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Abstract The construction of an inflammatory microenvi-
ronment provides the fuel for cancer development and
progression. Hence, solid tumors promote the expansion
and the recruitment of leukocyte populations, among which
tumor-associated myeloid cells (TAMCs) represent a
paradigm for cancer-promoting inflammation. TAMCs
group heterogeneous phagocytic populations stemming
from a common myeloid progenitor (CMP), that orchestrate
various aspects of cancer, including: diversion and skewing
of adaptive responses; immunosuppression; cell growth;
angiogenesis; matrix deposition and remodelling; construc-
tion of a metastatic niche and actual metastasis. Several
evidence indicate that TAMCs show plasticity and/or
functional heterogeneity, suggesting that tumour-derived
factors promote their functional “reprogramming” towards
protumoral activities. While recent studies have attempted
to address the role of microenvironment signals, the
interplay between cancer cells, innate and adaptive immu-
nity is now emerging as a crucial step of the TAMCs
reprogramming. Here we discuss the evidence for the
differentiation of TAMCs during the course of tumor

progression and the molecular mechanisms that regulate
such event.
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Introduction

The cellular content of solid tumors comprises cancer cells
and a heterogeneous group of cell populations, including
fibroblasts, endothelial cells, pericytes and leukocytes.
Among leukocytes, myeloid cell populations represent a
prominent component, both in terms of number and
functions, supporting tumor growth and progression [1].
Being part of the first line of immune defence mechanisms
(innate immunity), the protumoral role of tumor-associated
myeloid cells (TAMCs) appears a paradox of immunity,
which finds its basis on the functional “plasticity” of
myeloid cells, defined as the capability to express different
functional programs in response to different signals (eg.
cytokines, growth factors) [1] and/or microenvironment
conditions (eg. acidosis, high interstitial pressure, low
glucose levels) [2]. Consequently, new attention is directed
towards mechanisms and molecules driving the protumoral
skewing of TAMCs.

TAMCs include at least four different myeloid popula-
tions (Fig. 1): 1) tumor-associated macrophages (TAMs),
considered crucial orchestrators of cancer-related inflam-
mation [3], promoting angiogenesis, immunosuppression,
tissue remodelling and metastasis [4]; 2) the angiogenic
monocytes expressing the tunica internal endothelial kinase
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2 (Tie2), the angiopoietin receptor, playing a key role in
tumor angiogenesis [5]; 3) the Ly6G and Ly6C subsets of
an heterogeneous population of immature myeloid cells,
called myeloid-derived suppressor cells (MDSCs) for their
ability to suppress T cells functions, which accumulate
mainly in blood and lymphoid organs during tumor
progression, but may also be recruited to the tumor site
[6]; 4) tumor-associated neutrophils (TANs) that, despite
their short half-life, have been recently proven to participate
in tumor promotion by the expression of crucial pro-
angiogenic factors [7].

TAMCs originate in the bone marrow where hematopoi-
etic stem cells (HSCs; Lin- c/Kit±/Sca1±/CD34-/CD48-/
CD150-) differentiate into common myeloid progenitors
(CMPs; Lin-/Sca1-/c-Kit±/IL-7Rα-/c-mpl±/FcγRlow/CD34±/

SCL±/GATA-2±/NF-E2±/GATA-1±/GATA-3-), which can
subsequently differentiate into granulocyte/macrophage
progenitors (GMPs; Lin-/Sca1-/c-Kit±/IL-7Rα-/c-mpl±/
FcγRhigh/CD34±/SCL±/GATA-2-/NF-E2-/GATA-1-/GATA-
3-/EpoR-/C/EBPα±) [8]. GMPs give rise to different subsets
of circulating cells: myeloid-derived suppressor cells
(MDSCs) that can be further subdivided in a granulocytic
(CD11b+/Ly6G+) and a monocytic (CD11b+/Ly6C+) sub-
population, monocytes (CD11b+/Gr1+/F4/80+/CCR2+),
Tie2-expressing monocytes (CD11b+/Gr1low/-/Tie2+) and
neutrophils (CD11b+/Ly6G+) [9]. Tumors secrete factors
which sustain myelopoiesis, promote the recruitment of
circulating cells into the tumor mass, and orientate their
functional differentiation to their own advantage [6, 9].
Dendritic cells (DCs) belong to the family of myeloid cells

Fig. 1 Mechanisms of differentiation and accumulation of TAMCs. In
the bone marrow hematopoietic stem cell (HSC) differentiate into
common myeloid progenitors (CMPs), which can subsequently
differentiate into granulocyte/macrophage progenitors (GMPs). GMPs
give rise to different subsets of circulating cells: monocytes (Mo),
Tie2-expressing monocytes (TEM), neutrophils (PMN), and granulo-
cytic and monocytic myeloid-suppressor cells (G-MDSC and M-
MDSC). Tumors secrete factors which sustain myelopoiesis, promote
the recruitment of circulating cells into both the tumor mass or secondary
lymphoid organs (lymph nodes and spleen) and orientate their functional
differentiation to their own advantage. TAMs are recruited into the tumor
site by chemotactic factors (eg. CCL2, CSF-1) and represent the

prominent phagocytes population orchestrating cancer-related inflamma-
tion. TEMs derive from circulating Tie2+ monocytes and are recruited in
tumors by hypoxia-inducible chemoattractants, such as Ang2 and
CXCL12. Tumor-associated neutrophils (TANs) stem from circulating
neutrophils and are recruited in tumors by chemokines (e.g. CXCL8).
TANs participate in tumor promotion by the expression of crucial pro-
angiogenic factors. During tumour progression an heterogeneous
population of myeloid cells (G-MDSC and M-MDSC) accumulate in
blood and lymphoid organs. MDSCs may be recruited by selected
chemoattractants (CCL2, S-100, VEGF, C5a) into the tumor microen-
vironment, where they contribute to suppression of the adaptive
immunity
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stemming from CMPs. Cells with dendritic cell character-
istics are present in neoplastic tissues [10]. Tumor-
associated DCs (TADCs) generally show an immature
phenotype and are poor inducers of effective responses to
tumor antigens. The properties of these cells have been
discussed elsewhere [11, 12] and are not included in the
present review.

The functional skewing of myeloid populations is an
emerging paradigm of tumor-mediated immunosuppression,
where myeloid cell plasticity plays as a double-edged
sword [1, 6]. The extreme versatility of mononuclear
phagocytes is emphasized by different pathophysiological
conditions (sepsis, cancer, obesity) in which the evolution
of activating signals is paralleled by changes in the
polarized activation of macrophages [13]. Recent studies
have proved that the cross-talk between the different
cellular components of the tumor mass (e.g. tumor cells,
fibroblasts, innate and adaptive immune cells) shapes each
other functions, resulting in “smouldering” inflammation
mainly oriented to tune the adaptive immune response and
to promote angiogenesis and tissue remodelling [1]. In this
scenario, new efforts are needed to identify key regulators
of myeloid cell plasticity during cancer development.

Mechanisms of TAMCs Recruitment

Chemokine (C-C motif) ligand 2 (CCL2) was the first
tumor-derived chemotactic factor (TDCF) identified [14]
and is currently recognized as the major chemoattractant for
monocytes at the tumor site, in a variety of human tumors
such as sarcomas, gliomas, melanomas, cancer of the
breast, cervix and ovary [15, 16]. Many other different
molecules, classically involved in the recruitment of
monocytes to inflammatory sites, have also been involved
in monocyte migration to neoplastic tissues; these include
C-C and C-X-C chemokines (e.g. CCL3, CCL4, CCL5,
CXCL12) [17–19], urokinase plasminogen activator (uPa)
[20], growth factors (e.g. colony-stimulating factor-1, CSF-1;
transforming growth factor-β, TGFβ; fibroblast growth
factor, FGF; vascular endothelial growth factor, VEGF) [6,
21, 22] and antimicrobial peptides (β-defensin-3, BD-3)
[23]. Many of these molecules correlate with TAM infiltra-
tion in different types of tumor, while others (eg. uPa, BD-3)
are specifically associated with certain types of cancer,
prostate and gastric cancer respectively [20, 23].

Tie2-expressing monocytes/macrophages (TEMs) are
mainly clustered in hypoxic areas of solid tumors, in close
proximity to nascent tumor vessels. They derive from
circulating Tie2-expressing monocytes which are recruited
in tumors by hypoxia-inducible chemotactic factors such as
the CXCR4 ligand CXCL12 and Angiopoietin-2 (Ang-2)
[5, 24–26].

MDSC recruitment and expansion are regulated by several
cytokines, chemokines and transcription factors [6]. It has
been demonstrated that among chemokine receptors, CCR2
plays a pivotal role in the recruitment and turnover of MDSC
to the tumour site [27]. More recently, the C5a complement
component, which interacts with a G protein-coupled
receptor, has been shown to play a role in MDSC recruitment
and activation in a cervix cancer model [28]. Moreover,
some factors which are found in the tumour microenviron-
ment, such as pro-inflammatory S-100 proteins, are crucial
for MDSC recruitment. Sinha and co-workers demonstrated
that MDSCs can produce S-100 proteins by themselves,
providing evidence for an autocrine loop that promotes
MDSC recruitment [29, 30].

Neutrophils may be recruited by chemotactic factors
secreted by tumor cells. As an example, bronchoalveolar
carcinoma cells produce CXCL8, a prototypic chemo-
attractant for neutrophils [31]. Further, TGFβ produced by
different tumor cells promotes neutrophils migration both
directly and indirectly, by regulating the expression of
adhesion molecules in the endothelium [32].

TAMCs Functions

Tumour Associated Macrophages (TAMs) Although macro-
phages were classically described as powerful inflammatory
and cytotoxic cells, it has become evident that immuno-
modulatory signals such as IL-4 are more than simple
inhibitors of macrophage activation, but actually induce an
“alternative” or “M2” program of activation [33–35].
Whereas macrophage exposure to inflammatory cytokines
(e.g. interferon-gamma, IFNγ) and bacterial moieties (e.g.
Toll-like receptor ligands) triggers polarization of “M1”
macrophages with anti-microbial and tissue destructive
properties, M2-polarized macrophages tune inflammation,
promote resistance against extracellular pathogens, angio-
genesis, tissue remodelling and repair [35]. Within this
scenario, M1- and M2-polarizations have been proposed as
the extremes of a continuum of different states of polarized
activation [35]. In addition to IL-4 several signals with M2-
orienting properties have been identified. These include
different classes of molecules, such as immunosuppressive
(IL-10, TGFβ) and Th2-associated (IL-33, IL-21) cytokines ,
hormones (glucocorticoids, melanocortin, vaso-active intes-
tinal peptide), growth factors (colony stimulating factors,
CSFs), bacterial products (oedema toxin from Bacillus
anthracis), immune complexes in combination with either
lipopolysaccharide (LPS) or IL-1β [13, 33, 36].

Hence, it became clear that the M1 vs M2 dual subsets
simplification offers a mechanistic model of the functional
polarization of macrophages, whereas the tissue micro-
environments are likely to elicit simultaneous activation of
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different signalling pathways with opposite influence on
macrophage functions. Indeed, different macrophage phe-
notypes have been described with only partially over-
lapping functions with the original IFNγ (M1) and IL-4
(M2) induced phenotypes, indicating that differences in
microenvironment milieu induce heterogeneous signalling
events, contributing to the extensive heterogeneity in
patterns of gene expression seen in macrophages [37–44].
The view that macrophage activation does not result in the
expression of a single set of functions, but rather display a
progression of functional changes in response to the
changes occurring in its microenvironment, challenges the
thesis that macrophages displaying unique tissue-specific or
response-specific functional patterns, represent distinct
lineages [42, 45]. For example, gene expression profiling
studies highlighted that, upon human cytomegalovirus
(HCMV) infection, the activation of both NF-κB and
PI3K signalling pathways [46] drives monocytes toward
an atypical M1/M2 reprogramming [47]. Similarly, CD11c±

adipose tissue macrophages from obese mice have a mixed
profile, with upregulation of several M1 and M2 gene
transcripts [48]. Furthermore, a shift in monocyte-
macrophage phenotypes during the course of several
diseases such as sepsis, cancer and obesity has been
reported [49–51].

New evidence indicate that polarized inflammation plays
a central role during different stages of tumor development.
In early phases, high production of M1 inflammatory
mediators (e.g. tumor necrosis factor, TNF; reactive oxygen
species, ROS) appears to support neoplastic transformation
[6], whereas in established cancers the expression of M2-
like phenotypes with immunosuppressive, pro-angiogenic
and tissue remodelling activities promotes immune escape,
tumor growth and malignancy [1, 6, 52–55]. Recent
addition to the molecular repertoire of TAMs includes
semaphorin 4D (Sema4D) [56] and growth arrest-specific 6
(Gas6) [57], which are respectively involved in promoting
tumor angiogenesis and cancer cell proliferation. Of note,
Src homology 2-containing inositol-5′-phosphatase-1
(SHIP1)-deficient mice, which exhibit a spontaneous
macrophage drift towards M2 polarization, display
increased growth of transplanted tumors [58]. Further,
Notch signalling deficient macrophages, which show an M2-
biased phenotype, inhibit T-cell activation and enhanced
tumor growth when inoculated in solid tumors [59]. In
contrast, p50 Nuclear factor-κB- (NF-κB) deficient mice,
which showed a defective capacity to mount an M2
macrophage polarization [60], display increased tumor
resistance [54]. Clinical studies suggest that the type of
immunological profile expressed at the tumor site repre-
sents an independent prognostic factor. In particular, an
established type-2 “suppressive” immunological profile
correlates with poor prognosis, as shown in colorectal,

hepatocellular and pancreatic carcinomas and in Hodg-
kin’s lymphoma [61–64]

Many studies have shed light on the intricate signalling
network that drives myeloid cells towards M2-polarized
activation. The acquisition of pro-tumoral M2 functions by
TAM is driven by various cytokines and signals expressed
within the tumor microenvironment [54]. Among these, IL-
10, prostaglandin E2 (PGE2), TGF-β, IL-6, CCL2,
migration-stimulating factor (MSF) and CSF-1 were
reported to induce M2-like polarization [[54, 65–68].
Recent studies suggest that different circuits and cells,
including innate immune cells and fibroblasts, participate in
shaping TAM activities [13, 69–72] (Figure 2). As an
example, in a model of mammary carcinoma, MDSCs were
shown to contribute to tumor progression by suppressing T-
cell activation and inducing an M2-like phenotype of TAMs
[69]. Cancer associated fibroblasts (CAFs) have recently
emerged as new players in cancer-related inflammation
[71]. Using the K14-HPV16 mouse model of squamous
carcinogenesis, Erez and colleagues demonstrated that
CAFs express a distinct inflammatory gene signature
associated with promotion of TAM recruitment, angio-
genesis and tumor growth [71]. In a murine breast cancer
model, in vivo ablation of CAFs by a DNA vaccination
strategy, markedly inhibited recruitment of TAMs,
MDSCs and regulatory T cells (Tregs), thus promoting a
type 2 vs type 1 shift of tumor-associated inflammation
[70].

Further, the interplay between innate and adaptive
immunity is emerging as a crucial step in this event [72].
Recently, utilizing the MMTV-PyMT model of mammary
carcinogenesis, DeNardo et al. demonstrated that CD4+ T
lymphocytes expressing the M2-polarizing cytokines IL-4
and IL-13 potentiate mammary adenocarcinoma metastasis
by modulating the pro-tumor properties of TAMs [73]. In
turn, TAMs enhance the invasive potential of malignant
mammary epithelial cells.

The role of B cells in shaping the TAM phenotype was
originally demonstrated in a K14-HPV16 mouse model of
squamous carcinogenesis [74]. However, as B cells do not
infiltrate the precancerous tissues, it was suggested that
infiltration and functions of innate immune cells must be
orchestrated remotely, suggesting that lymphocyte-derived
cytokines and/or antibodies may drive the cancer-
promoting inflammation [3]. This hypothesis has recently
found a confirmation by the study of Andreu and co-
workers. Using the same mouse model of squamous
carcinogenesis, they showed that B cells and humoral
immunity foster cancer development by activating Fcγ
receptors (FcγR) on resident and recruited myeloid cells
[75]. A recent report suggests that B1 cells, but not B2
cells, polarize peritoneal macrophages to an M2-like
phenotype, characterized by impaired expression of LPS-
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induced pro-inflammatory genes (e.g. TNFα, CCL3, IL-
1β) with up-regulation of the anti-inflammatory gene IL-10
[72, 76].

The observations identify the M2-like phenotype of
TAM as a point of convergence of various pro-tumoral
pathways (Figure 2).

Tie2-expressing Monocytes/Macrophages (TEMs) TEMs
are a small subset of myeloid cells characterized by the
expression of the angiopoietin receptor Tie2 and powerful
pro-angiogenic activity [24, 25, 77]. They derive from
circulating Tie2-expressing monocytes which are recruited
in tumors by hypoxia-induced endothelial-derived chemo-
tactic factors, such as Ang-2 and CXCL12 [24–26, 78] The

CXCL12-CXCR4 axis is a well known circuit driving
accumulation of TAMs in hypoxic areas of solid tumors
[18]. In addition, it has been demonstrated that pharmaco-
logical inhibition of CXCR4 is associated with a significant
reduction of TEM recruitment into mammary tumors [26].
Despite representing only a small fraction of TAMs (Tie2-

tumor-associated macrophages), both ablation and adoptive
transfer studies have demonstrated that TEMs are crucial
promoters of tumor angiogenesis [5, 25, 79]. In two models
of mammary tumours and orthotopic human gliomas,
Ganciclovir-driven ablation of Tie2+ monocytes induced a
significant reduction of both tumour mass and vasculature,
demonstrating their importance in tumour angiogenesis and
growth [5, 25, 79]. In line, adoptive transfer studies
demonstrated that subcutaneous co-injection of tumor cells
with TEMs increases tumor vascularization [5]. Strikingly,
gene expression analysis highlighted that TEMs are highly
related to TAMs, but express a more pronounced M2-
skewed gene signature, with higher expression of M2
genes, including arginase 1 (Arg1), scavenger receptors
(CD163; Mannose receptor 1, Mrc1; Macrophage scaven-
ger receptor 2, Msr2; stabilin-1) and lower levels of pro-
inflammatory molecules (IL-1β; prostaglandin endoperox-
ide synthase 2/cyclooxygenase 2, PTGS2/COX2; IL-12;
TNF; inducible nitric oxide synthase, iNOS; CCL5;
CXCL10; CXCL11) [80]. These results suggested that
Tie2+ monocytes could be a distinct lineage of myeloid
cells, committed to execute physiologic pro-angiogenic and
tissue-remodeling programs, which can be co-opted by
tumors [75]. Noteworthy, human Tie2+ circulating mono-
cytes express high levels of pro-angiogenic genes (e.g.
VEGF-A; Matrix metallopeptidase 9, MMP9; COX2;
wingless-related MMTV integration site 5A, WNT5A) and
are powerful inducers of endothelial cells activation [81]. In
agreement, sub-cutaneous tumors growing in Ang-2-
overexpressing mice showed increased number of TEMs
associated with enhanced microvessels density [81]. Tie2
engagement by Ang-2 in both mouse and human TEMs not
only elicits a chemotactic response but also enhances their
pro-tumoral activities [81]. It was also recently demonstrat-
ed that Ang-2 levels in 4T1 mammary tumors correlates
with both TEM-derived IL-10 and Treg infiltration, result-
ing in suppression of T cells proliferation [78]. In contrast,
Ang-2 inhibited the expression of M1 cytokines (IL-12 and
TNFα) in TEMs exposed to hypoxia [24].

Myeloid-Derived Suppressor Cells (MDSCs) MDSCs rep-
resent an heterogenous population of cells whose common
characteristics are an immature state and the ability to
suppress T-cell responses both in vitro and in vivo [82, 83].
MDSCs possess several mechanisms for immune suppres-
sion: 1) depletion of arginine, mediated by Arg1 and iNOS;
2) production of ROS; 3) post-translational modifications of

Fig. 2 Pathways of polarized activation of tumor associated myeloid
cells (TAMCs). As depicted, TAMCs reciprocally influence their
protumoral differentiation, under the “remote control” of cancer-
associated fibroblasts (CAFs), T and B lymphocytes. TAMs in concert
with Tregs and tumor cells, produce TGFβ that induces the alternative
(N2) activation of TANs. Differentiation of MDSCs is modulated by
several tumor-derived factors, including GM-CSF, IL-6, VEGF and
PGE2. Further, tumor microenvironmental signals can convert
MDSCs in endothelial cells (ECs) or in TAMs, the latter event mainly
regulated by hypoxia. Hypoxic ECs up-regulate Ang-2 that enhances
activation of pro-angiogenic and M2-skewed TEMs
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T cell receptor (TCR) mediated by peroxynitrite generation;
4) depletion of cysteine; 5) production of TGFβ; 6)
induction of Tregs [84–91]. In healthy individuals, myeloid
progenitors differentiate in mature granulocytes, macro-
phages or dendritic cells, whereas in pathological condi-
tions they expand into MDSCs. MDSCs have been
observed in cancer, chronic infectious diseases, and
autoimmunity. In tumor-bearing mice, MDSCs accumulate
within primary and metastatic tumors, in the bone marrow,
spleen and peripheral blood. In cancer patients, MDSCs
have been identified in the blood. Recent studies have
contributed to partially clarify the biology of MDSCs. In
mice, two major subsets were identified on the basis of their
morphology and the expression of Ly6 family glycopro-
teins: monocytic MDSCs (M-MDSCs) and granulocytic
MDSCs (G-MDSCs). M-MDSCs are CD11b+ Ly6G-

Ly6Chigh cells with monocyte-like morphology, while G-
MDSCs are CD11b+ Ly6G+ Ly6Clow with granulocyte-like
morphology [83]. Cells with similar phenotype, precursors
of myeloid cells, are present in physiological conditions,
but they are devoid of an the immunosuppressive activity.
Therefore, these cells should not be named MDSCs [92].
Other markers of MDSC subsets are: IL-4Rα (CD124), F4/
80, CD80, and CSF-1R (CD115) [6]. The characterization
of human MDSCs deeply suffers from the lack of specific
markers. Human MDSCs are generally identified as cells
expressing the common myeloid marker CD33, lacking the
expression of markers of mature myeloid and lymphoid
cells, and able to suppress T cell activation [93, 94]. The
phenotype of human MDSCs seems to be dependent from
the type of tumor born by the patient, suggesting that
several cellular subsets may exist. MDSCs with different
phenotype (reported here in brackets) were identified in
patients affected by various tumor types, including: renal
cancer (CD14- CD11b± CD15±) [95, 96], prostate cancer
(CD14- HLA-DRlow/-) [97], advanced non-small cell lung
cancer (CD14- CD33± CD11b± CD15±) [98], melanoma
(CD14± CD11b± HLA-DRlow/-) [99, 100], and hepatocellu-
lar carcinoma (CD14± HLA-DRlow/-) [101]. Human
MDSCs characterized by both monocytic and granulocytic
morphology have been described [95, 99]. The ability to
differentiate into mature DCs and macrophages in vitro
has been shown to be restricted to M-MDSCs [84]. M-
MDSC-mediated immune suppression does not require
cell-cell contact, but utilizes up-regulation of iNOS and
Arg1, as well as production of immunosuppressive
cytokines [82]. On the contrary, G-MDSCs suppress
antigen-specific responses using mechanisms, including
the release of ROS, that require prolonged cell-cell contact
between MDSC and T cell [82]. The C5a subunit of the
complement system appears a key regulator of MDSC
functions, by modulating their migration and ROS
production [28].

Several factors produced by tumors have been implicated
in the differentiation of MDSCs, including granulocyte
monocytes-colony stimulating factor (GM-CSF),
macrophage- monocytes-colony stimulating factor (M-CSF),
IL-6, IL-1β, VEGF and PGE2 [82, 102]. The transcription
factor CCAT/enhancer binding protein β (C/EBPβ) proved
to be the key player in the process of MDSC development
[102]. It has been proposed that two signals are needed for
the expansion and function of MDSCs: one factor (e.g. GM-
CSF) prevents the differentiation in mature myeloid cells,
and a second signal, provided by pro-inflammatory mole-
cules such as IFNγ, activate MDSCs [103]. A remarkable
relation exists between MDSCs and TAMs. MDSCs are able
to skew TAM differentiation toward a tumor-promoting type-
2 phenotype [69]. The cross-talk between MDSCs and
macrophages requires cell-cell contact, then MDSCs release
IL-10 to reduce IL-12 production by macrophages. MDSCs
from an IL-1β-enriched tumor microenvironment produce
more IL-10 and are more potent down-regulators of
macrophage-released IL-12 [104]. Circulating MDSCs can
differentiate into Gr1- F4/80+ TAMs in the tumor site [105]
and this conversion is driven by tumor hypoxia [106].
Because of their tumor-promoting activities, MDSCs are
associated with type-2 immune responses, however accumu-
lating evidence show that MDSCs have characteristics of
both M1 and M2 macrophages [6]. As an example, MDSCs
express both Arg1 and iNOS, where these enzyme are
differentially expressed by M1 (iNOS) and M2 (Arg1)
macrophages. A recent study, investigating the molecular
mechanisms behind MDSC differentiation, demonstrated a
essential role of paired-immunoglobulin receptors (PIRs) in
the differentiation of M1 or M2 MDSCs [107]. The balance
between PIR-A and PIR-B modulates MDSC polarization. In
support of this, the growth of Lewis lung carcinoma was
significantly retarded in PIR-B-deficient mice (Lilrb3−/−)
and PIR-B-deficient M-MDSCs expressed high levels of
iNOS and TNFα, therefore showing a M1 phenotype.
Beside their immunosuppressive activities, MDSCs contrib-
ute to tumor growth also by nonimmune mechanisms,
including the promotion of angiogenesis. MDSCs isolated
from murine tumors express high levels of metalloproteases,
including MMP9 [10]. MMP9 increases the bioavailability
of VEGF sequestered in the extracellular matrix. Further in
the tumor microenvironment and in proangiogenic culture
conditions, MDSCs acquire endothelial markers such as
CD31 and VEGF receptor 2 (VEGFR2) and the ability to
directly incorporate into tumor endothelium [108]. In
agreement, tumor refractoriness to anti-VEGF therapy was
shown to be mediated by CD11b+GR1+ myeloid cells [109,
110].

Tumor-Associated Neutrophils (TANs) Tumor-associated
polymorphonuclear neutrophils (PMNs) have received little
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interest by immunologists, also based on their short life
span. However, new evidence contradict this view, in that
cytokines like IL-1 or microenvironment conditions such as
hypoxia can prolong PMN survival [111]. Neutrophils are
able to produce various cytokines and chemokines that can
influence not only immune and antimicrobial responses, but
other processes such as hematopoiesis, wound healing, and
angiogenesis [112, 113]. Despite little attention has been
paid to TANs, these cells are present in various tumors,
including kidney, breast, colon, and lung [114]. Clinical
evidence indicate that the presence of TANs is a negative
prognostic indicator. A correlation between TANs infiltrate
and poor outcome has been described in renal cell
carcinoma, bronchoalveolar cell carcinoma, and breast
cancer [115, 116]. In agreement, preclinical studies exper-
imenting PMN depletion confirmed the detrimental nature
of TANs [117, 118]. Neutrophils contribute to tumor
growth by promoting angiogenesis, cell proliferation, and
metastasis [114]. Similarly to macrophages, a recent report
described the functional plasticity of neutrophils [7]. The
authors investigated the effects of SM16, a TGFβ receptor
kinase antagonist, in murine lung cancer and mesothelioma
models using syngeneic tumor xenografts and the ortho-
topic LSL-K-ras tumor model. Depletion of neutrophils by
a specific anti-Ly6G antibody resulted in a significantly
reduced effect of SM16, suggesting that neutrophils
participate to the antitumor activity of TGFβ blockade,
most likely by the production of oxygen radicals. Also,
depletion of neutrophils affected the activation of CD8+

CTLs. Fridlender and colleagues propose a new paradigm
in which resident TANs acquire a protumor phenotype,
largely driven by TGFβ, to become “N2 neutrophils”. If
TGFβ is blocked, neutrophils acquire an antitumor pheno-
type to become “N1 neutrophils” [7].

It was suggested that N1- and N2-type neutrophils are
neutrophils with a different degree of activation (i.e. fully
activated or weakly activated neutrophils, respectively)
rather than two alternatively activated cell subtypes [119].
It is also object of debate the existence of two distinct
populations, namely N2-polarized TANs and granulocytic
MDSCs, that seem to overlap for many characteristics. In
the absence of specific markers, it cannot be determined if
N2 neutrophils within the tumors are granulocytic MDSCs
recruited from the spleen or whether they are blood-derived
neutrophils converted to an N2 phenotype by the tumor
microenvironment. In support to the existence of N2-
polarized TANs, Fridlender et al. emphasize that TGFβ-
blockade does not alter blood neutrophils, splenic myeloid
cells (CD11b+), or splenic MDSCs, selectively acting on
the intratumor activation of neutrophils. Also, TANs
characterized in Fridlender’s study have clear features of
mature neutrophils, while MDSCs mostly exhibit an
immature morphology [120].

Molecular Determinants of TAMCs Functions

Nuclear Factor κB (NF-κB) Several lines of evidence
indicate the NF-κB system as a major regulator of the
immune and inflammatory responses [121]. Two major
signaling pathways control the activation of NF-κB [121,
122]. The classical pathway is stimulated by proinflamma-
tory cytokines, such as TNF-α and IL-1, as well as by
recognition of pathogen-associated molecular patterns
(PAMPs), and is mostly involved in innate immunity
[122]. In addition, an alternative pathway of NF-κB
activation, mainly involved in adaptive immunity, is
activated by certain members of the TNF cytokine family,
but not by TNFα itself [122]. The NF-κB family consists of
five members: NF-κB1 (p105/p50), NF-κB2 (p100/p52),
RelA (p65), RelB and c-Rel, that may form different homo-
and heterodimers associated with differential regulation of
target genes [122]. Accumulation of inhibitory p50 homo-
dimers has been observed in endotoxin tolerant macro-
phages [60], as well as in TAMs [54], suggesting an
important role in the control and extinction of the
inflammatory response [60]. Other negative regulators of
NF-κB activation have been identified in disease and
include the LPS-inducible splice variant of myeloid
differentiation 88 (MyD88) termed MyD88s, the single
immunoglobulin IL-1 receptor-related molecule/Toll-IL-1-
R8 (SIGIRR/TIR8), suppressor of tumorigenicity 2 (ST2),
interleukin 1 receptor accessory protein M (IRAK-M),
suppressors of cytokine signalling 1 (SOCS1), and SHIP1
[123].

To the extent they have been investigated, TAMs display
high accumulation of nuclear p50 homodimers and defective
NF-κB activation in response to different pro-inflammatory
signals [54], suggesting their tolerant phenotype.

Interestingly, TAM from p50−/− tumor-bearing mice
express cytokines characteristic of M1 macrophages (eg.
IL-12high/IL-10low) and their splenocytes produce increased
levels of Th1 cytokines (eg. IFN-γ), which are associated
with a delay in tumor growth [54]. By searching for the
microenvironmental signals promoting accumulation of the
p50 homodimer in macrophages, we demonstrated that IL-
10, PGE2 and TGFβ, which are expressed by TAMs and
promote M2-type polarized inflammation [124], induce p50
NF-κB homodimer activity [54]. A detailed analysis of the
role of p50 NF-κB homodimer in macrophage functions
revealed that its nuclear accumulation, both in TAMs and
LPS-tolerant macrophages, not only mediates a status of
unresponsiveness (tolerance) toward pro-inflammatory sig-
nals, but actually plays as key regulator of M2-driven
inflammatory reactions, acting through inhibition of NF-
κB-driven M1-polarizing IFNβ production and Signal
Transducer and Activator of Transcription (STAT1) phos-
phorylation [60].
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A microenvironment condition that appears to impact on
NF-κB signaling in TAM is hypoxia (low oxygen tension).
The presence of many areas of hypoxia is a hallmark
feature of most forms of solid tumor [1] and TAMs have
been shown to accumulate in these areas where hypoxia
promotes their pro-tumor phenotype [10]. Hypoxia-
inducible factor 1 (HIF-1) has been shown to control the
cellular response to hypoxia. Hypoxia stabilizes HIF-1α,
preventing posttranslational hydroxylation and subsequent
degradation via the proteasome. More recently, short-term
exposure of murine bone marrow–derived macrophages to
hypoxia has been shown to up-regulate NF-κB activity,
which in turn up-regulates HIF-1α levels [125].

NF-κB plays a key role also in the expansion and
functional activation of MDSCs [103]. In a model of IL-
1β–driven gastric inflammation and cancer it has been
shown that activation of IL-1 receptor signalling is crucial
for both MDSC recruitment and pre-neoplastic lesions
development. Both in vitro and in vivo studies demonstrated
that the IL-1β induced MDSC activation occurs through NF-
κB signalling pathway [126]. In line, a recent study has
demonstrated the importance MyD88-NF-κB pathway for
MDSC accumulation in a mouse model of liver cancer [127].
In contrast, by deciphering the molecular mechanisms
linking PIRs signalling with MDSC polarized activition,
Ma and colleagues have demonstrated that PIR-A dependent
activation of STAT-1 and NF-κB pathways drives MDSCs
differentiation into an M1 anti-tumor phenotype [107].

Further studies addressing the relative contribution of
individual NF-κB members (p65, c-Rel, p50, BCL3) and
their combinatorial transcriptional partners, such as STATs
and IRF3 will likely contribute to fully clarify its role in
cancer-related inflammation.

Hypoxia Hypoxia is a main trait of solid tumours [2] and
hypoxic areas are sites of accumulation for infiltrating
myeloid cells . As a consequence, the phenotype and
functions of TAMCs are profoundly affected by activation
of hypoxia inducible factors (HIFs) [128]. Hypoxia has
divergent effects on cells of both innate and adaptive
immunity [111]. Overall, HIF promotes pro-tumor behavior
of leukocytes to the detriment of effective anti-tumor
responses [10, 128]. Hypoxia has a significant impact on
myeloid cells [129]. TAMs accumulate in tumor hypoxic
areas and respond to the levels of hypoxia with a
transcription program in which mitogenic, pro-invasive,
pro-angiogenic, and pro-metastatic genes are up-regulated
[130, 131]. We have shown that hypoxic induction of HIF-
1α in TAMs influences the positioning and function of tumor
cells, stromal cells and TAMs, by selectively up-regulating
the expression of the chemokine receptor CXCR4 [18].

Furthermore, it has been shown that HIF-1 activation
mediates expression of the CXCR4 ligand CXCL12, a chemo-

kine involved in angiogenesis and cancer metastasis [132] and
promotes recruitment of bone marrow-derived CD45+ myeloid
cells Tie2+,VEGFR1+,CD11b+ and F4/80+ subpopulations
[133]. Hypoxia induces upregulation of the Bombina variegata
8 kDa protein (Bv8), which attracts MDSCs in the tumor,
where they can stimulate tumor angiogenesis [110] and
mediate tumor refractoriness to anti-VEGF therapy [134].

The trophic action of pathological hypoxia on
myeloid cells is also demonstrated by the increased
presence and enhanced survival of neutrophils in
hypoxic tissues [111, 135]. Both iNOS and Arg1 are
controlled by hypoxia. As a consequence, hypoxia in
TAMs and MDSCs influence the activation of adaptive
immunity, as it promotes inhibition of lymphocyte
functions by enhancing the expression of suppressive
enzymes [6, 136, 137]. Noteworthy, Gabrilovich and
colleagues demonstrated that hypoxia, via HIF-1α, repro-
duces the effect of tumor microenvironment on MDSCs
and promotes their differentiation to TAMs [106].

Even if HIF-1 and HIF-2 are apparently similarly regulated
and bind to the same hypoxic responsive element, they
activate a distinct set of genes mediating unique biological
functions [138]. HIF-alpha isoforms can differently regulate
macrophage polarization. Johnson and colleagues proposed
that HIF-2α stabilization induced by Th2 cytokines leads to
type-2 polarization generating macrophages with pro-tumoral
activities. Conversely, HIF-1α is induced by Th1 cytokines
in M1 macrophage polarization [139]. This functional
antagonism is due to a differential action on the iNOS and
Arg1 genes. In contrast, Simon and colleagues reported that
HIF-2α directly regulate the expression of proinflammatory
cytokines [140]. Interestingly, the expression of HIF isoforms
follows distinctive kinetic profiles that suggest a greater
involvement of HIF-1α in acute responses and of HIF-2α in
long-term responses [139]. HIF-2α was shown to regulate
TAM infiltration in murine models of colon and hepatocel-
lular carcinoma [140]. In a model of breast cancer, HIF-1α-
deficient TAMs displayed defective capacity to suppress T
cell functions [141]. These results endorse the great potential
of HIF inhibition in cancer therapy.

Accumulating evidence suggests that intersections and
compensatory pathways may exist between HIF and NF-κB
systems in tumors [125, 142, 143]. Macrophages reveal a
marked defect in HIF-1α expression following deletion of
the NF-κB activity regulator IKKβ [125]. This cross-talk,
triggered by hypoxic or pro-inflammatory signals, provides
evidence of the close connection between immunity and the
hypoxic response.

Signal Transducer and Activator of Transcription (STAT)
STATs are involved in several aspects of myeloid cell biology.
MDSC differentiation and activation involves STAT1,
STAT3, STAT5, and STAT6. STAT3 is the member of the

140 A. Sica et al.



family mainly responsible for MDSC expansion. STAT3
activation stimulates myelopoiesis and prevents the differen-
tiation of myeloid precursor cells, most likely through the up-
regulation of cyclin D, MYC, survivin, and B-cell lymphoma
XL (BCL-CL) genes [82]. STAT3 also induce S100 calcium-
binding protein 8 and 9 (S100A8/A9). S100A8 and S100A9
bind to receptors expressed on myeloid progenitors and
impair their differentiation into mature cells, promoting
differentiation expansion [29, 144]. In addition, these
proteins chemoattract MDSCs to tumor sites through a NF-
κB-dependent mechanism and potentiate ROS production
[29, 30]. Importantly, MDSCs can produce S100A8/A9,
generating a positive feedback loop that sustains MDSC
expansion. STAT5 is involved in MDSC survival, while
STAT1 is important for IFNγ-depending MDSC activation,
especially in the case of M-MDSCs. IFNγ-induced STAT1
activation is fundamental in the up-regulation of Arg1 and
iNOS [85, 103, 105, 145]. STAT6 is activated by the
engagement of CD124, a marker that has been found on
some subsets of MDSCs where this pathway controls Arg1
and TGFβ expression [91, 146]. STATs activation extremely
diverges in macrophage differentiation: STAT1 activation
results in M1 macrophage polarization, which promotes
cytotoxic and inflammatory functions. In contrast, a pre-
dominance of STAT3 and STAT6 activation results in M2
macrophage polarization, which is associated with immune
suppression and tumor progression [6]. Stat6−/− tumor–
bearing mice display a M1 phenotype. Restored immuno-
surveillance in Stat6−/− mice facilitates survival against
metastatic cancer via an IFN-γ-dependent mechanism [83].
Constitutive activation of STAT3 in tumor cells and in
infiltrating myeloid cells creates the immunosuppressive
environment that sustains tumor growth [147, 148]. For this
reason, STAT3 is a prospective target for cancer therapy.
Given that STAT3 is indispensable for hematopoiesis, an
indiscriminate suppression of this pathway is not practicable.
An attractive means to solve this problem has been recently
proposed in a study utilizing a STAT3-targeting siRNA
synthetically linked to a CpG oligonucleotide [149]. This
macromolecule delivers the STAT3-inhibiting siRNA specif-
ically to Toll-like receptor 9 (TLR9)-expressing cells (B cells
and myeloid cells). Moreover, TLR9 activation synergizes
with the block of STAT3 pathway, leading to an effective
response. In vivo administration of the drug activate tumor-
associated immune cells and provoking strong antitumor
immune responses.

Therapeutic Approaches Targeting TAMCs

Activation of selected inflammatory programs provide
protection in a preventive or therapeutic setting [3, 150,

151]. It was reported that dying tumor cells can be cross
presented by dendritic cells and trigger a protective immune
response via a TLR4-MyD88 pathway [152] and inflam-
masome activation and IL-1β production mediate activa-
tion of protective immunity [153].

A recent work showed that DNA vaccine against the
M2-associated molecule legumain, a member of the
asparaginyl endopeptidase family overexpressed by TAMs,
induced a robust CD8+ T cell response against TAMs and
led to a suppression of angiogenesis, tumor growth, and
metastasis [154]. Rolny and co-workers have reported that
by skewing TAM polarization away from the M2-like to a
tumor-inhibiting M1-like phenotype, the host-produced
histidine-rich glycoprotein (HRG) promotes antitumor
immune responses and vessel normalization [155].

Alternatively, macrophages depletion has been obtained
in vivo with the use of clodronate-encapsulated liposomes
[156] or amino-bisphosphonate, resulting in reduced angio-
genesis and tumor progression in several experimental
tumor models [157]. However, as more evidence emerge
for the signaling pathways involved in the ‘switch’ of
macrophage polarization states in the early stages of tumor
progression [1, 6], it may be possible to develop new
therapies aimed at preventing this and/or re-orientating M2-
like TAMs in favour of a more antitumoral phenotype.

Direct activation with IFNγ a prototypical M1-
polarizing cytokine, has been shown to re-educate TAMs
[158] and there is evidence for antitumor activity of this
molecule in minimal residual disease [1]. In spontaneous
breast cancer model, in vivo treatment with zoledronic acid,
a well known anti-tumor drug, is able to revert TAM
polarization from M2-like to M1 phenotype, as well as
to inhibit mammary carcinogenesis [159].Taking this
approach, combination of CpG plus an anti-IL-10 receptor
antibody switched infiltrating macrophages from M2 to
M1 and triggered innate response debulking large tumors
within 16 h [160]. Moreover, TAMs lacking STAT6, the
major mediator of IL-4 and IL-13 biological functions,
display an M1 phenotype, with low level of Arg1 and high
level of iNOS and rejected spontaneous mammary
carcinoma by a process requiring adaptive immunity to
cancer [161]. In analogy, inhibition of STAT3 activity,
required for IL-10 biological functions and gene transcrip-
tion, restored production of pro-inflammatory mediators
(IL-12 and TNF-α) by infiltrating leukocytes and promot-
ed tumour inhibition [147]. Recent results suggest that
SHIP1 functions in vivo to repress M2 macrophage
skewing. Consistent with this, Ship1−/− mice display
enhanced tumor implant growth [58].

Targeting cytokines and cytotoxic proteins to tumors by
means of gene modified cells represents a promising
strategy to treat cancer. It was recently shown that TEMs
could be used to deliver interferon-alpha (IFNα), a potent

Role of Tumour-Associated Myeloid Cells (TAMCs) 141



cytokine with angiostatic and antiproliferative activity
[162], thanks to the preferential homing of TEMs to the
tumors [77].

The translational potential of MDSC research is dual.
The immunosuppressive activity of MDSCs could be
exploited to inhibit immune responses in autoimmune
diseases and organ transplantation. Conversely, elimination
of MDSCs could be essential in cancer patients undergoing
active (vaccination) or passive (adoptive transfer of ex-vivo
expanded anti-tumor T cells) immunotherapy. A possible
approach to contrast MDSC pro-tumoral activities consists
in the promotion of MDSC differentiation into mature cells
devoid of suppressive activity. Vitamin A represent an
interesting candidate to restore immunosurveillance. In fact,
Vitamin A metabolites stimulate the differentiation of
myeloid progenitor cells into DCs and macrophages and
reduce MDSC accumulation [163, 164]. A clinical trial
testing the effects of all-trans-retinoic acid (ATRA) in
patients with metastatic renal cell carcinoma showed the
efficacy of this compound in reducing MDSCs in peripheral

blood. The decrease in MDSC number correlated with
improved-antigen-specific T cell responses [165]. It has
been reported that some chemotherapeutic drugs, such as
gemcitabine, are able to eliminate MDSCs, without affect-
ing T cells, B cells, NK cells, and macrophages [166, 167].
Another strategy is aimed to inhibit MDSC suppressive
function. Compounds under investigation for this ability
belong to COX2 inhibitors, phosphodiesterase 5 (PDE5)
inhibitors, and NO-releasing non-steroidal anti-
inflammatory drugs (NSAIDs) [82]. Preclinical evidence
support the use of IL-1 antagonists in treating human
metastatic disease. Blocking IL-1 activity, mainly IL-1β,
reduces both metastasis and tumor growth [168]. Recently,
it was shown that the effect is also mediated by the decrease
of MDSC accumulation and suppressive activity [83]. It has
also been reported that CD11b+ Gr1+ cells enhance tumor
refractoriness to anti-VEGF antibody (bevacizumab) treat-
ment [109]. In this situation, MDSCs release the pro-
angiogenic protein Bv8 that surrogates VEGF in the
stimulation of tumor angiogenesis [110]. Because Bv8 is

Table 1 Anti-cancer strategies
targeting tumor-associated mye-
loid cells

TLR9 Toll-like receptor 9; SHIP1
Src homology 2-containing ino-
sitol 5′-phosphatase 1; HIF-1
Hypoxia inducible factor-1;
ANG-2 Angiopoietin-2; COX2
Cyclooxygenase 2; PDE5 phos-
phodiesterase 5; NO-releasing
NSAISs nitric oxide-releasing
non-steroidal anti-inflammatory
drugs; S100A8/A9 S100 calcium-
binding protein 8 and 9; IL-1Ra
Interleukin-1 receptor antagonist;
Bv8 Bombina variegata 8 kDa
protein; CXCR2 chemokine
(C-X-C motif) receptor 2

Therapeutic strategy Therapeutic agents Refs

TAM depletion Legumain based DNA vaccines [154]

Clodronate [156]

Trabectedin [170]

Promotion of TAM switch from a M2-type to a M1-type
phenotype

IFNγ [158]

TLR9 agonists + IL-10
inhibition

[160]

STAT3 inhibitors [147, 149]

STAT6 inhibitors [161]

p50 NF-κB homodimers
antagonists

[60]

SHIP1 activators [58]

Zoledronic acid [159]

Inhibition of TAM suppressive function HIF-1 inhibitors [111, 141]

Exploitation of cell tumor-homing aptitude for anti-tumor
cytokine delivery

Engineereded TEMs [162]

Inhibition of TEM recruitment and activation Ang-2 antagonists [81]

MDSC depletion Gemcitabine [166, 167]

Promotion of MDSC differentiation into mature cells
devoid of suppressive functions

Vitamin A [164, 165]

Inhibition of MDSC accumulation S100A8/A9 inhibitors [144]

STAT3 inhibitors [147, 149]

STAT6 inhibitors [161]

Inhibition of MDSC suppressive functions COX2 inhibitors, [82]

PDE5 inhibitors [82]

NO-releasing NSAIDs [82]

Inhibition of MDSC accumulation and angiogenic activity Anti-Bv8 mAb [110]

Prevention of neutrophils recruitment to tumors CXCR2 antagonists [119]

Blockade of M2-type and N2-type polarization, inhibition
of MDSC suppressive functions

TGFβ inhibitors [7, 32]
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also important in MDSC mobilization and homing to the
tumor site, this is an interesting candidate for cancer
therapy.

TAN depletion represents a potential therapeutic
approach for cancer cure [169]. However, since onco-
logic patients are already immunocompromized individu-
als, a complete ablation of neutrophils is not desirable.
Alternatively, given that activated neutrophils can kill
tumor cells through the release of toxic substances, it
would be of interest to modulate TAN phenotype, with a
switch from N2- towards N1-polarization. Nevertheless,
this plan would lead to the generation of highly cytotoxic
cells and could result in excessive tissue damage,
potentially lethal. A more manageable therapeutic strategy
can target neutrophils recruitment to tumors. Inhibition of
CXCR2-mediated PMN chemotaxis with a specific anti-
body or a CXCR2 antagonist has been successfully tested
in pre-clinical experimentation [119]. The description of
the pivotal role of TGFβ in the promotion of a protumor
phenotype of TAN suggests that therapies contrasting this
cytokine could contribute to re-educate neutrophils in the
tumor microenvironment [32]. Several strategies aimed to
reduce or eliminate TAM recruitment have been developed.
Two agents able to eliminate TAMs are clodronate (dichloro-
methylene–biphosphonate) and Yondelis® (trabectedin) [156,
170]. Interestingly, a recent study showed that the CCL2-
driven accumulation of TAMs limits the influx of neutrophils
in solid tumors by a yet unidentified mechanism. If TAM
accumulation is suppressed, neutrophils are recruited to the
tumor providing a secondary source of MMP-9. Therefore,
in the absence of TAMs, TANs provide alternative paracrine
support for tumor angiogenesis and progression [171].
Hence, the elimination of TAMs alone may be insufficient
to eradicate myeloid cell support to tumor growth.

Concluding Remarks

Recent results indicate that tumour development promotes
expansion and functional skewing of different myeloid cell
populations, leading to accumulation of protumoral TAMC
populations, which include TAMs, TEMs, MDSCs and
TANs. New evidence also suggest that TAMCs reciprocally
influence their protumoral differentiation, under the “remote
control” of T and B lymphocytes [3, 13, 72, 172]. TAMs,
TEMs, MDSCs and TANs display distinct specialized
functions, as well as overlapping activities (eg. angiogene-
sis). New therapeutic strategies have been aimed at targeting
single myeloid populations (Table 1). However, TAMCs
appear to constitute a robust system and the functional
elimination of a single myeloid population may be
insufficient to eradicate myeloid cells support to tumor
growth. It appears therefore necessary to identify strate-

gies able to target different myeloid cell populations,
simultaneously.

Recent studies have highlighted that striking similarities
exist among mechanisms governing both the transcriptional
profile and the functional properties of TAMCs and it is
becoming clear that pathways promoting polarized func-
tions of either macrophages (eg. M1 vs M2) or neutrophils
(N1 vs N2) may share common constituents [120]. This
scenario suggests that key mechanisms may converge to
promote the protumoral traits of different TAMC popula-
tions, thus potentially offering common target/s to thera-
peutically affect the protumoral networks established by
cancer-associated myeloid cells.
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