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Abstract
We present a predictive account on adaptive sequential sampling of stimulus-response relations in
psychophysical experiments. Our discussion applies to experimental situations with ordinal stimuli
when there is only weak structural knowledge available such that parametric modeling is no
option. By introducing a certain form of partial exchangeability, we successively develop a
hierarchical Bayesian model based on a mixture of Pólya urn processes. Suitable utility measures
permit us to optimize the overall experimental sampling process. We provide several measures
that are either based on simple count statistics or more elaborate information theoretic quantities.
The actual computation of information theoretic utilities often turns out to be infeasible. This is
not the case with our sampling method, which relies on an efficient algorithm to compute exact
solutions of our posterior predictions and utility measures. Finally, we demonstrate the advantages
of our framework on a hypothetical sampling problem.
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1. Introduction and Motivation
The application of adaptive measurement methods have a long tradition in psychophysics.
The need for such methods is mainly due to the limited number of measurements that can be
taken during experiments. Most of the classical methods are motivated by their simplicity,
both conceptually and computationally. With the advent of modern computers and the
continuing progress in statistical theory, the development of more sophisticated adaptive
sampling procedures has recently seen much progress.

Especially the consideration of Bayesian experimental designs based on the information
theoretic description of experimental objectives and their numerical approximation (cf.
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MacKay (1992); Chaloner and Verdinelli (1995)) has moved into the focus of contemporary
research. Recent developments are, for instance, the Ψ-method introduced in Kontsevich
and Tyler (1999), the consideration of multidimensional stimulus spaces in Kujala and
Lukka (2006), and the framework of adaptive design optimization (ADO) for model
discrimination proposed in Cavagnaro et al. (2010). Another interesting example is given by
Kujala (2010) who considers random cost as a further constraint for experimental
observations.

Our contribution to the field is twofold. First, we address the case where no particular
statistical model in form of parametric curves can be assumed. We present a complete
formal description of a suitable framework for such a nonparametric setting. Second, we do
not rely on any numerical approximation and the quantities of interest can be computed
efficiently and exactly.

Our method applies to the following experimental setting: In a psychophysical experiment,
the causal relation X → Y between a physical stimulus X and the psychological response Y
of an observer is investigated. Before the experiment, a discrete set of L stimuli  = {x1, …,
xL} and K possible responses  = {y1, …, yK } is determined. The stimuli is considered to
be ordinal, i.e. the set of stimuli is assumed to be linearly ordered, for instance by strength or
any other property associated with the physical parameters. The actual experiment is then
performed in a sequential manner. That is, at the n-th stage of the experiment, a particular
stimulus Xn ∈  is set and the participant’s response Yn to that stimulus is recorded.

Figure 1 outlines such a experiment for illustrative purposes, taken from Elze et al. (2011),
Experiment 2. Figure 1A shows the experimental setup that involves a two-alternative-
forced-choice (2AFC) discrimination task: An observer has to report which of two possible
target stimuli has been presented on a computer monitor. The discrimination performance
was impaired by the presentation of a second stimulus, the so-called mask stimulus, at a
position close to the target location. Within this experimental setting, the actual stimulus of
interest X is the time interval between the offset of the target and the onset of the mask, the
so-called interstimulus interval (ISI) that takes values in  = {20 ms, 40 ms, …, 200 ms},
whereas the response Y takes values in  = {correct, incorrect}, depending on whether or
not the observer reported the correct target stimulus.

One of the most often considered approaches to model such an experimental situation is to
assume a multinomial sampling law. More specifically, given any stimulus {X = x} the
generation of the response Y is thought to be described by multinomial parameters px,  =
(px,y)y∈  ∈ Δ , where

(1)

is the probability simplex, such that the conditional probability of the event {Y = y} given
{X = x} is

Within this setting, the statistical task is then entirely focused on the estimation of the

psychometric rates . A low-dimensional parametric family of
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functions  = {fθ| θ ∈ Θ} can be used to introduce dependencies among the psychometric
rates, such that

This facilitates the inference task by exploiting structural knowledge about the interlink
between the stimuli. The function fθ is commonly termed psychometric function in the
particular case of a binary response, e.g. a 2AFC experiment as outlined above. Especially
sigmoid curves are a common choice if the stimulus X can be considered to be real-valued.
Their geometric parameters such as slope and threshold can serve to actually define relevant
psychophysical quantities of interest. There exists a vast literature on the statistical inference
of psychometric rates and functions, see for instance Wichmann and Hill (2001); Kuss et al.
(2005), which provide a good entry point into the literature.

From a mere statistical point of view, this parametric approach seems to be a reasonable
strategy as it allows sharing statistical strength across stimuli. By learning the psychometric
rate for a particular stimulus we also learn about all other rates because dependencies are
introduced by the parametric family. Hence, the parametric approach allows seemingly good
estimates even with few experimental data. Nevertheless, this modeling approach is
unsuitable and can even bear the risk of a severe bias if there is no or only vague knowledge
about the potential shapes of the functions fθ and no member of the proposed parametric
family  does match with the actual psychometric rates. For instance, in the above example
it seems hard to motivate any plausible regular functional form (see Figure 1B).

This form of bias is of course avoided by allowing the psychometric rates to freely range

over , which we refer to as the nonparametric approach1. Clearly, much more data is then
needed to draw informative inferences.

In this paper, we use an intermediate approach fairly balancing the advantages and
disadvantages of both approaches by exploiting the fact that  is of ordinal structure.
Loosely speaking, we allow neighboring stimuli to share statistical strength by joining their
respective psychometric rates. Each possible way of joining neighboring stimuli imposes a
particular partition on the stimulus space , which is then assessed by a suitable Bayesian
inference scheme. The resulting model is a variant of the product partition model proposed
by Hartigan (1990) and the inhomogeneous Bernoulli process with piecewise constant
probabilities described in Endres et al. (2008).

In our description of the model and the respective adaptive sampling procedures we follow
the predictive paradigm as pioneered, for instance, in Roberts (1965); de Finetti (1974);
Geisser (1993), by putting special emphasis on the prediction for the observables, which are
the stimulus-response outcomes of the sequential experiment. By imposing a particular
epistemic condition of partial exchangeability, the psychometric rates naturally emerge as a
particular limiting statistic of the data rather than an external quantity. The corresponding
Bayesian model matches extensionally with a multinomial sampling model with unknown
parameters.

1There is much ambiguity in the usage of the term nonparametric as different fields of statistics assign different meanings to what is
actually meant by nonparametric. Here, we simply mean that no constraint in form of a parametric family is imposed that restricts the

topological support for the psychometric rates p  in .
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2. A Predictive Perspective on Sequential Experiments
2.1. Sequential Construction of Adaptive Sampling Processes

A reasonable adaptive experimental design requires that we have at least partial control of
the sampling process concerning the presentation of stimuli. This experimental
controllability can be subject to uncertainty, e.g. the experimental setup might be prone to
errors in generating the required stimulus. For simplicity, we shall nonetheless assume that
we can adjust the stimulus in the way we want. Our personal action policy, which is the
subjective assessment of which stimulus might be best to choose, is then expressed by a
probability measure P [X]. By setting a stimulus X w.r.t. P [X], we subsequently observe a
respective response Y, where our prediction is described by a conditional measure P [Y |X].

In the following, we shall extend this scenario to sequential sampling schemes. We consider
that at any sampling step n ∈ ℕ we can freely choose a stimulus Xn that results in the
observation of an instance (Xn, Yn). Let En = (Xn, Yn) denote the n-th experiment, such that
we refer to the first n experiments of the overall experimental process E = (En)n∈ℕ by En =
(E1, …, En) = (Xn, Yn), where Xn = (X1, …, Xn) and Yn = (Y1, …, Yn). Two important
statistics that summarize the data from the experiments En are given by the total count
statistic n  = (nx, )x∈  = (nx,y )x∈ ,y∈ , where nx,y is the (absolute) frequency of the
event {X = x, Y = y} in En, and n  = (nx)x∈  is the related stimulus count statistic, i.e. nx
= Σy∈  nx,y. We illustrate this notation by the following short example.

Example 1—Suppose we run an experiment with a set of stimuli  = {a, b, c, d} and
dichotomous responses  = {0, 1}. If in eight trials we observe that

(2)

then the two statistics just defined are

We now take a sequential and prediction oriented perspective. We fix our expectations about
the experimental course E by specifying a sequence of conditional measures in form of
kernels πn(En+1 | En), n ∈ ℕ0, where each πn describes our uncertainty about the outcome
of the n + 1-th experiment given the experimental data from the previous n sampling steps.
Each such sequence of kernels πn(· | ·), n ∈ ℕ0, defines a unique measure π on the space of
experimental courses, such that marginally
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Thus, we can formally describe the experimental course E as a random process, which we
call the adaptive sampling process E distributed with respect to π (i.e E ~ π). This process
describes our belief dynamic since it is constructed from our experimental predictions
(πn)n∈ℕ0. Each experimental prediction πn can in turn be constructed from two separate
kernels

There exists a very natural interpretation for each of these kernels in terms of experimental
design and prediction:

The Stimulus Placement Rule:  specifies our action policy in the n-th
sampling step. It determines which stimulus Xn+1 we select given the n previous
experiments En.

The Response Prediction Rule:  is our prediction of the response
knowing the outcome of the last n experiments En, i.e. which response Yn+1 we expect
given the actual stimulus Xn+1.

Given a particular assignment for the prediction rule , we want to learn the stimulus-
response relation X → Y in an optimal manner with regard to the inference scheme and

external constraints. Thus, we want to derive a placement rule  that allows us to adapt the
experimental course to our objectives.

In order to understand the logic of adaptive sampling strategies it is worthwhile to first
consider the case of a non-adaptive design. Such a conventional design consists of a fixed

sequence of stimuli , such that

Clearly, such an action policy does not take any information about the already collected data

into account. A more reasonable strategy allows the decision for a stimulus  to depend

on the outcomes of the n foregoing experiments En, i.e. . More precisely,
instead of describing one fixed sequence of stimuli we rather specify a decision rule that

determines a stimulus  on the basis of the previous experiments En. Many of the
classical adaptive procedures for testing psychometric functions, such as PEST (Taylor and
Creelman (1967)), QUEST (Watson and Pelli (1983)) and the up-down procedures (Levitt
(1971)) can be described that way. A comprehensive review of these methods can be found
in Leek (2001).

One principled way to obtain a decision rule is to specify a utility measure Un+1(x, En),
which quantifies the utility of a stimulus x based on the outcome of the previous
experiments En. Given such a measure, an optimal stimulus is determined by

(3)

A proper placement rule in the case of multiple optimal stimuli (EN ) ⊆  is given by
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Hence, by taking on the utility-oriented perspective, the problem of determining a placement
rule becomes a problem of choosing suitable utility measures Un+1, n ∈ ℕ0. Many possible
utility measures exist and which one we choose depends solely on our objectives. For
instance, if we want to place the stimuli in a random but balanced manner, then we could
choose the utility measure

where nx is the stimulus count statistic of x. Clearly, the respective placement rule selects
stimuli that have seen the least trials. This random uniform sampling scheme has also been
called method of constant stimuli (cf. McKee et al. (1985)) within the context of
psychophysical experiments. It is usually considered as a non-adaptive strategy (Watson and
Fitzhugh (1990)).

Another common and more sensible strategy to obtain a placement rule is suggested by the
theory of optimal sequential decisions under uncertainty (cf. DeGroot (2004); Berger
(1993)). In principle we should consider that only a finite number of experiments is
performed, say N ∈ ℕ, such that we should formulate our objectives in form of a global
utility measure u(EN ) for the outcome of the overall experimental course EN. As a matter of
rationality, one should choose a sequence of descision rules

, such that the expected global utility

is maximized. This optimization problem is highly non-trivial, but can be solved, at least in
principle, with backward induction (Berger (1993); Bernardo and Smith (1995); DeGroot
(2004)). For a concise description of the backward induction method see in particular Müller
et al. (2007). This procedure leads to a sequence of local utility measures un+1(x, y, En) that
are induced from both the global utility u and the predictions πY. The optimal stimulus for
the n + 1-th experiment is determined by maximizing the expected local utility, i.e.

(4)

The local utility measure un+1(x, y, En) for a particular stimulus-response (x, y) is the
expected global utility ū as of the n + 1-th sampling step given that all subsequent decisions
are made in the same optimal manner. Although this scheme leads in principle to an optimal
design, in most cases, except for trivial settings, the actual computation turns out to be
infeasible.

It is primarily for this reason that various approximations to such an optimal design have
been developed. One of them is to resort to a myopic adaptive optimal design by directly
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specifying local utility measures un+1(x, y, En), n = 0, …, N − 1, in an attempt to optimize
the global utility. Likewise, the optimal stimulus is determined by (4), such that we optimize
the next step, but with the hope that this also maximizes the global utility. We shall discuss
particular choices for such measures based on information theoretical considerations in
section 3.7.

2.2. Partial Exchangeable Response Processes

Concerning the choice of a proper prediction rule , we already mentioned in the
introduction that the response generation X → Y is usually thought to be governed by a
multinomial sample law described by some unknown psychometric rates p  ∈ Δ . From
a predictive perspective this amounts to the assumption of a specific form of partial
exchangeability, which has been introduced in de Finetti (1980) as a generalization of the
concept of exchangeability (de Finetti (1937)). Roughly speaking, we have to assume that
particular temporal orderings within any finite sequence of experiments En do not provide
relevant information for our predictions.

In order to make this more precise, we need to introduce the following statistics and

respective variables. We define the response statistic , where .
Here  indicates that in the i-th trial in which {X = x} occurred the response outcome
was the event {Y = y}. It is crucial to notice that the count statistic n  can also be
computed from the response statistic. The random variables related to the response statistic

are denoted by Y  = (Yx)x∈  with , such that . Since we often need to refer

to a particular subset of Y , we also define , where , x ∈ ,

i.e. .

Example 2—In our previous example the response statistic  is given by

such that we observed that

We now proceed as follows. Instead of specifying the prediction rule  directly, we rather
fix a probability measure P for Y , i.e Y  ~ P, such that we treat Y  as a random process
called the response process. This response process is meant to describe our personal beliefs
about the observational part of the experiments irrespective of the actual underlying
sequence of stimuli XN, which clearly depends on our action policy. A proper prediction rule
is then given by
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(5)

Furthermore, and more importantly, the response process Y  can be utilized to derive an
intrinsic statistical model for X → Y by requiring the following form of partial
exchangeability (cf. Link (1980); de Finetti (1980)):

The response process Y  is said to be partial exchangeable iff

for every two responses  and , which share the same count statistic n . This is
equivalent to require that the response process Yn  is summarized by the count statistics n

(cf. Lauritzen (1974)), i.e. every sequence  with the same count statistic is predicted to
be equally likely. We illustrate this notion of exchangeability by the following example.

Example 3—Consider we observed the data set in (2), see example 1. The alternative
observations

do all preserve the count statistics n , such that we would judge them all to be equally
likely under the condition of partial exchangeability. Note that all of these equivalent
observations are related by particular permutations, i.e. by exchanging positions within each

of the columns , x ∈ , but not across them.

An import subclass of partially exchangeable response processes is described by the
multinomial sampling laws2, where

such that the marginal probability mass function is given by

2The multinomial sampling laws described here apply to the categorical process Y  and are not to be confused with the related
multinomial distribution for the respective count statistic n .
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This class is especially important because for each partial exchangeable random process

there exists a mixing measure μ on  (Link (1980); Bernardo and Smith (1995)), also
called a de Finetti measure, such that

Therefore each partial exchangeable random process is a mixture of the multinomial

sampling laws. Within this context, each  can be interpreted as a possible limit
of the relative frequencies, i.e.

such that the measure μ expresses our prediction for these limits. Hence, under the condition
of partial exchangeability we can formally identify these limits as the psychometric rates we
are uncertain about, but with the important distinction that the rates are not external
quantities but asymptotic statistics of the response process itself. The corresponding
Bayesian model can thus be described by

whereas

By conditioning on finite data , the resulting response process is still partial

exchangeable, such that the respective de Finetti measure  describes our posterior
belief about the psychometric rates and can be seen to be a Bayesian posterior of p .

3. Response Processes with Proximally Related Stimuli
Here, we introduce a particularly useful instance of a partial exchangeable response process,
namely the multibin Pólya mixture urn process, which allows a flexible modeling of
similarities between stimuli. We first consider the case of only one stimulus and continue
with the easiest non-trivial case of two stimuli before we develop the full process with
multiple stimuli. Afterwards we shall consider the construction of respective adaptive
sampling procedures.

3.1. One stimulus
Let us consider only one stimulus, i.e.  = {x}, with the following probability assignment
for the response process Y x: We say that Y x is a Pólya urn process with parameters αx,  =
(αx,y )y∈ , where αx,y > 0, if
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where Beta is the multinomial beta function. The corresponding prediction rule is

where αx = Σy∈  αx,y, which is commonly known as the (generalized) Bayes-Laplace rule.
The parameters αx,  have a natural interpretation as pseudo counts added to the actual
counts nx, . The term Pólya urn stems from the original introduction as an urn model in
Eggenberger and Pólya (1923). In this picture, balls are successively drawn from an urn that
is initially filled with K balls of different colors. Each color indicates a particular y ∈  and
the respective ball is assigned an initial weight of αx,y. At each sampling step, a ball is
thought to be drawn with chance given by its individual mass and put back to the urn with
another ball of the same color and mass one. The so generated sequence of colors Y x is then
described by the above Pólya urn process, which is partial exchangeable.

The respective de Finetti measure is given by a Dirichlet distribution with parameters αx, ,
i.e.

where the respective density is

Conditional on finite data , the resulting response process is again a Pólya urn process

with parameters  given by the update rule

i.e. the observed counts nx,  are just added to the pseudo counts αx, . Hence, assuming a
Pólya urn process for describing our personal predictions justifies the formal adoption of the
standard Bayesian model of multinomial sampling and a subjective prior in form of the
Dirichlet distribution.

3.2. Two stimuli
We now consider a stimulus space with two elements, say  = {x1, x2}. Based on the
previously described Pólya urn process we can think of two extremal urn models for the
response process Y . First, we consider the case where the underlying mechanisms of (X =
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x1) → Y and (X = x2) → Y are identical. More precisely, we say that x1 and x2 are similar,
denoted x1 ~ x2, if we expect that there is no difference in the generation of Y given either
x1 or x2. This similarity allows us to define a bin b = {x1, x2}, such that we can exploit the
similarity by joining the observations from both stimuli3. We call this binning scheme B1
and conditional on it the response process Y  is characterized by

where nb,  = (nb,y )y∈  is the total count n  of observations joined in bin b, i.e. nb,y =
nx1,y + nx2,y, y ∈ , and αb,  describes the pseudo counts. The induced prediction rule is

where x ∈ b. The so described response process is partial exchangeable and the respective de
Finetti measure μ(·|B1) can informally be described by the density

where δ is the Dirac delta function. That is, the measure μ(·|B1) concentrates on the diagonal

of the product simplex , which is the set

such that if we identify both psychometric rates px1,  and px2,  by just one rate pb,  ∈
Δ , then this rate is described by a Dirichlet distribution with parameters αb, . Similar to
the case of a single stimulus, the update rule for the parameters is given by

The second case we have to consider is that both mechanism (X = x1) → Y and (X = x2) →
Y are independent. In order to describe a respective response process, consider two
independent Pólya urns both filled with the same kind of colored balls, where we mark the
two urns x1 respectively x2. In each sampling step we first decide from which urn to sample
and then proceed as before. To be consistent with our notation we introduce a binning
scheme B2 with two separate bins b1 = {x1} and b2 = {x2}. Instead of assigning weights to
the urns directly, we assign them to our bins, i.e. αb1,  for the first bin and αb2,  for the
second one. The respective response is given by the product measure

3The illustrative metaphor of a bin is taken from Endres and Földiák (2005); Endres et al. (2008), whereas cluster, block or component
might serve equally well.
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The so induced prediction rule is

(6)

where x ∈  and IB2(x) tells us the bin to which x is assigned. This response process is
partially exchangeable and the respective de Finetti measure μ(·|B2) is a product measure on

, where px1,  ~ Dir[αb1, ] and px2,  ~ Dir[αb2, ] are independently distributed, i.e. the
respective density is given by the product density

Conditional on finite data , the respectively updated parameters  are

We can utilize both schemes B1 and B2 to model our beliefs about the similarity and
dissimilarity between the stimuli. If B1 represents the hypothesis that x1 ~ x2, then B2 is the
alternative hypothesis that x1 ≁ x2. If we assess our a priori belief in B1 with a probability of
P [B1], then our a priori belief for model B2 is P [B2] = 1 − P [B1]. Our overall prediction
for the response process is then given by the mixture measure

(7)

The induced prediction rule is

which can be rewritten as

(8)
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where

(9)

The latter probability measure  can be interpreted as the Bayesian posterior
assessment for each binning scheme Bi. The respective de Finetti measure for p  is given
by

which can be seen to be a model average over B1 and B2. One of our major goals is to
generalize this mixture to multiple stimuli and responses, for which we want to develop
adaptive sequential sampling strategies.

3.3. Multiple stimuli
Here, we briefly discuss the multibin Pólya process on discrete finite stimulus spaces  =
{x1, …, xL}, where we introduce an equivalence relation ~B that describes similarities in .
This relation induces a partition B of  into |B| bins, called a multibin. We then bin the data
with respect to the resulting multibin B = {b1, …, b|B|}, such that we get the binned count
statistic nB,  = (nb, )b∈B. In full analogy to the scenario of two stimuli, we set pseudo
counts αB,  = (αb, )b∈B and fix the multibin Pólya urn process Y  with

The induced prediction rule is

where IB (x) denotes the bin of stimulus x given the multibin B, i.e. if x ∈ b then IB (x) = b.
Likewise the above case of two separate stimuli, the respective de Finetti measure μ(·|B) can
be informally described by the density

such that conditional on some finite data  the relevant parameters αB,  are simply
updated according to
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3.4. A Hierachical Bayesian Model for Proximally Related Stimuli
We assumed that the stimulus space  = {x1, x2, …, xL} exhibits some well-ordering, as
indicated by the indexing. We need to introduce some suitable terminology. Let ( ) = {bi,j
= {xi, xi+1 …, xj }⊆  | i ≤ j} denote the class of consecutive bins, where we call each
partition B of  a proximal multibin if it consists only of consecutive bins. The class of all

proximal multibins with m bins is denoted ( ), such that 
constitutes the class of all proximal multibins. These definitions are illustrated by the
following example.

Example 4—Consider a set of stimuli  = {1, 2, 3}, such that

Furthermore, ( ) = {B1, B2, B3, B4}, where

For each consecutive bin b ∈  we choose pseudo counts αb,  and construct the following
response process: By fixing a priori beliefs P [B], B ∈ ( ), we can describe the full
response process Y  as the mixture

(10)

We shall refer to this process as the multibin Pólya mixture process. The induced prediction
rule is

(11)

which can be rewritten as

(12)

where
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(13)

is the posterior for the multibins B ∈ ( ). The Bayesian model that corresponds to the
multibin Pólya mixture process is described by the hierarchical model

(14)

There are many ways how to look at the so described hierarchical model. For instance, the
model can be seen as a Bayesian regression model for the psychometric rates, where a non-
trivial prior in form of

is chosen. This prior assigns probability mass on particular diagonals of the product simplex,
such that the psychometric rates become piecewise constant w.r.t. to a particular multibin,
which are in turn assumed to be random quantities. From that point of view, the described
model can be seen to be a generalization of the inhomogenous Bernoulli process described
in Endres et al. (2008). Likewise, the model can be interpreted as a particular clustering
model. Observations are clustered with respect to an unknown partition of the data space.
From this point of view, the model is related to the so called product partition model as
introduced by Hartigan (1990), which requires a particular prior structure for P [B] that will
be discussed next.

3.5. Efficient Model Evaluation
The actual computation of the sum-product ΣB∈ ( )Πb∈B in equation (10) can become
computationally very demanding and infeasible as it may take up to (2L−1 ) steps. This is
especially problematic for adaptive sampling where the relevant quantities have to be
computed as quickly as possible. However, based on the computational approaches taken by
Yao (1984); Barry and Hartigan (1992); Endres and Földiák (2005); Fernhead (2006);
Hutter (2007) it can be shown that particular prior structures of P [B] lead to a drastic
reduction of the computational effort. In fact, it can be reduced to (L3) if

(15)

where |B| is the number of bins in B. The respective computational algorithm is given in
lemma 1 (see appendix) to which we refer as Proximal Multi-Bin Summation (ProMBS). It
is an abstracted and generalized version of the algorithm presented in Endres and Földiák
(2005). The parameters γ = (γb)b∈ ( ), with γb ≥ 0, assess the a priori importance of each
consecutive bin b ∈ ( ) and have been also called cohesions in Barry and Hartigan
(1992), whereas β = (β1, …, βL), with βl ≥ 0, determine a relative weight for each class 
( ), m = 1, …, L, in ( ).
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Given a set of parameters (α, β, γ) a particular multibin Pólya mixture process is fixed that
describes our a priori belief about the response process Y . All relevant posterior quantities
are determined by the updated parameters

where

The ProMBS algorithm can be used to efficiently compute d(α, β, γ, n ), which will
reappear in many other relevant expressions. For instance, we can rewrite equation (10) as

whereas the normalization constant in (15) is given by

such that the prediction rule in equation (11) becomes

where  is the count statistic n  incremented by one count for the event {X = x, Y =
y}. Likewise, given a stimulus x ∈ , the marginal posterior density of the respective
psychometric rate px,  is given by

where
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The pointwise evaluation of this density can get computationally very expensive, but is

nevertheless possible without Monte Carlo methods. Alternatively, the density 
can be described by its moments. Here, the k-th raw moment is

where we add k events {X = x, Y = y} to the count statistic n . We can also compute the
posterior for the multibins (13)

and by introducing a variable M ∈ {1, …, L} that restricts the model to multibins from 
( ), we can compute

which is the posterior assessment that X → Y is described by a multibin model with m bins.
Since neighboring stimuli potentially share strength, it is of interest to quantify to which
extent this is happening. Such an informative statistic is the effective count n̄x, which we
define as the expectation value

(16)

where IB (x) = b if x ∈ b and b ∈ B. An efficient evaluation is possible because

where
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3.6. Prior Selection
For the multibin Pólya mixture process we need to select parameters (α, β, γ). With βm we
specify the importance of models consisting of exactly m bins. For instance, if we want to
fall back to a simpler problem with at most l < L bins we can set βl = 1 and βj = 0 for j ≠ l. A
reasonable choice is often given by

The binomial coefficient gives the number of multibin models that constist of m bins.
Hence, if for some constant c all γb = c, b ∈ ( ), then the above prior assigns a uniform
distribution to P [M = m], the a priori probability of multibins with m bins. In any case,
there are only L values that we have to specify for β. However, for αb,  and γb we need to
select values for each b ∈ ( ). If we are dealing with many stimuli the assignment of
parameters can get a very extensive task. A first and very convenient choice is to set all
αb,  and γb to one, which means that we use an uninformative prior for the pseudo counts
and we do not have any preference for specific bins. A more elaborate and natural way is to
compute αb,  in a hierarchical manner, i.e. if we require that

then we only need to specify αx,  for each x ∈ .

3.7. Placement Rules for Adaptive Sampling
We discussed in section 2.1 a utility based approach concerning the choice of a suitable

action policy for choosing the placement rule . We shall assume that our objective is to
become most informed about the stimulus-response relation modeled by the multibin Pólya
mixture process. We present here several proposals for how this might be achieved.

As already mention earlier, a most trivial sampling scheme is to distribute measurements
uniformly, where the respective utility is

(17)

which guarantees at least some homogeneity in the data, but does not take any properties of
the underlying model into account. A more sensible utility is given by
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where n̄x is the effective count. The resulting placement rule essentially follows the logic of
random uniform sampling, but takes the sharing of strength between neighboring stimuli
into account. The attractive feature of this adaptive scheme is of course its conceptual and
computational simplicity.

More elaborate adaptive strategies can be obtained by considering utilities based on
information-theoretical quantities. The idea of using information theoretic utility measures
for experimental designs was probably first considered by Cronbach (1953). A more detailed
study of their application in experimental designs was later given by Lindley (1956),
whereas explications of Lindley’s ideas within the context of Bayesian experimental design
can be found in Bernardo (1979); Chaloner and Verdinelli (1995), but see also the
application for optimizing sequential experimental designs in DeGroot (1962).

Consider that we want to learn as much as possible about which multibin model B ∈ ( )
describes the data best. Our a priori expectation is given by the probability P [B], whereas

our a posteriori assessment is expressed by . The information we would

gain about B if we learn that { } is then quantified by the Kullback-Leiber
divergence4

which measures the deviation between both measures. Hence, if we want to learn as much as
possible about B then it seems reasonable to adopt the Kullback-Leibler divergence as a
global utility measure. This, however, leads to almost intractable computations, as
mentioned already in section 2.1. Nonetheless, it motivates the following myopic adaptive
sampling strategy with local utility measure

i.e. we try to improve the incremental information in every sampling step. This divergence
can be computed with

where

4The Kullback-Leibler divergence is formally defined as follows: If μ, ν are two measures on a measurable space [S, ], such that ν

is absolute continuous w.r.t. μ, then  is the Kullback-Leibler divergence from μ to ν, where 
is the respective Radon-Nykodým derivate of ν w.r.t. μ.
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The respective expected local utility is

such that the optimal stimulus is determined by

It is noteworthy that the expected gain can be rewritten in terms of a mutual information5,
namely

such that by maximizing the expected local utility we do in fact maximize the mutual

information between B and  conditional on . The so obtained adaptive sampling
scheme, shortly denoted uMB, is fully equivalent to the Bayesian framework of adaptive
design optimization (ADO) for model discrimination (cf. Cavagnaro et al. (2010)).

The very same line of reasoning applies to the case where we do have strong evidence for a
particular multibin model, say B ∈ ( ), but want to optimally learn the psychometric rates
p . The respective local utility measures are given by

where  and  are the respective successive posterior
measures for the psychometric rates p  conditional on B. These utility measures can be
computed with

5The mutual information between two variables X and Y conditional on a third variable Z is formally defined as follows: If μY, X | Z
is the joint measure of X, Y conditional on Z and μX | Z, μY | Z are the respective conditional marginal measures, such that μX×Y | Z
is the product measure constructed from both marginal measures, then the mutual information between X and Y conditional on Z is
defined as MI(X: Y |Z):= DKL(μX, Y | Z ||μX×Y | Z ), i.e. the Kullback-Leiber divergence from the conditional product measure to
the conditional joint measure.
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where

and ψ is the psigamma function. We expect the resulting adaptive sampling scheme,
denoted uΨ|B, to optimize the inferential task for the psychometric rate p  given that B is
the ‘true’ underlying model.

In practice, we usually have only vague knowledge about the underlying multi-bin model.
Henceforth, it seems reasonable to consider the local utility measures

where  and  are the respective successive posterior measures for
the psychometric rates p . This measure decomposes as

where

is the model-averaged local utility for optimizing the inference of the psychometric rates
given a multibin model. Hence, if we want to learn about p  given that B is uncertain, then
we also have to make inference about B. That is the uncertainty about B also influences our
uncertainty about p . We thus expect this strategy, called uTotal, to optimize the inference
of B and p . It might also be worthwile to base the sampling process solely on uΨ because
it allows us to optimize the inference of the psychometric rates regardless of the underlying
multibin model.

The actual effect of the proposed adaptive sampling strategies are difficult to describe and
we shall proceed by discussing a simple example. In general, it can be said that there is no
such thing as a universal criterium for optimal adaptive sampling as long as we do not
clearly formulate what we want to achieve. Whether or not a chosen strategy is appropriate
for the experiment at hand must be carefully assessed from case to case, for example with
simulation studies or experimental pre-studies.
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4. A Practical Demonstration
In order to demonstrate our framework we consider a hypothetical 2AFC experiment with
35 stimuli  = {x1, x2, …, x35} and a dichotomous outcome  = {s, f }. The stimulus-
response relation (ground truth) is given by an asymmetric U-shaped function with a small
irregularity on the right side (see Figure 2). We assume that we have no a priori knowledge
about the curve, except that proximal stimuli are likely to cause similar responses. In a naïve
approach we would simply distribute N measurements random uniformly over , see (17),
and infer the psychometric rates for each x ∈  independently. Figure 3 shows the result of
such an experiment with 200 and 400 samples, where we chose pseudo counts αx,  = (1, 1),
y ∈ . The variance of the estimate is large because there are only very few samples for
each stimulus x. A highly irregular curve as an estimate for the stimulus-response relation is
therefore obtained and many measurements are taken at regions that are quite uninformative.
This motivates two advantages of our proposed framework: First, we can use samples from
neighboring stimuli to share statistical strength. Second, we want to distribute the samples
such that we maximize the information that we gain with each measurement.

With our framework we can optimize the experimental process. We choose the following
parameters:

With αx,  = (1, 1) we assign equal pseudo counts to all stimuli and responses, since we
have no a priori knowledge about the shape of the curve. The particular choice of βm and γb
assigns a uniform distributions to P [M = m], which is the a priori probability of multibins
with m bins (see section 3.6). Finally, we set all γb = 1 since all bins should receive an equal
weight.

With this prior setting we observe a smoothening of the inferred stimulus-response curve
(see Figure 4). However, in contrast to common kernel smoothing approaches, our method
does not smear sharp transitions but represents a higher degree of uncertainty whenever
necessary.

In order to distribute samples more efficiently, we can utilize the adaptive sampling
strategies described in section 3.7. Unfortunately, it is difficult to compare the performance
of different strategies since there is no general criterion for optimality. A good intuition can
however be gained from the distribution of measurements.

The Figures 5, 6, 7, and 8 show the time course of the experiment for the adaptive sampling
schemes uΨ, uMB, uTotal, and the strategy based on the effective count n̄x. All simulations
were initialized with the same random seeds for each stimulus x ∈ , such that results can
be better compared. The uninformative parameter setting lead to a uniformly distributed
expected local utility for all four strategies before the first experiment. Therefore, the first
measurement was always taken at x = 20.

Already after the first sample one can observe a striking difference between uΨ and uMB.
Whereas the expected utility for uΨ is maximal at the very left stimulus x = 1, the expected
utility for uMB shows two maxima directly next to the previous measurement at x = 20. This
reveals the very distinct properties of both schemes, which are better seen after 10 and 50
samples. uΨ causes a uniform distribution of the first samples on . On the other hand, the
scheme uMB places all measurements around the initial sample and only gradually moves
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further away from x = 20. The U-shape of the stimulus-response function is already very
well established after 100 samples and after 200 samples one can see that both measures
place most samples at positions where the psychometric function is highly sloped. This
behavior is expected since those regions allow less sharing of statistical strength. For the
scheme uTotal we observe the same initial behavior as for uΨ, but the count statistic after 200
samples shows characteristics of both uΨ and uMB, which is expected from its definition. It
is however quite noteworthy that the effective counts show a very similar behavior as uΨ.
Figure 9 summarizes the differences between the four adaptive sampling strategies by
showing the experiment after 200 samples.

Note also that many measurements are taken at the boundaries. This is because these stimuli
have only one neighbor which limits the extent to which statistical strength can be shared.
We now assume that we have prior knowledge about the ground truth, i.e. we have a strong
belief about its value at x1 and x35. We incorporate this information into our model and
thereby optimize the sampling process further. That is, we set α1,  = α35,  = (100, 1). This
parameter setting alters our prior expectation about the stimulus-response relation, i.e. px,s is
expected to be close to one at x1 and x35, see Figure 10(a). The expected utility to sample at
these points is substantially reduced, since we have a strong belief about the response.
Figure 10(b) shows the experiment after 200 samples. One can see that all measurements
that were previously allocated at the boundaries are now distributed elsewhere. Further
optimizations of the sampling process are possible if more prior knowledge is available.

5. Conclusion
We have introduced a framework for adaptive sequential sampling which helps to optimize
the measurement process in a wide range of psychophysical experiments, especially when
there is only vague prior knowledge about the relation X → Y. Our framework consists of
two major components. The first is a response process that we use to make predictions based
on a finite number of observations. We termed it the multibin Pólya mixture process as it
consists of a mixture of binned Pólya urns. On top of the response process we defined
various adaptive sampling process, which are equipped with utility measures to actively
guide the course of an experiment. We also demonstrate the effect of several sampling
strategies on a hypothetical experiment and how prior knowledge can be used to further
optimize the allocation of measurements. During experiments it is of great importance that
decisions for the next stimulus are computed fast. Although our model is computationally
demanding, we provide an algorithm that makes it applicable in typical psychophysics
experiments.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix
In Yao (1984); Barry and Hartigan (1992); Endres and Földiák (2005); Fernhead (2006);
Hutter (2007) various algorithms are presented, which in their given context address all the
very same computational problem. Within our terminology of proximal multibins the
general problem can be described as follows:

Let f: C( ) → ℝ be any function from consecutive proximal bins to real numbers and g =
(g1, …, gL) ∈ ℝL be any real valued vector. Define the sum-products

and

Each Sm[f ] consists of  terms, whereas the weighted total sum-product S[f, g]
consists of 2L−1 terms. For large L a computationally intractable effort of (2L−1) is
expected. However, the following lemma provides a simple and efficient algorithm, which
computes the sum-product in (L3).
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Lemma 1 (The Proximal Multibin Summation (ProMBS) Algorithm)

Define the upper triangular matrices , l = 1, …, L, recursively by

and define recursively the matrix-vector product

where the initial vector is v1 = (0, …, 0, 1)T. For every m, l ∈ ℕ with m ≤ l ≤ L it holds that

such that

A simple example might help to illustrate the abstract formulation of the ProMBS algorithm.
Consider the case with | | = 3 and let us abbreviate f (bi,j ) simply by fij. In the first step we
compute

Note that . In the next step we compute

where  and . In the last step we find that
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such that (v4)T = (S1[f ], S2[f ], S3[f ]) and S[f, g] = g1S1[f ]+ g2S2[f ]+ g3S3[f ].

Of course, the real computational power of the ProMBS algorithm becomes only evident
when the set  is large, but the case | | = 3 shows the general logic behind the ProMBS
algorithm sufficiently enough. We should finally mention that numerical imprecisions can
occur if the values of f become small. In such cases it is advisable to implement the ProMBS
algorithm on a logarithmic number scale.
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Highlight

• We present a predictive account on adaptive sampling in psychophysical
experiments.

• Our method applies to situations where there is only weak knowledge available.

• We demonstrate the advantages of our framework on a hypothetical sampling
problem.
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Figure 1.
Illustrative example of a simple psychophysical experiment. A: The observer has to report
which of two possible target stimuli were presented on a computer display. The detection of
the target stimulus is impaired by a mask stimulus which is presented in close proximity to
the position of the target after a variable interstimulus interval (ISI). B: The observed
relative frequency of correct responses of a single observer for 20 different discrete ISIs ≤
200 ms, which have been uniformly sampled. Each ISI occured 16 times.
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Figure 2.
Hypothetical stimulus-response curve used as ground truth for the practical demonstration.
The curve shows the probability of the response s (success) for a given stimulus x.
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Figure 3.
A hypothetical experiment with (a) 200 and (b) 400 samples uniformly distributed over the
stimulus space . The stimulus-response relation (ground truth), shown as dashed line, is
inferred without taking information from proximal x into account. The thick continuous line

shows the first moment  of the stimulus-response function given all outcomes of
previous measurements. The standard deviation is shown as a thin continuous line around

the expectation. The marginal posterior density  is plotted as shadings in the
back of the figure. The number of measurements at each x ∈  is shown as a bar plot in the
lower plot with utility U (x) (thin continuous line), which is the negative number of counts,
see (17).
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Figure 4.
A hypothetical experiment with (a) 200 and (b) 400 samples uniformly distributed. The
ground truth is inferred by taking information from neighboring x into account. This sharing
of statistical strength allows a much more accurate inference of the stimulus-response
function as compared to Figure 2.

Poppe et al. Page 32

J Math Psychol. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Adaptive sampling in a hypothetical experiment with scheme uΨ. The figure shows the
experiment after 1, 2, 10, 50, 100, and 200 samples. At first, samples are uniformly
distributed. In (a) only one measurement was taken and the expected utility is largest at the
left boundary. (d) shows the experiment after 50 samples where the algorithm starts to locate
measurements at sloped regions. The general shape of the stimulus-response function is
already well established after 100 samples (e). Many measurements are also taken at x = 1
and x = 35 since those x have only one neighbor.
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Figure 6.
Adaptive sampling in a hypothetical experiment with scheme uMB. The figure shows the
experiment after 1, 2, 10, 50, 100, and 200 samples. After the first sample (a) two maxima of
the expected utility arise next to the measurement. The first 10 samples (c) are allocated near
the initial measurement, whereas afterwards the algorithm starts move further right (d) until
almost the full stimulus space has been explored (e–f).
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Figure 7.
Adaptive sampling in a hypothetical experiment with scheme uTotal. The figure shows the
experiment after 1, 2, 10, 50, 100, and 200 samples. The sampling behavior clearly shows a
mixture of both schemes uMB and uΨ.
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Figure 8.
Adaptive sampling in a hypothetical experiment with the strategy based on the effective
count n̄x. The figure shows the experiment after 1, 2, 10, 50, 100, and 200 samples. In (a) no
measurements are taken and we can see our prior expectation. The respective utility is
uniformly distributed on . The general shape of the stimulus-response function is already
well established after 100 samples. Measurements are mostly allocated at regions where the
slope of the stimulus-response function is high. Many measurements are also taken at x = 1
and x = 35 since those x have only one neighbor.
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Figure 9.
Direct comparison of the four adaptive sampling strategies: (a) uΨ, (b) uMB, (c) uTotal, and
(d) effective counts. A relatively balanced distributions of measurements is observed with
uΨ and the effective counts. On the other hand, uMB and therefore also uTotal lead to a more
peaked distribution.
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Figure 10.
Demonstration of using prior knowledge to limit sampling at the boundaries with scheme
uΨ. (a) shows the prior belief before any measurements are made and (b) shows the
posterior after 200 samples. The prior setting leads to a strong belief about the response at
the boundaries which substantially reduces the expected utility at x1 and x35. The result is
that all measurements that were previously allocated at the boundaries are now placed
elsewhere.
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