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Abstract
Since its discovery in the early 1990s, the Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) signaling pathway has been found to play key roles in regulating many key
cellular processes such as survival, proliferation, and differentiation. There are seven known
mammalian STAT family members: STAT1, 2, 3, 4, 5a, 5b, and 6. In the liver, activation of these
STAT proteins is critical for anti-viral defense against hepatitis viral infection and for controlling
injury, repair, inflammation, and tumorigenesis. The identification of functions for these STAT
proteins has increased our understanding of liver disease pathophysiology and treatments, while
also suggesting new therapeutic modalities for managing liver disease.
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Introduction
Alcohol consumption, nonalcoholic steatohepatitis, and viral hepatitis are the three major
causes of chronic liver disease; each has a similar disease progression that is characterized
by chronic liver inflammation, injury, cirrhosis, and hepatocellular carcinoma (HCC). Liver
disease progression is controlled by a wide variety of cellular mediators, including
cytokines, growth factors, hormones, and among others. Of the various downstream
signaling pathways, the Janus kinase (JAK)-signal transducer and activator of transcription
(STAT) pathway has been shown to play a multitude of critical roles in the pathogenesis of
liver diseases.

The JAK-STAT pathway was identified in the early 1990s as a key signaling cascade
mediating cytokine receptor-derived signals in mammals [1, 2]. In general, upon binding to
their receptors, cytokines induce receptor dimerization and subsequent receptor-associated
JAK dimerization. The JAKs then autophosphorylate one another, and receptor
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phosphorylation follows. Next, the phosphorylated JAK-receptor complex recruits and
phosphorylates various STAT proteins. The phosphorylated STATs then form homodimers
or heterodimers and translocate into the nucleus to induce the transcription of genes that
regulate many cellular functions [1, 2]. To date, four JAKs (JAK1-3 and Tyk2) and seven
STAT proteins (STAT1-4, 5a, 5b, and 6) have been identified. Each cytokine receptor
activates its characteristic set of individual JAKs and STATs that is determined by the
structure of receptor intracellular domains. In the liver, the JAK-STAT pathway is activated
by growth hormone and a diverse array of cytokines [3], and to a lesser extent by other
mediators such as growth factors (eg. epidermal growth factor) [4] and viral proteins (eg.
HCV core protein) [5]. Fig. 1 and Fig. 2 show the simple models of JAK-STAT pathways
activated by interferons (IFNs), interleukin-6 (IL-6), and IL-22. Table I and Table II list the
major activators and functions of each STAT in liver parenchymal (hepatocytes) and
nonparenchymal cells.

After activation, the JAK-STAT pathway is usually rapidly terminated by three families of
proteins, including suppressors of cytokine signaling (SOCSs), SH2-containing
phosphatases (SHPs), and protein inhibitors of activated STATs (PIASs) [6, 7]. Among
them, SOCS proteins, which include SOCS1-3, are cytokine-induced negative feedback-
loop regulators that terminate JAK-STAT signaling by binding and inhibiting JAKs or by
competing with STATs for phosphotyrosine binding sites on cytokine receptors [6, 7]. In
concanavalin A (Con A)-induced T cell hepatitis model, IFN-γ activation of STAT1 is
mainly responsible for SOCS1 induction, whereas IL-6 activation of STAT3 contributes to
SOCS3 induction [8]. SOCS1 and SOCS3 reciprocally inhibit STAT1 and STAT3 signaling
with SOCS1 preferential inhibition of IFN-γ signaling and SOCS3 preferential inhibition of
IL-6 signaling in the liver [9].

In this review, we highlight the important functions of various STATs in hepatic anti-viral
responses, inflammation, and tumorigenesis.

Anti-viral effects of STAT1 and STAT2 in viral hepatitis
It has been well documented that activation of both STAT1 and STAT2 plays a key role not
only in host defense against HCV infection but also in IFN-α treatment-induced HCV
clearance. After HCV infection, the infected hepatocytes produce IFN-β, which then
activates STAT1 and STAT2 in uninfected neighboring hepatocytes via the binding of IFN-
α/β receptor, and subsequently upregulates expression of various anti-viral proteins that
prevent further infection [10]. The current standard therapy for chronic HCV infection is 24
or 48 weeks of treatment with pegylated IFN-α given in combination with ribavirin; this
leads to viral eradication in approximately 50–60% of treated patients. The anti-HCV effects
of IFN-α are believed to be mediated by signaling through a heterodimeric receptor complex
composed of IFN-α receptor 1 (IFNAR1) and IFNAR2 on hepatocytes; receptor ligation
results in the activation of STAT1 and STAT2 and the subsequent induction of a variety of
anti-viral proteins that inhibit HCV replication (Fig. 1). Recent studies suggest that IFN-α-
mediated natural killer (NK) cell activation and the subsequent elimination of HCV-infected
hepatocytes by NK cells may also contribute to the anti-viral effect of IFN-α treatment
against HCV infection [11–16]. NK cells can also produce IFN-γ that subsequently inhibits
HCV replication in hepatocytes [17]. STAT1 protein expression and phosphorylation in NK
cells are increased in HCV patients compared with healthy subjects [18, 19], and are further
elevated during IFN-α therapy [19]. Elevation of STAT1 in NK cells correlates with
increased NK cell cytotoxicity and the anti-viral effectiveness of IFN-α-based therapy,
suggesting that STAT1 contributes to NK cell activation and the anti-HCV activity of IFN-α
[19] (Fig. 1).
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IFN-λ proteins are known as type III IFNs that are functionally similar to IFN-α in that they
can also activate STAT1 and STAT2. To date, three IFN-λ genes that encode three distinct,
yet highly related, proteins known as IFN-λ1 (also known as IL-29), IFN-λ2 (IL-28A), and
IFN-λ3 (IL-28B) have been identified [20]. In this article, we use IL-29, IL-28A and IL-28B
to represent the gene symbols of IFN-λs, as recommended by the Human Genome
Organization Gene Nomenclature Committee, and use IFN-λs to represent the
corresponding proteins to emphasize their functions. IFN-λ can initiate STAT1 and STAT2
activation by binding to a receptor complex comprised of the IL-10R2 and the unique IFN-
λR1 (also known as IL-28R) chain. The subsequent upregulation of a number of anti-viral
proteins leads to the inhibition of HCV replication [21–26] (Fig. 1). As the expression of
IFN-λR1 is largely restricted to epithelial cells, clinical treatment with IFN-λ is less likely
to induce the hematopoietic and neurologic side effects observed during IFN-α therapy [23].
Based on these exciting preclinical findings, several groups have performed phase I clinical
trials with pegylated IFN-λ1. In these trials, HCV-infected patients tolerated weekly
pegylated IFN-λ1 treatments with or without daily ribavirin for 4 weeks and had clear anti-
viral responses [27, 28]. However, large, randomized controlled trials are needed to provide
clear data regarding the safety and efficacy of pegylated IFN-λ1 for the treatment of chronic
HCV infections.

In addition to the potential of IFN-λ to treat HCV, single nucleotide polymorphisms (SNPs)
in the IL-28B/IFN-λ3 gene have been shown to play important roles in regulating
spontaneous HCV clearance and in determining the efficacy of pegylated IFN-α plus
ribavirin therapy in HCV patients. As the details of these genetic studies have been
discussed in several reviews [29–31], we will only briefly summarize the findings here.
First, SNPs in the IL-28B gene, such as rs12979860 or rs809917, are strongly associated
with spontaneous and IFN-α treatment-induced clearance of HCV in patients infected with
either HCV genotypes 1 or 4; however, the results from studies in patients with HCV
genotypes 2 and 3 remain inconclusive (see reviews [29–31]). Second, the presence of
IL-28B gene SNPs, in either donor or recipient tissues, has been shown to affect the
responsiveness to IFN-α therapy for the treatment of recurrent HCV infection following
liver transplantation [32–34]. Although the association between IL-28B SNPs and HCV
infection has been extensively investigated, the results for the association of these SNPs and
IFN-λ protein expression have been controversial. It was reported that patients with the
IL-28B rs12979860 SNP had increased serum levels of IFN-λs that were associated with
HCV clearance [35], but other reports showed that patients with the response-favorable
IL-28B rs8099917 TT genotype had a lower expression of IFN-λs compared to patients with
the TG or GG genotypes [36], or that IL-28B SNPs were not associated with intrahepatic
IFN-λ expression in HCV patients [37]. Moreover, the mechanisms underlying the
important functions of IL-28B SNPs in controlling HCV outcomes remain obscure. It may
be related to IFN-λ-mediated direct inhibition of HCV replication [22, 25, 26] and IFN-λ-
mediated induction of prolonged STAT1 activation and ISG expression in hepatocytes [22,
38].

In contrast to the well-documented anti-viral effects of STAT1 and STAT2, the functions of
other STATs in viral infection remain largely unknown. Although activation of other STATs
appears to have no direct anti-viral effects, their activation may indirectly modulate the anti-
viral activity of IFNs by regulating STAT1 and STAT2 activation, modulating IFN
expression, and controlling immune cell activation. For example, in addition to the
activation of STAT1 and STAT2, IFN-α also induces strong STAT3 activation in primary
human hepatocytes [39]. Although STAT3 activation does not induce anti-viral proteins, it
may negatively regulate the anti-viral activity of IFN-α by inhibiting STAT1 and STAT2
activation through several mechanisms. First, STAT3 can heterodimerize with STAT1,
thereby reducing STAT1 and STAT2 heterodimer formation. Second, STAT3 activation
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upregulates SOCS1 and SOCS3 expression that then inhibit IFN-α signaling. In addition,
activated STAT3 is an important survival signal for hepatocytes and likely prevents HCV-
infected hepatocyte cell death, thereby diminishing the anti-viral effects of IFN-α. Further
studies to clarify the role of STAT3 in anti-viral IFN-α therapy may help identify novel
strategies to improve the efficacy of IFN-α treatment in HCV patients.

Opposing roles of STAT1 and STAT3 in liver injury and repair
Accumulated research data from the last decade suggest that signaling through the JAK-
STAT pathway plays key roles in controlling liver injury, regeneration, fibrosis, and
inflammation. Interestingly, STAT1 and STAT3 activation play opposing roles in many
aspects of liver pathophysiology, including liver injury and repair, which are discussed here.
As the roles of the STATs in liver fibrogenesis have been summarized in a recent article
[40], they are not discussed in this review.

Liver injury
Liver injury is characterized by damage to parenchymal cells, such as hepatocytes and
biliary cells, and also by the sinusoidal disorganization that follows endothelial cell death.
Whereas STAT1 activation in hepatocytes is a pro-apoptotic signal that leads to cell death
and increased liver damage, STAT3 activation is a survival signal that protects against
hepatocyte death. The opposing roles of hepatic STAT1 and STAT3 in liver injury have
been extensively characterized in the Con A-induced T cell hepatitis model, where both
signals are highly activated [8, 41–47]. Blockade of hepatic STAT1 activation via genetic
modification of several genes prevented Con A-induced liver injury [8, 41, 42, 44, 48];
whereas inhibition of hepatic STAT3 exaggerated it [8, 43, 45]. Conversely, enhanced
hepatic STAT1 activation accelerated Con A-induced hepatitis [41], while increased hepatic
STAT3 activation diminished it [46, 47]. These findings suggest that STAT1 activation in
hepatocytes is detrimental in Con A-induced hepatitis, whereas activation of hepatic STAT3
is protective. In addition, the detrimental effect of STAT1 has also been reported in LPS
plus D-galactosamine-induced liver injury [49]; whereas the hepatoprotective function of
hepatic STAT3 has been observed in many models of liver injury [50–55]. For example,
conditional deletion of STAT3 in hepatocytes markedly increased mice to Fas ligand-
induced hepatocyte apoptosis and liver injury [55], which is likely mediated by upregulating
the expression of anti-apoptotic and antioxidant proteins (see reviews [56, 57]). Conversely,
the deleterious effects of STAT1 in hepatocytes are likely mediated by the direct induction
of apoptosis and the upregulation of chemokines and chemokine receptors [58, 59].

Interestingly, hepatic STAT1 and STAT3 not only functionally antagonize each other, but
they also mutually inhibit each other’s activation. For example, inhibition of hepatic STAT3
mediated through deletion of either IL-6 or STAT3 resulted in enhanced STAT1 activation
in Con A-induced hepatitis [8] and partial hepatectomy models [60, 61]. In contrast, deletion
of STAT1 resulted in enhanced STAT3 activation in Con A-induced hepatitis model [8].
The mutual inhibition of STAT1 and STAT3 is mediated, at least in part, through the
induction of SOCS1 and SOCS3, respectively, that inhibit both STAT1 and STAT3
activation in Con A-induced hepatitis models [8] (Fig. 2).

Liver regeneration
The mammalian liver has a great ability to regenerate fully after tissue loss or damage,
which stimulates quiescent hepatocytes to enter the cell cycle and go through limited
replication under the control of the broad spectrum of cytokines, growth factors, and
hormones (see reviews [62, 63]). Among these factors, IL-6 represents the major cytokine
that activates STAT3 in hepatocytes and is consequently responsible for hepatocyte
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proliferation following partial hepatectomy originally reported by Cressman et al. [64];
however, several follow-up studies using IL-6 knockout mice generate conflicting data on
the role of IL-6 on hepatocyte proliferation and liver regeneration [65–68]. In contrast, the
reports on the role of STAT3 in liver regeneration are consistent. For example, inhibition of
hepatic STAT3, mediated through STAT3 or gp130 deletion, reduced liver regeneration
after partial hepatectomy [60, 61, 69, 70]. Conversely, augmentation of hepatic STAT3,
induced via either SOCS3 deletion or IL-22 overexpression, accelerated liver regeneration
[47, 71].

Whereas STAT3 is critical for liver regeneration, STAT1 activation plays a role in inhibiting
liver regeneration as STAT1 deletion accelerated liver regeneration and diminished the
inhibitory effect of poly I:C treatment on liver regeneration in the partial hepatectomy model
[58, 72]. Furthermore, in vitro IFN-γ treatment induced cell cycle arrest and apoptosis in
wild-type but not in STAT1-deficient hepatocytes [58]. Recently, we demonstrated that
hepatic STAT1 levels were highly upregulated in the double mutant mice with STAT3
deletion in myeloid cells and hepatocytes, and this STAT1 upregulation correlated with
impaired liver regeneration and increased mortality in these mice following partial
hepatectomy [60]. The additional deletion of STAT1 in these double mutant mice restored
liver regeneration and abolished the mortality induced by partial hepatectomy, providing
conclusive evidence that high STAT1 levels in the liver attenuate liver regeneration [60].
Interestingly, many viral hepatitis patients have high levels of hepatic STAT1 expression
that positively correlate with liver injury but negatively correlate with hepatocyte
proliferation [58, 73]. Thus, in patients with viral hepatitis, such enhanced STAT1 activation
likely plays a beneficial role in eliminating HCV in the early stage of infection. However,
when HCV infection fails to resolve and becomes persistent, STAT1 activation likely not
only contributes to hepatocelluar damage, but also impedes liver regeneration by inhibiting
hepatocyte proliferation.

Diverse functions of STAT proteins in liver inflammation
Inflammation is a key factor leading to chronic liver injury in viral hepatitis, alcoholic liver
disease, and nonalcoholic steatohepatitis. The inflammatory process, which is characterized
by the release of a diverse number of cytokines from immune cells, is critical for protection
against infections and for triggering liver tissue repair mechanisms. However, when
inflammation becomes excessive and recurrent, it can lead to chronic liver damage, which
can ultimately progress to cirrhosis and HCC. Research from the last decade suggests that
the activation of various STATs can act as anti- or pro-inflammatory signals in the
pathogenesis of liver disease, depending on the STATs activated, the cell types in which the
STATs are activated, and the type of liver disease or liver injury model being studied.

STAT1: a pro-inflammatory signal
Mice with a global deletion of STAT1 are resistant to liver injury and inflammation induced
by Con A or LPS plus D-galactosamine [8, 44, 49], suggesting that STAT1 plays a pro-
inflammatory role in the pathogenesis of liver disease. Accumulating evidence suggests that
STAT1 activation in both liver parenchymal and nonparenchymal cells exacerbates liver
inflammation and injury. In hepatocytes, STAT1 is predominantly activated by IFN-γ, and
to a lesser extent by IFN-α/β and IL-27 [8, 48]. IFN-γ activation of STAT1 directly induces
hepatocyte apoptosis, resulting in apoptosis-associated liver inflammation [8, 44, 49]. In
addition, IFN-γ promotes liver inflammation by inducing the expression of chemokines and
the adhesion molecules VCAM-1 and ICAM-1 in hepatocytes, sinusoidal endothelial cells,
and Kupffer cells in an STAT1-dependent manner [59]. Finally, transgenic mice with over-
expression STAT1 in T cells are more susceptible to Con A-induced hepatitis [44],
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suggesting that STAT1 in T cells acts as a pro-inflammatory signal to promote liver
inflammation in this model.

Hepatocyte STAT3: an anti- and pro-inflammatory signal
STAT3 activation in hepatocytes occurs following stimulation with IL-22, IL-6, and IL-6
family cytokines and acts as an anti-inflammatory signal to suppress liver inflammation
under most conditions [8, 45, 52, 74, 75], but could also promote liver inflammation in some
models of liver injury. For example, disruption of STAT3 in hepatocytes markedly increased
liver injury and inflammation after chronic CCl4 admistration [75], but decreased liver
inflammation after acute CCl4 injection [50], suggesting that hepatocyte STAT3 can act as
both an anti- and pro-inflammatory signal depending on the liver injury models. The anti-
inflammatory effects of hepatocyte STAT3 are most likely due to the prevention of
hepatocellular damage and the subsequent reduction of necrosis-associated inflammation.
Moreover, hepatocyte STAT3 can suppress the pro-inflammatory functions of STAT1 in
liver injury models with strong STAT1 activation, such as the Con A- and LPS-induced
hepatitis models [8, 74]. The pro-inflammatory effects of hepatocyte STAT3 are thought to
be mediated through the induction of acute phase proteins and chemokines in situations with
weak STAT1 activation, such as the acute CCl4- and alcohol-induced liver injury models
[50, 53].

Myeloid cell STAT3: an anti-inflammatory signal
STAT3 is a key downstream signaling protein of the anti-inflammatory cytokine IL-10 in
macrophages [76], and accumulating evidence also confirms that STAT3 in macrophages
and other myeloid cells acts as a critical anti-inflammatory signal to control liver
inflammation. Myeloid-specific STAT3-deficient mice, in which STAT3 is deleted in
myeloid linage cells including Kupffer cells/macrophages, are prone to a higher degree of
liver inflammation in murine models of liver injury induced by a variety of hepatic toxins
[42, 50, 53, 60]. Also, STAT3-deficient Kupffer cells produced higher levels of TNF-α after
in vitro LPS stimulation compared with wild-type Kupffer cells [53]. These results suggest
that STAT3 activation in macrophages inhibits pro-inflammatory cytokine production. At
present, the mechanisms underlying the anti-inflammatory effects of STAT3 in macrophages
remain largely unknown. One potential mechanism is that STAT3 mediates the inhibition of
pro-inflammatory STAT1 signaling. Consistent with this, STAT1 activation is markedly
upregulated in Kupffer cells/macrophages in myeloid-specific STAT3 deficient mice, the
additional deletion of STAT1 in these mice reduced both hepatic and systemic inflammation
in Con A-induced hepatitis and partial hepatectomy models [42, 60].

T cell STAT3: an anti- and pro-inflammatory signal
In T cells, STAT3 activation has been shown to promote or reduce liver inflammation
depending on the liver injury models being studied. For example, T cell-specific STAT3-
deficient mice are resistant to Con A-induced liver inflammation and exhibit reduced IL-17
production [42]. However, inhibition of STAT3 in T cells via SOCS3 overexpression
accelerated acetaminophen hepatotoxicity due to the induction of IFN-γ and TNF-α
production [77]. It is probable that STAT3 activation in T cells induces the expression of the
RORγt and RORα transcription factors, which promote differentiation towards a Th17
phenotype. In turn, Th17 cell-derived IL-17 production could contribute to liver
inflammation. However, STAT3 activation in T cells may also inhibit STAT1 signaling and
prevent a polarization toward a Th1 phenotype, thus reducing IFN-γ production and
inhibiting liver inflammation.

Taken together, these findings suggest that the role of STAT3 in liver inflammation is
complex. While STAT1 promotes inflammation under many conditions, activation of the
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STAT3 signaling pathway in hepatocytes generally leads to anti-inflammatory responses by
preventing hepatocellular damage and inhibiting the STAT1 signaling pathway. However,
activation of STAT3 in hepatocytes may also enhance liver inflammation via the induction
of acute phase proteins, chemokines, and chemokine receptors in several models. In myeloid
cells, STAT3 activation is a key anti-inflammatory signal for the control of liver
inflammation. Finally, in T cells, STAT3 can act as either a pro- or anti-inflammatory signal
in regulating liver inflammation depending on the liver injury models being studied.

STAT4: a pro- and anti-inflammatory signal
In general, STAT4, which is activated by IL-12 and IFN-α/β in several types of immune
cells, is important in generating inflammation during protective immune responses and
immune-mediated diseases [78]. Overexpression of IL-12 in the liver by hydrodynamic
injection of IL-12 cDNA resulted in liver injury [79]. Conversely, deletion of IL-12
suppressed liver inflammation in dominant negative TGF-β receptor transgenic mice [80]
and in the Con A-induced hepatitis [81]. Also, IL-12 treatment has been shown to inhibit
liver tumor growth in several animal models through the induction of a pro-inflammatory
response [82, 83]. These findings suggest that IL-12 acts as a pro-inflammatory cytokine
that induces liver injury and inhibits liver tumor growth by activating NK and NKT cells to
produce IFN-γ [84]. Despite the fact that the functions of IL-12 in liver injury and
inflammation have been extensively investigated, the role of STAT4 in the pathogenesis of
liver diseases remains largely unknown. One study reported that STAT4-deficient mice were
resistant to hepatic ischemia/reperfusion injury [85]; however, another study showed that
STAT4-deficient and wild-type mice had equal liver injury after ischemia/reperfusion [86].
The reason for the discrepancy between these two studies is not clear and further studies are
required to clarify the roles of STAT4 in liver injury and inflammation.

STAT6: a pro- and anti-inflammatory signal
Both IL-4 and IL-13 strongly induce STAT6 activation in the liver and likely play complex
roles in controlling liver injury and inflammation. IL-4 has been shown to have pro-
inflammatory/pathogenic effects via activation of STAT6 in a wide variety of liver injury
models [87–90]. For example, IL-4- or STAT6-deficient mice were resistant to Con A-
induced liver injury and inflammation [87]. Such detrimental effect of IL-4 in this model is
likely mediated by upregulating eotaxins and IL-5 expression in the liver [87]. In contrast,
IL-4-deficient mice were more susceptible to acetaminophen-induced liver injury, which
was corrected by administration of recombinant IL-4 [91]. The hepatoprotective function of
IL-4 in drug-induced injury is mediated, at least in part, via the upregulation of hepatic
glutathione synthesis [91]. In addition, both IL-4 and IL-13 has also been shown to be
protective against ischemia/reperfusion liver injury [92–96], which was hypothesized to be
mediated through STAT6 activation and subsequent inhibition of inflammation and
protection against hepatocyte and endothelial cell damage [92–96].

STATs and liver cancer
STAT1: a tumor suppressor

IFN-activated STAT1 is a well-documented tumor suppressor that induces cell cycle arrest
and apoptosis in various types of tumors [97]. Consistent with this, STAT1-deficient mice
are more susceptible to the development of methylcholanthrene-induced tumors and N-
nitroso-N-methylurea-induced thymic tumors [98, 99]; however, they exhibit similar
susceptibility to liver tumors induced by a single injection of DEN compared with wild-type
mice [75]. The negligible role of STAT1 in this DEN-induced liver tumor model may be
because this model is associated with minimal STAT1 activation [75]. Since STAT1 protein
expression and phosphorylation are highly elevated in viral hepatitis [58, 73], STAT1 likely
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plays a role in preventing HCC development in patients with chronic viral hepatitis. Indeed,
STAT1 gene polymorphisms with homozygous genotypes at rs867637, rs3771300, and
rs2280235 in patients with viral hepatitis have been found to be associated with an increased
risk for developing HCC [100]. In addition, a combination therapy of 5-fluorouracil with
IFN-α, which activates STAT1 in liver cells, displayed promising results for the treatment
of advanced HCC with tumor thrombi in the major portal branches [101].

STAT3: hepatoprotective versus oncogenic functions
It is generally believed that STAT3 activation contributes to the development and
progression of many types of cancer, including liver cancer [102, 103]. The oncogenic effect
of STAT3 in tumor cells is mediated by the upregulation of a diverse array of genes that
promote tumor cell survival and proliferation, and many mediators that suppress anti-tumor
immunity [102, 103]. The important role of STAT3 in promoting liver tumorigenesis has
also been well documented [57, 104]. First, STAT3 protein expression and phosphorylation
are elevated in human HCC tissue samples compared with surrounding non-neoplastic tissue
and normal healthy liver tissue samples [105, 106]. In human HCC, the increased STAT3
activation is likely due to persistent stimulation from upstream signals such as the oncogenes
and cytokines such as IL-22 [47, 107], or due to the blockade of inhibitory pathways, such
as the methylation-mediated silencing of SOCS proteins [108, 109]. Second, inhibition of
STAT3 activation by STAT3 inhibitors [105], miR-637 [110], or sunitinib [111] reduced
liver tumor cell growth in vitro or in vivo; while activation of STAT3 by HCV core protein
[5] or HBX protein [112] promoted HCC development. Third, genetic deletion of IL-6
resulted in a reduction of STAT3 activation and the prevention of diethylnitrosamine
(DEN)-induced HCC development in lean [113] and obese mice [114]. In contrast,
augmentation of liver STAT3 activation mediated through IL-22 overexpression or the
conditional deletion of the SHP-2 or SOCS3 in hepatocytes increased DEN-induced HCC
development [47, 71, 115]. Finally, conditional deletion of STAT3 in hepatocytes reduced
DEN-induced HCC development in wild-type mice [75, 116] and in liver-specific SHP-2
knockout mice [115].

It is well known that more than 80% of human HCC develop following chronic liver injury,
inflammation, and cirrhosis. However, the DEN model is associated with minimal liver
inflammation and injury. Thus this model may not be an ideal one to investigate the
molecular mechanisms of human HCC development caused by chronic liver injury and
inflammation. Instead, we utilized a model of chronic liver injury induced by repeated
injection of CCl4 and found that deletion of hepatic STAT3 exacerbated CCl4-induced liver
inflammation and fibrosis and increased the incidence of HCC development [75].
Collectively, hepatic STAT3 accelerates liver tumor development induced by a single
injection of DEN, but prevents liver tumor development in the murine model of chronic
CCl4 administration [75]. These dual roles of STAT3 in liver tumorigenesis are summarized
in Fig. 3. Under the conditions of persistent inflammatory stress and liver injury, STAT3
acts as a hepatoprotective signal to prevent hepatic damage and fibrosis, consequently
suppressing injury- and inflammation-driven liver tumor initiation. However, once liver
tumor cells have developed, STAT3 likely acts as an oncogenic factor that promotes
tumorigenesis. Interestingly, both tumor suppressive and oncogenic effects of STAT3 were
also recently reported in a murine model of liver tumors [117, 118]. In this model,
overexpression of a constitutively active form of STAT3 promoted liver tumorigenesis in
the presence of the tumor suppressor p14ARF (the human homolog of p19ARF). However, in
the absence of p14ARF, constitutively active STAT3 induced tumor suppression, likely via
the activation of an alternative group of STAT3-specific target genes with anti-oncogenic
activity.
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STAT5a/b: a tumor suppressor and hepatoprotective factor
Constitutively activated STAT5 has been observed in a wide variety of tumors, including
HCC [119]. Many studies suggest that STAT5 activation plays an important role in
promoting tumorigenesis via the upregulation of anti-apoptotic, cell proliferative, and
invasion and metastasis-related genes [119]. However, recent studies have demonstrated that
hepatic growth hormone-mediated STAT5 activation plays a hepatoprotective role in
preventing the development of HCC. First, liver-specific STAT5 knockout mice are more
susceptible to chronic CCl4-induced liver fibrosis and HCC development [120]. Second, the
combined deletion of STAT5 and the glucocorticoid receptor in hepatocytes results in severe
metabolic liver disease and spontaneous hepatic tumorigenesis [121]. Finally, the
conditional deletion of hepatic STAT5 accelerated inflammatory liver cancer caused by
hyperactivated growth hormone signaling despite the observed reductions in chronic
inflammation [122]. These findings suggest that STAT5 acts as a tumor suppressor in liver
tumorigenesis via its anti-steatogenic and hepatoprotective effects and through the
upregulation of the cell cycle inhibitors Cdkn2b and Cdkn1a [121–123]. However, it is not
clear whether STAT5, similar to STAT3, can also promote HCC cell proliferation once
HCC cells have developed.

STATs as potential clinical targets for the treatment of liver diseases
Although STATs have been identified as the key regulators of hepatic anti-viral responses,
inflammation, and tumorigenesis, the translation of them as therapeutic targets for the
treatment of liver diseases has lagged behind. Here we discuss several candidates of STATs
as potential therapeutic targets.

STAT1-STAT2 activators
Activation of STAT1 and STAT2 in hepatocytes plays key roles in the IFN-α-mediated anti-
viral response against HCV infections. Enhancing activation of these STATs could be an
attractive strategy to improve the efficiency of IFN-α therapy for the treatment of HCV.
Indeed, a recent study showed that treatment with S-adenosyl methionine, which potentiates
STAT1 activation, improved the early viral kinetics and increases IFN-stimulated gene
induction in nonresponders treated with peg-IFN and ribavirin [124].

STAT3 inhibitors
Although STAT3 inhibitors have been actively investigated in preclinical studies for the
treatment of HCC and other various types of cancer [125], they have not yet been tested in
HCC patients. Sorafenib is a safe and effective drug approved for the treatment of advanced
HCC [126–128]. It was originally developed as a small molecule inhibitor of the VEGFR
and PDGFR tyrosine kinases and the Raf/Mek/Erk pathways [129]. However, it is now
known that sorafenib also inhibits STAT3 in liver cancer cells by inducing the activation of
protein tyrosine phosphatases [130, 131]. Interestingly, a recent study showed that SC-1, a
sorafenib analog lacking inhibitory activity toward the VEGFR and PDGFR tyrosine kinases
and the Raf/Mek/Erk pathways but retaining inhibitory activity against STAT3, was as
potent as sorafenib in the induction of cell cycle arrest and apoptosis of human HCC cell
lines in vitro [131]. This study suggests that STAT3 inhibition is predominately responsible
for the sorafenib-mediated anti-tumor effects observed on HCC cells, whereas the inhibition
of the VEGFR and PDGFR tyrosine kinases and the Raf/Mek/Erk pathways plays a minor
role [131, 132]. Thus, clinical trials examining specific STAT3 inhibitors for HCC patients
are warranted.

Gao et al. Page 9

J Hepatol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



STAT3 activator
IL-22, which activates STAT3 in hepatocytes but not in immune cells, is currently under the
development for the treatment of human fulminant hepatitis, liver failure, and fatty liver
disease. This is based on the facts that IL-22 promotes hepatocyte survival and proliferation
[47, 133], and ameliorates steatosis [54, 134] with the added benefit of antimicrobial effects
and potentially few side effects. Since IL-22 also promotes liver tumor cell survival [47,
133], the application of IL-22 should not be used in patients with pre-cancerous cirrhosis or
liver cancer.

Conclusions
In summary, studies from the last decade from animal models suggest that multiple STATs
collectively exhibit diverse and complex biological functions in regulating hepatic anti-viral
responses, inflammation, and tumorigenesis. These findings have markedly enhanced our
understanding of liver disease pathophysiology and treatments, but translation of these basic
research findings into new therapeutic modalities for managing human liver diseases has
been modest. We hope this review article will stimulate translational and clinical research on
these topics in the near future.
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Key points

STAT1 and STAT2 activated by both IFN-α and IFN-λ play a key role in inhibiting
HCV replication; Enhancing activation of these STATs could be an attractive strategy to
improve the efficiency of IFN-α therapy for the treatment of HCV.

Under most conditions, activated STAT1 and STAT3 play opposing roles in controlling
liver injury, regeneration and inflammation.

The functions of STAT4 and STAT6 in liver injury, inflammation, and regeneration
remain largely unknown.

STAT3 and STAT5 are hepatoprotective and prevent liver injury-associated HCC
initiation during early stage of chronic liver injury; but STAT3 also promotes liver tumor
cell survival and proliferation when tumor cells have developed during end-stage of liver
cirrhosis and liver cancer.
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Fig. 1. Anti-viral effects of STAT1 and STAT2 in viral hepatitis
Virus-infected cells produce both IFN-α/β and IFN-λ, which bind to their corresponding
receptors and activate STAT1 and STAT2 in human hepatocytes. Activated STAT1 and
STAT2 induce many anti-viral proteins (e.g., Mx1, OAS, IRF-7, etc.) that subsequently
inhibit HCV replication. Although IFN-α/β stimulation also induces strong STAT3
activation in hepatocytes [39], the role of STAT3 in the anti-viral activity of IFN-α/β
against HCV remains unknown. IFN-α/β usually induces transient STAT1 and STAT2
activation. In contrast, IFN-λ induces prolonged STAT activation, which may be
responsible for the protective effects of IFN-λ on spontaneous and treatment-induced HCV
clearance. In addition, IFN-α therapy induces STAT1 activation in NK cells and subsequent
NK cell activation. The activated NK cells may also contribute to the anti-viral effects of
IFN-α therapy against HCV, which is needed to be confirmed by further studies. IFN-α also
activates STAT1 in hematopoietic and neuronal cells that express both IFNAR1 and
IFNAR2, resulting in the various side effects associated with IFN-α therapy. IFN-λR1
(IL-28R1) is largely restricted to hepatocytes and is not expressed on immune cells. Thus,
IFN-λ treatment is less likely to induce the hematopoietic and neurological side effects
associated with IFN-α therapy. IRF-9: Interferon Regulatory Factor 9; ISGF3: Interferon-
stimulated gene factor 3 complex; ISRE: Interferon-Sensitive Response Element. ISG:
Interferon Stimulated Gene.
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Fig. 2. Hepatocyte STAT1 and STAT3 in liver injury, inflammation, and regeneration
While STAT1 in hepatocytes is predominately activated by IFN-γ, STAT3 in hepatocytes is
predominantly activated by IL-6, IL-6 family cytokines, and IL-22. Following activation,
STAT1 dimerizes and translocates into the nucleus to induce the transcription of many genes
that promote liver injury and inflammation and inhibit liver regeneration. In contrast,
activated STAT3 induces the expression of many genes that mitigate liver injury and
promote liver regeneration. Under most conditions, activation of hepatic STAT3 blocks liver
inflammation by inhibiting pro-inflammatory STAT1 signaling and protecting against liver
injury. However, hepatic STAT3 may also promote liver inflammation by inducing the
production of hepatocyte-derived acute phase proteins. STAT1 and STAT3 in hepatocytes
also negatively regulate one another through the induction of SOCS1 and SOCS3 proteins,
respectively. ISG: Interferon Stimulated Gene; GAS: Interferon-Gamma Activated
Sequence.
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Fig. 3. Hepatoprotective versus oncogenic functions of STAT3
During chronic liver injury, steatosis, and inflammation, IL-6, IL-6 family cytokines, and
IL-22 induce STAT3 activation, leading to the upregulation of a variety of anti-apoptotic,
anti-oxidative, and anti-steatogenic proteins in hepatocytes that prevent liver injury and
inhibit injury-associated HCC initiation. IL-22 may have therapeutic potential in the
treatment of liver failure (e.g., acute alcoholic hepatitis) and fatty liver disease. In contrast,
during endstage liver cirrhosis and liver cancer, STAT3 activation promotes tumor cell
survival and proliferation and therefore HCC progression. Thus, STAT3 inhibitors may have
therapeutic potential in the treatment of HCC.
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Table I

Major activators and functions of STAT proteins in liver parenchymal cells (hepatocytes)

STAT proteins Major Activators Major Functions

STAT1 IFN-α, IFN-β, IFN-γ, IFN-λ Promotes anti-viral response
Promotes anti-tumor response
Induces hepatocyte apoptosis
Inhibits hepatocyte proliferation
Promotes liver inflammation

STAT2 IFN-α, IFN-β, IFN-λ Promotes anti-viral response

STAT3 IL-6, IL-6 family
cytokines, IL-22

Promotes hepatocyte survival
Promotes hepatocyte proliferation
Ameliorates steatosis
Induces expression of innate immunity proteins
Promotes liver tumor cell survival and growth

STAT4 Unknown Unknown

STAT5 Growth hormone Upregulates metabolism enzymes, growth factors, etc.
Promotes hepatocyte survival
Promotes hepatocyte proliferation
Ameliorates steatosis

STAT6 IL-4, IL-13, Promotes liver injury and inflammation in T cell hepatitis
Protects against ischemia/reperfusion and drug-induced
liver injury

References are cited in the text
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Table II

Major activators and functions of STAT proteins in liver nonparenchymal cells (HSCs, Kupffer cells,
sinusoidal endothelial cells), and liver lymphocytes

STATs Cell types Major Activators Major Functions

STAT1 in HSCs IFN-α, IFN-β, IFN-γ Inhibits liver fibrosis

in Kupffer cells IFN-γ Promotes inflammatory response

In NK cells IFN-α, IFN-β, IFN-γ Promotes anti-viral, anti-tumor, and
anti-fibrotic responses

STAT2 in nonparenchymal cells Unknown Unknown

STAT3 in Kupffer cells IL-10 Inhibits liver inflammation

in HSCs Leptin, IL-6 Promotes liver fibrogenesis

in endothelial cells Unknown Inhibits liver inflammation

STAT4 in NK and NKT cells IL-12, IFN-α/β Promotes liver inflammation

STAT5 In HSCs leptin Promotes liver fibrogenesis

STAT6 In HSCs IL-4, IL-13 Promotes liver fibrogenesis
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