allele of concern, HLA*0801, which is found at

high frequency in the Ket population of Russia.

Populations of Concern
Allele frequencies of MHC Class I and II alleles of concern were

considered to assess the population coverage of the three vaccine

candidates, and all populations were classified as being of lesser,

moderate, or great concern. Populations of moderate concern

were defined as populations where the frequency of individuals

with two HLA alleles of the same HLA gene that are both alleles of

concern–alleles predicted to bind four or fewer vaccine epitopes–

was 10% or greater and less than 30%. Populations of great

concern were defined as those where the frequency of having both

HLA alleles be alleles of concern was 30% or greater. All other

populations were classified as being of lesser concern. The

frequency of individuals with two alleles of concern was calculated

using the assumption that allele frequencies in the population

adhere to Hardy-Weinberg equilibrium allele frequencies.

Vaccine candidate Ag85B-ESAT-6 was found to have five

populations of great concern and seventeen populations of

moderate concern for HLA-A alleles, no populations of concern

for HLA-B or HLA-C alleles, and no populations of concern in

our analysis of HLA-DRB1 alleles, (Table 1). The five populations

of great concern for Ag84B-ESAT-6 were the Chinese Wa, Hani,

Dai, and Jinuo popuations, and Indian Puyala population.

Ag85B-TB10.4 was similarly found to have no populations of

concern for HLA-DRB1 alleles, HLA-B alleles, and HLA–C

alleles. We found three populations of great concern and nine

populations of moderate concern in our analysis of HLA–A allele

frequencies (Table 2). The three populations of great concern were

the Chinese Wa and Hani populations and the Indian Puyala

population.

Testing Epitope Predictions with Control Proteins
In order to test whether observed variations in predicted epitope

bindings were a function of the vaccine proteins and not an artifact

of the prediction programs, we analyzed MHC Class I and Class II

epitope binding predictions for three non-mycobacterium control

proteins in addition to the vaccine proteins (Tables S1, S2, S3, S4).

The control proteins used were of similar amino acid length to the

vaccine candidates and included: 1) Dihydrolipoyllysine-residue

succinyltransferase (389 aa) of Neisseria meningitides, 2) Cytochrome

B (380 aa) of Homo sapiens, and 3) TPA_exp: BimA (373 aa) of

Burkholdereria mallei (www.ncbi.nlm.nih.gov). We then performed a

2-way ANOVA on control and test protein epitope predictions for

all Class I and Class II alleles analyzed. We found that for Class I

epitope prediction data, different HLA–A, 2B, and 2C alleles

account for 51.59% of the variation in epitopes predicted to bind

(F = 10.55, p,0.0001) while the specific vaccine or control protein

analyzed accounts for 23.52% of the variation (F = 84.16,

p,0.0001). For the Class II predictions, different HLA-DRB1

alleles account for 66.55% of the variation in epitopes predicted to

bind (F = 37.29, p,0.0001) while the specific vaccine or control

protein analyzed accounts for 24.52% of the variation (F = 90.70,

p,0.0001). Although the vaccine and control proteins follow

generally the same pattern as far as the alleles to which relatively

few or many epitopes are predicted to bind, these findings

demonstrate that the number of epitopes predicted to bind each

DRB1 allele varies significantly by the choice of protein or vaccine

analyzed.

Discussion

The potential impact of microbial and host genetic diversity on

the protective coverage of novel TB vaccines has not been assessed

until recently [11,12,13]. To explore the potential impact of host

genetic diversity on the population coverage of three TB vaccine

candidates, Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f, we

conducted epitope binding predictions of vaccine epitopes to Class

I and Class II HLA alleles. Epitope binding predictions for these

vaccine candidates were compared to assess the relative predicted

coverage of the three vaccines.

We defined HLA alleles of concern for a given vaccine as

alleles predicted to bind 4 or fewer vaccine epitopes. Among

HLA Class I allelic variants of high frequency in TB endemic

regions, a much higher number (37) of alleles of concern was

found for Mtb72f than for the Ag85B vaccines (11 for Ag85B-

TB10.4 and 14 for Ag85B-ESAT6). There were fewer Class II

HLA-DRB1 alleles of concern, but a similar trend in the

Table 5. Populations of moderate and great concern for Mtb72f based on HLA–B allele.

Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Phenotype
Frequency

China Guangdong Province Meizhou Han B*5801 0.170 B*4001 0.155 0.106

China Guangxi Region Maonan B*1301 0.199 B*4001 0.134 0.111

China Shandong Province Linqu County B*1301 0.220 B*4001 0.124 0.118

India Kerala Kuruma B*5802 0.333 B*4001 0.200 0.284

India Kerala Malapandaram** B*4001 0.450 B*5801 0.250 B*5701 0.200 0.810

India Khandesh Region Pawra B*4006 0.170 B*5801 0.150 0.102

Russia Sakhalin island Nivkhi B*4001 0.312 B*4801 0.113 B*2704 0.104 0.280

South Africa Tswana B*5802 0.220 B*4403 0.111 0.110

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t005
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number of alleles of concern for each vaccine candidate was

observed. Binding predictions generated the greatest number (7)

of alleles of concern for Mtb72f and fewer alleles of concern (2

and 0, respectively) for Ag85B-ESAT-6 and Ag85B-TB10.4.

Furthermore, four Class I alleles and two Class II alleles were

predicted to bind no Mtb72f epitopes, termed ‘‘alleles of

greatest concern’’ for this vaccine candidate.

We also defined populations of moderate and great concern

for each vaccine as those in which a substantial proportion of

the population would have two alleles of concern for a single

HLA locus. Populations of moderate concern were defined as

those where between 10% and 30% of the population has two

alleles of concern at a given HLA locus; populations of great

concern were defined as those where 30% of the population

fulfills this criterion. Mtb72f was found to have the greatest

numbers of populations of moderate and great concern among

the three vaccine candidates, with three populations of concern

based on HLA-DRB1 alleles, 56 based on HLA-A, 8 based on

HLA–B, and 28 based on HLA–C. Ag85B-ESAT-6 and Ag85B-

TB10.4 were each found to have no populations of concern

based on HLA-DRB1, HLA-B, and HLA-C alleles, and were

found to have 22 and 12 populations of moderate or great

concern, respectively, based on HLA-A alleles.

Ag85B-TB10.4 generally had more predicted epitope bindings

per allele than Ag85B-ESAT-6. Ag85B-TB10.4 also had the

fewest alleles of concern and the fewest populations of concern,

as defined above. The observed difference between Ag85B-

ESAT-6 and Ag85B-TB10.4 has an important implication in

the development of new TB vaccines because ESAT-6 is a key

component in a new generation of vaccine candidates against

M. tuberculosis infection [4,30]. One particularly promising

vaccine candidate is H56-IC31H, which includes the component

proteins Ag85B, ESAT-6, and Rv2660c [4]. Given the findings

of this study, the TB10.4 protein may be considered as an

alternative to include in a multistage TB vaccine, as it may

confer more consistent protection in the global population.

ESAT-6 has also been reported as an important component in

M. tuberculosis diagnostics; Ag85B-TB10.4 was in fact developed

Table 6. Populations of moderate and great concern for Mtb72f based on HLA–C allele.

Population of concern
Allele of
concern 1 f*

Allele of
concern 2 f*

Allele of
concern 3 f*

Phenotype
Frequency

Brazil Pernambuco Mixed C*0401 0.228 C*0602 0.109 0.114

Brazil Terena C*0401 0.223 C*0702 0.202 0.181

China Guangdong Province Meizhou Han C*0702 0.258 C*0717 0.147 0.164

China Yunnan Province Bulang C*0702 0.190 C*0401 0.134 0.105

China Yunnan Province Lisu C*0702 0.329 0.108

China Yunnan Province Nu C*0702 0.307 C*0401 0.157 0.215

India Delhi pop 2 C*0602 0.136 C*0401 0.117 C*0702 0.099 0.124

India Kerala Hindu Ezhava C*0702 0.229 C*0401 0.146 0.141

India Kerala Hindu Namboothiri C*0401 0.213 C*0702 0.213 0.181

India Kerala Hindu Pulaya C*0401 0.188 C*0702 0.188 0.141

India Kerala Kattunaikka C*0401 0.412 0.170

India Kerala Kurichiya C*0702 0.350 C*0401 0.150 0.250

India Kerala Malabar Muslim C*0401 0.279 C*0702 0.147 0.181

India Kerala Syria Christian C*0401 0.226 C*0702 0.145 0.138

India Mumbai Maratha C*0602 0.222 C*0401 0.154 C*0704 0.099 0.226

India North pop 2 C*0401 0.265 C*0702 0.162 0.182

India Tamil Nadu Nadar C*0401 0.213 C*0702 0.148 0.130

India West Coast Parsi C*0602 0.240 C*0401 0.110 0.123

Kenya Luo C*0602 0.187 C*0401 0.132 0.102

Kenya Nandi C*0602 0.217 C*0401 0.115 0.110

Pakistan Burusho C*0702 0.255 C*0401 0.133 0.151

Pakistan Karachi Parsi C*0602 0.214 C*0401 0.181 0.156

Pakistan Mixed Pathan C*0401 0.165 C*0702 0.160 C*0602 0.120 0.198

Russia Arkhangelsk Pomor C*0702 0.260 C*0602 0.130 C*0401 0.120 0.260

Russia Moscow C*0702 0.257 C*0602 0.130 0.150

Russia Murmansk Saomi Mixed C*0401 0.190 C*0702 0.140 0.109

Thailand Northeast C*0702 0.271 C*0401 0.131 0.162

Uganda Kampala pop 2 C*0602 0.191 C*0401 0.160 0.123

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t006
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as a sequel to Ag85B-ESAT-6 to maintain the viability of

ESAT-6-based immunological assays in immunized individuals

[6]. The finding of this study that Ag85B-TB10.4 may provide

broader and more consistent coverage than Ag85B-ESAT-6 and

Mtb72f provides additional incentive to use TB10.4 instead of

the ESAT-6 subunit.

It is essential to note that, of the epitopes predicted to bind an

HLA molecule, not all will actually be bound by these alleles in

vivo. Before being bound by class I and class II HLA molecules,

epitopes must undergo processing and, because not all possible

epitopes will actually be generated through intracellular process-

ing, not all epitopes predicted to bind may be present in vivo to

activate a protective immune response. As there currently exists no

accurate means of determining which epitopes will be generated

in vivo, in silico epitope binding predictions are overestimates of

in vivo epitope bindings. This fact suggests that in silico alleles of

concern may be of even more serious concern in vivo, binding

fewer epitopes than predicted or none at all. Furthermore, even if

an epitope is presented on an HLA molecule, the specific epitope/

HLA molecule combination may not be strongly immunogenic.

The distal impact of these points is that a vaccine candidate may

not succeed in inducing immunity in individuals with HLA

genotypes predicted to bind very few of the vaccine’s epitopes: few

or none of the epitopes predicted to bind may actually be

generated in vivo, and if they are generated they still may not

stimulate a strong immune response.

The ranges of Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f

epitopes predicted to bind allelic variants of Class I and II

demonstrate considerable variation: 0 to 52 epitopes predicted to

bind among Class I alleles and 0 to 83 among Class II alleles. As

evinced by the distribution of the number of predicted bindings

(Tables S1, S2, S3, S4), some Class I or II alleles are predicted to

bind a high number of epitopes from all three vaccines, whereas

others are predicted to bind relatively few epitopes from all three

vaccines. This is consistent with our finding that the majority of

the variation in the number of epitopes from the various vaccines

and control proteins predicted to bind each HLA molecule can be

accounted for by differences among DRB1 or Class I alleles. This

finding is not surprising because different HLA alleles recognize

different amino acid patterns within epitopes, and some alleles

have less stringent recognition criteria (i.e. more amino acids

permitted at specific locations within the epitope core) and/or

recognize epitopes containing more common amino acids.

Because of these differences in recognition criteria, substantial

differences in the frequency of epitopes that are able to bind to

each HLA allele are expected. We furthermore found that the

number of epitopes predicted to bind each allele also varies

significantly when different test and control proteins are used to

generate predictions. This analysis agrees with our overall epitope

prediction results, which suggest that the level of protection

conferred by any one vaccine candidate will vary among people

with different genetic backgrounds, and also that a single vaccine

candidate will not be more effective than the others in people of

every genotype.

As demonstrated by McNamara et al. [13], pathogen diversity

can have a substantial impact on the outcomes of epitope binding

predictions. In particular, genetic diversity may introduce or

remove epitopes that are important to the vaccine’s interaction

with Class I and Class II HLA molecules. In the current study, we

focused on the diversity of human Class I and Class II HLA alleles

rather than the genetic diversity of Ag85B-ESAT-6 and Ag85B-

TB10.4, because a previous study from our laboratory found no

sequence variation in the M. tuberculosis genes encoding the protein

components of Ag85B-ESAT-6 and Ag85B-TB10.4 among 101

M. tuberculosis clinical strains from Arkansas and Turkey [11].

However, a recent study found that TB10.4 may actually have

more diversity than most other TB genes [31], which would

complicate the predicted interactions between HLA molecules and

vaccine epitopes. Additional studies using samples representing

different genetic lineages of M. tuberculosis clinical strains should be

performed to further investigate polymorphisms in the proteins

that compose these vaccine candidates and examine whether this

diversity creates variation in regions of the proteins predicted to

serve as epitopes.

To summarize, our study found notable differences in the

predicted coverage of Ag85B-ESAT-6, Ag85B-TB10.4, and

Mtb72f, with Ag85B-TB10.4 predicted to have the best overall

population coverage. The findings of this study highlight

bioinformatics as a useful approach to evaluating vaccine

candidates before they reach the costly stages of clinical trials.

Although epitope binding prediction programs are imperfect,

they offer a low-cost and low-risk approach to exploring and

comparing vaccine coverage, and may offer important insights

into the pre-clinical stages of vaccine development and testing.

For example, our analysis of the population coverage of the

three vaccine candidates identified several populations where

30% or more of the population is expected to have two alleles

of concern at the same HLA locus, demonstrating that there are

populations where the variation in the host’s ability to present

vaccine epitopes may have an important impact on vaccine

efficacy. Such information may guide decisions on which

populations to focus on during clinical trials. Future studies

should, therefore, incorporate host and pathogen diversity into

the creation of epitope-driven vaccines as well as into testing of

their global coverage.

Table 7. Populations of moderate and great concern for Mtb72f based on HLA-DRB1 allele.

Population of concern Allele of concern 1 f* Allele of concern 2 f*
Phenotype
Frequency

China Yunnan Province Drung** DRB1*1401 0.807 DRB1*1403 0.043 0.723

Brazil East Amazon** DRB1*0411 0.630 0.397

Brazil Ticuna DRB1*0411 0.316 DRB1*0807 0.224 0.292

*Allele frequency, from the Allele*frequencies database.
**Populations of great concern, defined as populations where 30% or more of the population has an expected phenotype of reduced protection by the vaccine due to
having two alleles of concern for a single HLA locus, assuming Hardy-Weinberg equilibrium. Alleles of concern are defined as alleles predicted to bind four or fewer
vaccine epitopes.
doi:10.1371/journal.pone.0040882.t007
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Materials and Methods

Selecting Programs for Class I and Class II Epitope
Binding Prediction

This study took a consensus approach to epitope binding

prediction, which incorporates several algorithms to generate

more accurate binding predictions than single-method approaches

[32]. Class I epitope binding predictions were generated with

NetMHCcons, a server that incorporates artificial neural network-

based (ANN), pan-specific ANN, and matrix-based methods to

give highly accurate predictions [26], and that was recently

determined to be the best available method for generating MHC

Class I predictions [27]. Class II epitope binding predictions were

generated with a set of eight programs: ARB, NetMHCII,

NetMHCIIpan, ProPred, SVRMHCII, MHCPred, RankPEP,

and Vaxign [13]. The methods of these programs include artificial

neural networks [33], support vector machine regression models

[34,35], matrix-based models [36], and partial least squares

models [37,38].

For Class I predictions, a binding cutoff of IC50#500 was used

[26]. For Class II predictions, default binding cutoffs were used for

programs that predicted binding in a yes/no fashion. For

programs that generated IC50 or pIC50 values for binding

predictions, IC50#500 was used as the binding cutoff [39]. The

only program that did not fall into either of the preceding

categories was ProPred, for which the recommended 3% best

scoring peptides among all possible epitopes was used as the cutoff.

Class II binding predictions used the same binding cutoffs used in

[13].

Selecting High-frequency Alleles
This study tested 89 HLA-A, –B, and –C alleles and 34 HLA-

DRB1 alleles [13], representing the three most prevalent HLA–A,

HLA–B, HLA–C, and HLA-DRB1 alleles in each population in

the Allele*Frequencies in WorldWide Populations database (www.

allelefrequencies.net) from the WHO 22 countries of high TB

burden (Tables S1, S2, S3, S4) [24,25].

Supertype Alleles
Nine Class I HLA supertype alleles (A*0101, A*0201, A*0301,

A*2601, B*0702, B*1501, B*2705, B*4001, and B*5801) and eight

HLA-DRB1 supertype alleles (DRB1*0101, *0301, *0401, *0701,

*0801, *1101, *1301, and *1501) were used in the comparative

analysis of Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f. These

supertype alleles represent the primary functional binding motifs

of most Class I alleles and nearly all HLA-DRB1 alleles [28,29].

Epitope Binding Predictions
Class I and II epitope binding predictions for vaccine candidates

were obtained by entering all conserved M. tuberculosis epitopes

from Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f into the most

recently updated versions of one Class I and eight Class II

programs. Protein sequences for Ag85B-ESAT-6 and Ag85B-

TB10.4 were derived from the H37Rv reference strain, as a

previous study of 91 clinical strains–defined by IS6110 restriction

fragment length polymorphism analysis and spoligotyping–found

no phenotypic diversity in the three component proteins of

Ag85B-ESAT-6 and Ag85B-TB10.4 [11]. The conserved epitopes

for Mtb72f were derived from two conserved segments of the pepA

protein and the complete list of conserved PPE18 epitopes as

reported in [13]. All Class I binding predictions were generated by

NetMHCcons, while Class II binding predictions came from

different subsets of the eight programs for each allele because not

all programs predicted binding for all 34 DRB1 alleles.

Since our publication of Mtb72f epitope binding predictions in

[13], five of the eight epitope binding prediction programs used in

this study (ARB, NetMHCII, NetMHCIIpan, MHCPred, and

RankPEP) were updated. To permit the comparison of prediction

results among Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f, new

epitope binding predictions were completed for the conserved

regions of Mtb72f, as defined in [13]. Program updates did not

change the conclusions of [13], although minor changes were

observed in the predicted bindings per allele.

The predictions generated by each program were compiled in

Excel 2007 (Microsoft, Redmond, WA). If binding prediction

programs predicted multiple epitopes of differing length but with

the same nonamer binding core, the minimum core required to

bind class II HLA, unique nonamer cores were counted only once

to avoid overestimation of bound epitopes per allele. We screened

epitope binding prediction results for HLA alleles of concern,

defined by McNamara and colleagues as variants predicted to

bind four or fewer conserved vaccine epitopes, and compared the

results for the three vaccine candidates.

Assessment of Population Coverage
The allele frequencies of all HLA–A, B, C, and DRB1 alleles

were considered to determine the expected coverage of Ag85B-

ESAT-6, Ag85B-TB10.4, and Mtb72f in populations of high TB

burden. All populations were classified as being of lesser,

moderate, or great concern for reduced vaccine coverage.

Populations of moderate concern were defined as populations

where the frequency of individuals with two HLA alleles of the

same HLA gene that are both alleles of concern–alleles predicted

to bind four or fewer vaccine epitopes–was 10% or greater and less

than 30%. Populations of great concern were defined as those

where the frequency of having both HLA alleles be alleles of

concern was 30% or greater. All remaining populations were

classified as being of populations of lesser concern. Phenotypic

frequencies were calculated using allele frequencies from the

Allele*frequencies database under the assumption of Hardy-

Weinberg equilibrium.

Control Proteins
To test that observed variations in predicted epitope bindings

were a function of the vaccine proteins rather than an artifact of

the prediction programs, we generated Class I and II epitope

binding predictions for three non-mycobacterium control proteins.

The control proteins were of similar amino acid length to the three

vaccine candidates, and included: 1) Dihydrolipoyllysine-residue

succinyltransferase (389 aa) of Neisseria meningitides, 2) Cytochrome

B (380 aa) of Homo sapiens, and 3) TPA_exp: BimA (373 aa) of

Burkholderia mallei (www.ncbi.nlm.nih.gov). Two-way ANOVA was

performed on control and test protein epitope predictions for all

Class I and Class II alleles analyzed to assess the sources of

variation in the number of epitopes from each protein predicted to

bind to each HLA allele.
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