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Knowledge of the natural roles of cel-
lular prion protein (PrPC) is essen-

tial to an understanding of the molecular 
basis of prion pathologies. This GPI-
anchored protein has been described in 
synaptic contacts, and loss of its synaptic 
function in complex systems may con-
tribute to the synaptic loss and neuronal 
degeneration observed in prionopathy. 
In addition, Prnp knockout mice show 
enhanced susceptibility to several excito-
toxic insults, GABA

A
 receptor-mediated 

fast inhibition was weakened, LTP was 
modified and cellular stress increased. 
Although little is known about how PrPC 
exerts its function at the synapse or the 
downstream events leading to PrPC-
mediated neuroprotection against exci-
totoxic insults, PrPC has recently been 
reported to interact with two glutamate 
receptor subunits (NR2D and GluR6/7). 
In both cases the presence of PrPC blocks 
the neurotoxicity induced by NMDA and 
Kainate respectively. Furthermore, sig-
nals for seizure and neuronal cell death 
in response to Kainate in Prnp knockout 
mouse are associated with JNK3 activ-
ity, through enhancing the interaction 
of GluR6 with PSD-95. In combina-
tion with previous data, these results 
shed light on the molecular mechanisms 
behind the role of PrPC in excitotoxicity. 
Future experimental approaches are sug-
gested and discussed.

The Cellular Prion Protein: 
The Quest for a Natural Function

The cellular prion protein is encoded by 
a single-copy gene (PRNP) that com-
prises two to three exons, with the open 

Unraveling the neuroprotective mechanisms of PrPC in excitotoxicity

Franc Llorens1,2,3,* and José Antonio del Río1,2,3

1Molecular and Cellular Neurobiotechnology Group; Institut de Bioenginyeria de Catalunya (IBEC); Parc Científic de Barcelona; Barcelona, Spain;  
2Department of Cell Biology; University of Barcelona (UB); Barcelona, Spain; 3Network Biomedical Research Center for Neurodegenerative Diseases 

(CIBERNED); Barcelona, Spain

reading frame (ORF) lying in the third 
exon.1,2 The resulting protein is a glyco-
syl phosphatidyl inositol (GPI)-anchored 
cell-surface glycoprotein.3 PrPC is highly 
expressed in the adult central nervous sys-
tem (CNS) by post-mitotic neurons and 
glial cells.4-7 Outside the CNS, elevated 
PrPC expression has been reported in dif-
ferent cell types, such as bone marrow 
hematopoietic stem cells, spermatogo-
nia or lymphocytes.8-11 Pioneer studies 
reported that cultured neurons lacking 
PrPC showed poor resistance to serum 
withdrawal,12 and especial sensitivity to 
oxidative stress stimuli.13 Thus, in order 
to determine the physiological functions 
of the protein, several cell lines lacking 
PrPC expression were generated by homol-
ogous recombination in embryonic stem 
(ES) cells by modifications restricted to 
the ORF or, alternatively, by deleting the 
ORF but also expanding flanking regions. 
Using the first mouse strains homozygous 
for the inactivated gene (such as Zürich 
I.14 or Edinburgh15) researchers found that 
these were resistant to prion infection and 
showed normal development. In aging 
mice they detected certain peripheral 
nervous system degeneration, albeit with-
out clear clinical symptoms.16 However, 
further detailed physiological studies 
reported that Prnp0/0 mice showed weak 
GABA

A
 receptor-mediated fast inhibition, 

modified LTP and alterations in circadian 
activity and sleep rhythms.17-20 Mice car-
rying larger deletions overexpress Doopel 
(Dpl) but develop normally at perinatal 
stages. However, they exhibit severe ataxia 
and Purkinje cell loss at young-adult 
stages, a phenotype that can be overcome 
by the inclusion of a single copy of Prnp.21 
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not in young animals.53 Later, the same 
authors reported similar results with aged 
Prnp knockout animals (9 mo old).52 In 
agreement with this, we also observed 
enhanced synaptic facilitation in paired-
pulse experiments and hippocampal 
LTP in living, behaving mutant mice.54 
However, Lledó et al. found no differences 
in LTP between control and Prnp knock-
out mice in the CA1 region of the hip-
pocampus, although the same laboratory 
found a range of synaptic responses corre-
lated with the level of PrPC expression.55,56 
In addition, most authors attribute differ-
ences in electrophysiological recording in 
slice experiments between several reports 
vs. in vivo analysis to differences in experi-
mental conditions.

Can PrPC Partners be Responsible 
for the Differences  

in Observations of PrPC Roles  
in Neurotransmission?

There is controversy as to whether PrPC 
participates in synaptic transmission. In 
fact two lines of inquiry are being fol-
lowed in an attempt to resolve the issue: 
(1) the interaction of PrPC with extracel-
lular elements (e.g., ions, molecules or 
contra-receptors) or (2) its interactions 
with the synaptic molecules or members 
of the vesicle transport machinery. In the 
last few years an emerging third line of 
analysis appears to indicate that PrPC may 
modulate neurotransmission by interact-
ing with neurotransmitter receptors.

Extracellular partners. PrPC, which 
binds copper through its octarepeat 
domain, has been implicated in the main-
tenance of the redox stage at pre-synaptic 
level through the regulation of calcium 
flux.57,58 A second example of extracellular 
partners can be seen by analyzing the bind-
ing of PrPC to adhesion molecules, such as 
NCAM,59,60 or laminin.61 Binding of lam-
inin to PrPC modulates neuronal plasticity 
and memory by acting through Group I 
metabotropic glutamate receptors.61

The third and probably the most excit-
ing example, found in 2009 in a study by 
Strittmatter’s group, indicates that PrPC 
mediates impairment of synaptic plasticity 
by Aβ oligomers (ADDLs).62 Indeed, in 
the same study a removal function of free 
ADDLs was suggested for PrPC, although 

Later studies indicate that Prnp knockout 
mice showed cognitive deficits, depres-
sive-like behavior and anxiety-related 
responses.38-40 Taken together, these results 
point to modified or unbalanced neuro-
transmission. Indeed, a pioneer study by 
Walz et al. demonstrated that mice devoid 
of PrPC were more sensitive to kainate, 
pentylenetetrazol (PTZ) and pilocarpine 
injections.41 This result was further cor-
roborated by other authors.18,42-45 However, 
a recent study using cultured slices con-
taining zero-magnesium, bicuculline and 
PTZ as convulsants showed that higher 
concentrations of convulsants were nec-
essary to generate spontaneous epilepti-
form activity in Prnpo/o slices in contrast 
to wild-type mice.46 Moreover, we cannot 
rule out the possibility that other factors 
(e.g., genetic background, age at analysis 
and technical conditions) may affect the 
enhanced epileptic phenotype displayed 
for the mutant mice. These factors may 
also correlate with neuroanatomical modi-
fications in the hippocampus (e.g., mossy 
fiber reorganization in the dentate gyrus) 
(reviewed in ref. 47).

But we should be cautious in extrapolat-
ing these results to CJD patients displaying 
different degrees of seizures, ranging from 
episodes of periodic lateralized epilepti-
form complexes (PLEDs), general status 
epilepticus or epilepsia partialis continua 
(EPC).48-50 Readers are referred to a recent 
study on CJD and status epilepticus.51

Role of PrPC in long-term potentia-
tion: a challenging puzzle. Results from 
electrophysiological studies in Prnp knock-
out mice, which have been extensively 
used to examine PrPC-mediated synaptic 
plasticity, have also brought controversy to 
the field. Several authors established that 
PrPC participates in LTP in hippocampal 
slices,17,19,52 and in vivo in anesthetized 
mice.53,54 Collinge et al. observed that hip-
pocampal slices from Prnp knockout mice 
have weakened GABA

A
 receptor-mediated 

fast inhibition and impaired long-term 
potentiation.17 A lower threshold for gen-
erating LTP in the hippocampal dentate 
gyrus, in Prnp knockout mice compared 
with wild-type animals, was also observed 
by Maglio et al.19 In addition, Curtis et al. 
found a reduction in the level of post-
tetanic potentiation and LTP in the CA1 
region of aged Prnp knockout mice but 

In recent years, several mice lacking par-
ticular regions of PrPC have been devel-
oped, which unveiled specific functional 
regions of PrPC relevant to fast degenera-
tion of cerebellar cells (reviewed in refs. 
22 and 23). However, here we focus on 
some recently determined functions of 
PrPC, especially related to its putative par-
ticipation in synaptic plasticity and in the 
prevention of excitotoxicity. Although this 
review focuses on neurons, we should not 
forget that PrPC expressed in astrocytes 
may have a functional influence in vivo.24

Histochemical analysis revealed that 
PrPC is located in axons, for example in 
hippocampal mossy fibers.25 However, 
electron microscopy analysis identified 
it in synaptic contacts (at both pre- and 
post-synaptic level).26 In addition, loss 
of PrPC function at synapses following 
deletion of the Prnp gene triggers several 
neural dysfunctions (see above). From a 
neurological point of view, prionopathies 
were characterized as synaptic diseases.27 
Indeed, in CJD, an abnormal form of 
PrPC accumulates at synaptic terminals,28 
and physiological PrPC function is lost. 
Several authors consider this as showing 
simply that physiological processes in pri-
onopathies such as CJD are the result of 
the increased pathological effects of the 
misfolded protein PrPSC together with the 
loss of natural functions of the decreased 
PrPC. However, additional knowledge is 
needed to ascertain whether this scenario 
is as simple as hypothesized. We cannot 
rule out factors identified in recent stud-
ies that may condition the evolution of 
the illness: for example, the emerging 
role of the oligomeric or soluble forms of 
PrPSC,29,30 the Prnp and non-Prnp genetic 
influence,31 changes in gene expression in 
affected individuals,32 new data on the 
intracellular trafficking of the protein and 
conformational studies,33,34 as well as the 
crosstalk of prionopathies with other dis-
eases such as AD.35,36 We need to integrate 
this emerging knowledge from animal 
models with clinical data from patients.

PrPC and “Partners”: A Scenario 
with Many Actors at the Synapse

Epilepsy. The first physiological descrip-
tions mainly focused on stress and the 
sensitive phenotype of mutant mice.37 
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However, PrPC aggregation by specific 
antibodies also leads to cell death by 
increased ROS in vitro and in vivo,84,85 
which raises the question of whether 
this is the natural mechanism of PrPC-
mediated signaling (reviewed in ref. 47). 
Although it is assumed that PrPC trans-
duces neuroprotective signals,86 we should 
not consider it as a generic neuroprotec-
tive molecule per se.87 In fact, Steele et al. 
showed that deletion of Prnp in several 
transgenic models of neurodegenerative 
disease (PD, HD, tauopathy) did not con-
tribute to the development of the disease, 
suggesting a context-dependent neuropro-
tective function for PrPC.88 As indicated 
above, the enhanced susceptibility of 
Prnp knockout to glutamate excitotoxic-
ity has been reported extensively.41,42,89 In 
addition, neuronal cell death in the hip-
pocampus of Prnp knockout mice has 
been described in response to glutamate 

also been shown, and silencing of Rab7a 
promotes PrPC accumulation in Rab9-
positive endosomal compartments,78 
which implicates PrPC in vesicular traf-
ficking. The potential effects of these 
interactions in lipid rafts and associated 
vesicles on vesicular trafficking, cellular 
signaling and neuroprotection warrants 
further study. A scheme summarizing pro-
posed functional interactions for PrPC at 
the cell membrane is shown in Figure 1.

Emerging Roles of PrPC:  
Modulating Neurotransmitter  

Receptors in Intracellular  
Processes in Excitotoxicity

The signaling mechanism that triggers 
PrPC remains elusive. After antibody 
recruitment of PrPC at the plasma mem-
brane, Fyn,60,79-81 and ERK/CREB sig-
naling activation has been described.82,83 

further studies by the same group failed to 
find a direct effect of PrPC expression on Aβ 
deposition in mouse models.63 However, 
the results of the same study reinforce the 
notion that interaction between PrPC and 
ADDLs is required for suppression of syn-
aptic plasticity in hippocampal slices.63 In 
fact, a recent study reported that ADDLs 
increased the presence of PrPC at the cell 
membrane and that to some extent the 
effects of intracellular ADDLs are medi-
ated by PrPC.64 This contrasts with those 
reported by Aguzzi’s group, who found no 
change in the impairment of hippocampal 
synaptic plasticity in a transgenic model 
of AD after Prnp deletion or overexpres-
sion, suggesting that PrPC has a weak 
role as mediator of Aβ toxicity.35 Indeed, 
no changes in PrPC protein levels were 
detected in AD patients,65 although fibril-
lar forms of PrPC and Aβ are detected in 
amyloid plaques,66 and fibrillar forms of 
PrPC and Aβ interact in AD brains.67

We conclude that the pathophysiologi-
cal relevance of the PrPC/Aβ interaction 
remains to be established.

Intracellular partners. PrPC may 
participate in neurotransmitter release, 
as reported at the neuromuscular junc-
tion, by interacting with synaptic associ-
ated proteins.68 Indeed, Synapsin Ib and 
Synaptophysin (among others) have been 
reported to interact with PrPC (reviewed 
in ref. 69). In fact, misfolded PrPC has 
been implicated in SNARE dysfunction in 
vitro (see below), but surprisingly, not in 
vivo.70 Again parallels are found between 
bench experiments and CJD patients, 
since defective synaptic machinery in 
infected brains (mainly (SNAP-25), syn-
taxin-1 and synapsin-1) was demonstrated 
several years ago.27,71 However, whether 
these changes affect the symptoms and the 
evolution of the illness requires additional 
study. In this regard, recent approaches 
analyzing gene expression changes in dif-
ferent rodent models lacking PrPC,18,72 
and the comparison with CJD patients 
and prion infected animals73-76 could be 
of interest in order to harmonize data. 
On the other hand, a large group of PrPC-
binding proteins locate into vesicles or 
caveolae-like domains such as Casein 
Kinase 2, Caveolin-1, Grb-2, p75 and 
Pint-1 (reviewed in ref. 77). Recently, an 
interaction between PrPC and Rab7 has 

Figure 1. Scheme of the proposed functional roles for PrPC at the cell membrane as intracellular 
transducer of extracellular signals. PrPC mediates self-aggregation, interaction with intracellular 
and extracellular partners or with glutamatergic receptor subunits, leading to a broad range of 
molecular mechanisms regulating neuronal cell physiology.
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main problem so far resides in our lack 
of knowledge of the functional relevance 
of these interactions.104 We can find some 
exceptions such as the interaction of 
PrPC with the plasma membrane stress-
inducible protein 1 (STI1) that has clearly 
been shown to transduce extracellular 
signals to the intracellular environment 
of PrPC expressing cells in an alpha7 nico-
tinic acetylcholine receptor-dependent 
manner.105-107

Another open question in this field 
is how PrPC inhibits GluR6 and NR2D. 
Khosravani and Steele hypothesized, for 
the NR2D-PrPC interaction, that PrPC 
could block receptor agonist binding, sta-
bilize the closed state of the channel, or 
act indirectly by interfering with signal-
ing pathways affecting glutamate recep-
tor functions by individual regulation of 
its subunits.45,108 Mapping the interaction 
regions between PrPC and GluR6 and 
NR2D may help to discern the molecular 
mechanisms by which PrPC silences both 
receptor subunits. In addition, since GPI 
seems to play an essential role in the physi-
ological and pathological functionality of 
PrPC 109,110 the PrPC-GPI domain may help 
to direct the interaction between PrPC 
and glutamate receptor subunits. In this 
regard, interaction and neurotoxic experi-
ments with the anchorless Prnp transgenic 
mice (GPI-/-), which produces a PrPC form 
that is mainly released in the culture media 
in a fully glycosylated, soluble form, could 
be a good approach to this issue.

Final Remarks

Despite efforts to discern the physiologi-
cal role of PrPC, understanding its biologi-
cal function presents several challenges. 
There are a large number of PrPC-partners, 
most of which still need to be associated 
with a biological function. In addition, 
the pleiotropic phenotypes of the various 
Prnp knockout mice hinder the study of 
basic biological PrPC-dependent func-
tions. Furthermore, our lack of knowl-
edge of the PrPC-dependent signaling 
pathways, both in physiological and in 
pathological conditions, makes it difficult 
to integrate the biological information 
gathered from membrane (receptor) lev-
els to gene expression. The development 
of new experimental tools such as double 

role in cell death and apoptosis regulation 
following several insults. Interestingly, 
GluR6, JNK3 and c-Jun Ser63/73AA knock-
out mice are resistant to KA-induced sei-
zures.92,100,101 We observed that PrPC favors 
the interaction between GluR6 and PSD-
95 in the presence of KA, and that PrPC 
interacts with GluR6-PSD-95 in the PSD 
fraction from hippocampus.44

In this regard, interaction between 
PrPC and NR2D was also observed by 
Khosravani et al. Similarly to our obser-
vations, the presence of PrPC silenced 
NR2D and reduced excitotoxic lesions 
in the presence of NMDA. In addition, 
Group I metabotropic glutamate recep-
tors (mGluR1/5) also associate with 
PrPC. Furthermore, Group I mGluRs 
are involved in the transduction of cel-
lular signals triggered by PrPC-Laminin 
interaction.61

PrPC and Excitotoxicity:  
New Questions

As in any other scientific field, a particu-
lar discovery may raise more than a hun-
dred challenging questions. Current data 
indicate that PrPC contributes to a general 
neuroprotective mechanism in response 
to excitotoxic insults through interaction 
with glutaminergic receptors. However, 
we first need to establish whether this neu-
roprotective response of PrPC to increased 
glutamate is pleiotropic or specific to 
a particular subset of glutamate recep-
tors. In order to determine whether PrPC 
inhibits the glutamate-mediated post-
synaptic hyperexcitation of neural cells 
in a specific manner, further interactome 
experiments from post-synaptic density-
enriched fractions should be performed. 
In this regard Khosravani et al. demon-
strated some degree of specificity between 
PrPC and NMDAR subunits, since they 
did not detect NR2B in their PrPC immu-
noprecipitates.45 In addition, it would also 
be interesting to study the kinetics of the 
interaction between PrPC and its recep-
tor partners in order to establish the role 
of PrPC under basal conditions. To date, 
several interactome studies have been per-
formed in neuroblastoma cell lines over-
expressing PrPC or in transgenic myc-PrP 
mice.78,102,103 Although the list of PrPC 
interacting partners is increasing, the 

toxicity when compared with control ani-
mals.42,45 In addition, Koshravani et al. 
recently measured NMDAR-mediated 
currents and mEPSCs recorded from Prnp 
knockout hippocampal slices and showed 
events with significantly larger amplitudes 
than those observed in control animals.45 
Furthermore, NMDAR-mediated mEP-
SCs of Prnp knockout slices showed sig-
nificantly longer decay times.45

However, little is known about the 
molecular mechanisms activated by the 
lack of PrPC in the presence of excitotoxic 
insults. When compared with control 
mice, we observed increased phospho-
JNK reactivity in the pyramidal cells of 
the hippocampal CA1 and enhanced sen-
sitivity to seizures and hippocampal cell 
death.42 Further, we investigated the sig-
naling pathways activated after KA treat-
ment in the Prnp knockout mice.44

PrPC, Glutamate Receptors  
and JNK3 Activity

JNK has been implicated in several neu-
rodegenerative diseases such as AD and 
PD,90,91 and it plays a crucial role in epi-
lepsy and stroke.92,93 Of the three isoforms 
of JNK (JNK1, 2 and 3), JNK3 was a 
good candidate to be a key molecule in 
the PrPC-dependent transmission of the 
excitotoxicity provoked by glutamate: 
(1)  JNK3 is predominantly expressed in 
the CNS;94 (2) Jnk3 knockout provides 
neuroprotection against various inju-
ries,95,96 and most interestingly, resistance 
to epileptic seizures and hippocampal cell 
death;92 and (3) the JNK3 apoptotic sig-
naling pathway is reported to be induced 
by KA and ischemia.92,97 With these results 
in mind, we recently generated a double 
knockout mutant Prnp/Jnk3, which was 
insensitive to seizure and hippocampal 
cell death in response to KA injections.44 
This observation was corroborated in 
organotypic slices using pharmacological 
JNK inhibitors.

On the other hand, several authors 
reported that assembly of the GluR6-
PSD-95-MLK3 trimer induced by KA 
and ischemia is essential for the activa-
tion of JNK3.98,99 JNK3 phosphorylation 
and activation induces phosphorylation of 
c-Jun, which is part of the AP-1 complex. 
The JNK-c-Jun-AP-1 pathway plays a key 



© 2012 Landes Bioscience.

Do not distribute.

www.landesbioscience.com	 Prion	 249

Acknowledgments

The authors thank the members of our lab 
for their contributions during these years 
and Prof. A. Aguzzi for reagents, and fruit-
ful discussions on the topic along these 
years. This research was supported by the 
FP7-PRIORITY, the Spanish Ministry of 
Science and Innovation (BFU2009-10848), 
the Generalitat de Catalunya (SGR2009-
366) and the Instituto Salud Carlos III.

Finally, although a striking degree of 
conservation between the Prnp mamma-
lian sequences has been observed, to date 
there are no studies linking PrPC-mediated 
excitotoxicity at the evolutionary level. 
However, the contribution of recent arti-
cles on the structural differences between 
different species may bring some light on 
how these changes may be crucial for the 
PrPC physiology.

JNK3-glutamatergic subunit knockout 
mice, together with the discovery of new 
potential PrPC partners involved in neuro-
transmission, and the study of such inter-
actions using interdisciplinary approaches 
(merging data from proteomic, cell signal-
ing and neuropathological experiments) 
may help to elucidate the neuroprotec-
tive role of PrPC in response to excitotoxic 
insults.
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