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The physiology of paracellular per-
meation of ions and solutes in the

kidney is pivotally important but poorly
understood. Claudins are the key compo-
nents of the paracellular pathway. Defects
in claudin function result in a broad
range of renal diseases, including hypo-
magnesemia, hypercalciuria and nephro-
lithiasis. This review describes recent
findings on the physiological function of
claudins underlying paracellular transport
mechanisms with a focus on renal Ca2+

handling. We have uncovered a molecular
mechanism underlying paracellular Ca2+

transport in the thick ascending limb of
Henle (TAL) that involves the functional
interplay of three important claudin
genes: claudin-14, -16 and -19, all of
which are associated with human kidney
diseases with hypercalciuria, nephrolithia-
sis and bone mineral loss. The Ca2+

sensing receptor (CaSR) signaling in the
kidney has long been a mystery. By
analyzing small non-coding RNA mole-
cules in the kidney, we have uncovered
a novel microRNA based signaling path-
way downstream of CaSR that directly
regulates claudin-14 gene expression and
establishes the claudin-14 molecule as a
key regulator for renal Ca2+ homeostasis.
The molecular cascade of CaSR-
microRNAs-claudins forms a regulatory
loop to maintain proper Ca2+ homeostasis
in the kidney.

Introduction

Kidneys function by initially excreting
many salts and small molecules found in
the blood, then selectively reabsorbing
those that need to be conserved while

allowing others to be excreted in the urine.
The traditional view of the renal reabsorp-
tion process is that of a tandem array of
ion channels and transporters located in
the cell plasma membrane conducting ion
transport in a coordinated manner at the
expense of energy. Evidence accumulated
during the last decade supports the exist-
ence of a previously unrecognized, yet
pivotally important mechanism by which
the kidney utilizes the cell-cell junctions to
conduct ion transport. The junctional
organelle is known as the tight junction
(zonula occludens). It is found in verte-
brate epithelia responsible for the barrier
to movement of ions and molecules
between apical and basal compartments.1,2

The integral membrane proteins of the
tight junction include occludin (a 65 kDa
membrane protein bearing four transmem-
brane domains and two uncharged extra-
cellular loops),3 the junctional adhesion
molecules (JAMs),4 a four-member group
of glycosylated proteins and the claudins.

The Claudin Family

Claudins (CLDNs) are tetraspan proteins
consisting of a family with at least 26
members,5-7 ranging in molecular mass
from 20–28 kD. Claudins have four
transmembrane domains, two extracellular
loops, amino- and C-terminal cytoplasmic
domains and a short cytoplasmic turn
(Fig. 1). The first extracellular loop
(ECL1) of claudin consists of ~50 amino
acids with a common motif (-GLWCC;
PROSITE ID: PS01346),8 and intercalat-
ing negative9,10 and positive11,12 charges
that contribute to paracellular ion selecti-
vity. The GLWCC motif is critical as a
receptor for Hepatitis C virus (HCV)
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entry.13 The charges in ECL1 regulate
paracellular ion selectivity through electro-
static effects. The second extracellular
loop (ECL2) consists of ~25 amino acids
with a predicted helix-turn-helix motif
that mediates trans-claudin interactions
(vide infra) and claudin interactions with
the Clostridium perfringens enterotoxin
(CPE).14 The C-terminal domain of
claudin contains a PDZ (postsynaptic
density 95/discs large/zonula occludens-1)
binding domain (YV) that is critical for
interaction with the submembrane scaffold
protein ZO-1 and correct localization in
the TJ.15,16

Claudin mutations have serious conse-
quences, consistent with defects in epi-
thelial ion flux. Mutations in CLDN14
cause nonsyndromic recessive deafness
DFNB29,17 ostensibly due to a failure in
ion balance in the organ of Corti.18

CLDN1-deficient mice die within one
day of birth and show a loss of the water
barrier function of skin.19 Targeted dele-
tion of CLDN5, which is known to be
expressed in vascular endothelia as well
as other locations,20 results in a selective
increase in brain vascular permeability to
molecules , 800 daltons.21 Targeted
disruption of the CLDN11 gene results
in severe demyelination and male sterility,
consistent with the presence of this protein
at the nodes of Ranvier and in Sertoli
tight junctions, leading to disrupted ionic
balances.22 Mutations in CLDN16 have
been associated with human FHHNC
(familial hypomagnesemia with hyper-
calciuria and nephrocalcinosis; OMIM
248250).23 Transgenic RNAi depletion
of CLDN16 demonstrated severe renal
Mg2+ and Ca2+ losses in mice.24

In renal epithelia, claudins have been
shown to confer ion selectivity to the
paracellular pathway resulting in differ-
ences in TER and paracellular perme-
abilities. Studies have shown that CLDN4,
-5, -8, -11 and -14 selectively decrease the
permeability of cations through tight
junctions,25-29 specifically to Na+, K+, H+

and ammonium. CLDN2 and -15 increase
cation permeability.30-32 These properties
have been attributed to charged amino
acids in the first extracellular domain.9

These and other studies33 have led to
models of the claudins forming the para-
cellular channel (Fig. 2), a novel class of

channels oriented perpendicular to the
membrane plane and serving to join two
extracellular compartments.34 Measure-
ment of paracellular permeability using
cell membrane impermeable tracers indi-
cates that there are 4–7 Å diameter

channels in the TJ.33,35,36 The paracellular
channels in the tight junction have pro-
perties of ion selectivity, pH dependence
and anomalous mole fraction effects,
similar to conventional transmembrane
channels.33

Figure 1. Schematic presentation of the topology of claudin monomer. The model depicts
the conserved structural features of claudin and the known interaction sites. ECL1 and ECL2 denote
the extracellular loops 1 and 2, respectively. The transmembrane domains 1 to 4 (TM1-TM4) and
the regions important for hepatitis C virus (HCV) entry, paracellular ion selectivity, Clostridium
perfringens enterotoxin (CPE) binding, and ZO-1 binding are shown.

Figure 2. The structural model of paracellular channel. The paracellular channel is depicted as
cylinders joining two neighboring cell membranes and allowing selective permeation of cation
(Na+) and anion (Cl2) respectively.
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Claudin-Claudin Interaction

Claudins cis associate within the plasma
membrane of the cell into dimers, or
higher oligomeric state. These associations
are followed by trans interactions between
claudins in adjacent cells, and additional
cis interactions to assemble claudin oligo-
mers into TJ strands. The cis interaction
can involve a single type of claudin
(homomeric interaction) or different types
of claudins (heteromeric interaction); the
trans interaction can have homotypic or
heterotypic mode (Fig. 3).37 There are
few data available allowing an understand-
ing of the molecular interactions between
the claudins. One study has shown that
heterotypic interactions of CLDN1 and
CLDN3 are permitted, but that interac-
tions between CLDN1 and CLDN2 are
not observed.37 Co-culture of HeLa cells
expressing different claudin genes revealed
that while CLDN1 and CLDN5 were
heterotypically interacting with CLDN3,
they would not heterotypically bind to
CLDN4, demonstrating considerable
selectivity in heterotypic claudin-claudin
interactions.38 While different claudins
can assemble into the same TJ strand,

current limitations of resolution do not
permit a clear understanding of what
heteromeric interactions (within cells) are
favored. Efforts have been made to
demonstrate the oligomerization prop-
erties of CLDN4 in cultured insect cells
with ambiguous results.39 FRAP studies
suggest that claudin molecules assembled
in tight junctions have limited mobility,40

consistent with their known heteromeric
interactions with scaffold proteins in the
tight junction.

The Renal Localization of Claudins

There are segment-specific claudin expres-
sion profiles along the length of the
nephron. Northern analysis of mouse
kidneys using probes specific for
CLDN1–16 reveal that only CLDN6,
-9, -13 and -14 are not detectable.
CLDN5 and -15 are present only in
endothelial cells; the rest are specifically
expressed in different segments of the
nephron.41 Using antisera available at
the time to perform immunostaining on
mouse kidneys,41 CLDN-3, -10, -11 and
-16 were observed in the thick ascend-
ing limb (TAL), CLDN-3 and -8 in the

distal convoluted tubule, and CLDN-3, -4
and -8 in the collecting duct (CLDN4
was also observed in the thick ascend-
ing limb41 although absent in bovine
TAL42). CLDN2 is highly expressed in
the “leaky” proximal nephron43 consistent
with its high cation selectivity when
expressed in MDCK cells.30,31 CLDN4
and CLDN8 are expressed primarily along
the aldosterone-sensitive distal nephron,
and in inner medullary segments of the
thin descending limbs of juxtamedullary
nephrons.44,45 Immunofluorescence ana-
lysis has shown that CLDN7 is expressed
in the TAL and collecting ducts of
porcine and rat kidneys,46 although
another study described CLDN7 in the
distal nephron as located primarily on
the basolateral membrane.45 In summary,
while there are still some conflicting
published data, CLDN-2, -10, and -11
are expressed in the proximal tubule;
CLDN-3, -4, -7, -8, -10 and -16 are
expressed in the thick ascending limb
and the distal nephron. It is also clear
that the patterns of claudin expression
along the nephron changes with develop-
ment, with CLDN-7 and -8 upregulated
postnatally.47

Figure 3. Schematic presentation of interaction possibilities between claudin molecules. The cis interaction includes homomeric or heteromeric
interaction; the trans interaction includes homotypic or heterotypic interaction.
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Claudin-16

CLDN16, also known as paracellin-1, has
been identified as a renal tight junction
protein that is mutated in patients with
the inherited disorder FHHNC (familial
hypomagnesemia with hypercalciuria
and nephrocalcinosis OMIM 248250).23

Many different FHHNC mutations have
been identified in the human CLDN16
gene.48,49 The expression of CLDN16 is
restricted to the thick ascending limb
(TAL) of the nephron.23 We transfected
a renal model cell line LLC-PK1 with
CLDN16 and found a large increase in
Na+ permeability (PNa) accompanied by an
only moderately enhanced Mg2+ permeabi-
lity (PMg).10 The increase in PNa was not
affected by the Na+/K+-ATPase inhibitor
(1 mM ouabain). However it was greatly
reduced or completely disappeared in all
FHHNC relevant CLDN16 mutants.10

CLDN16 deficient knockdown (KD)
mice show significantly reduced plasma
Mg2+ levels and increased urinary excre-
tions (approximately four-fold) of Mg2+

and Ca2+.50 Calcium deposits were readily
observed in the basement membranes of
the medullary tubules and the interstitium
in CLDN16 KD mouse kidney.50 These
phenotypes of CLDN16 KD mice are very
similar to the symptoms in human
FHHNC patients. When TAL segments
were isolated and perfused ex vivo, the
paracellular ion selectivity (PNa/PCl) of the
TAL was significantly reduced from 3.1 ±
0.3 in WT to 1.5 ± 0.1 in CLDN16 KD.50

Claudin-19

CLDN19 mutations have also been asso-
ciated with human FHHNC and renal
Mg2+ loss.51 While targeted deletion of
CLDN19 in mice initially focused on its
role in peripheral myelin,52 promoter
analysis53 and subsequent studies54 have
emphasized the localization of CLDN19
in the TAL of the kidney (colocalizing
with CLDN16). Using the LLC-PK1
cells, we found that CLDN19 profoundly
decreased the Cl2 permeability (PCl) and
functioned as a Cl2 blocker.55 The
FHHNC mutations from human patients
either partially or completely abolish the
CLDN19 effects on PCl.55 Coexpression of
CLDN16 and CLDN19 in LLC-PK1 cells

resulted in a dramatic upregulation of
PNa and downregulation of PCl, generating
a highly cation-selective paracellular
pathway.55 CLDN19 KD animals pheno-
copy CLDN16 KD and develop the
FHHNC symptoms of reduced plasma
Mg2+ levels and excessive renal wasting of
Mg2+ and Ca2+.56

Claudin-14

A recent genome-wide association study
(GWAS) has identified CLDN14 as a
major risk gene of hypercalciuric nephro-
lithiasis.57 The renal localization of
CLDN14 has been controversial. Immuno-
fluorescence analysis showed CLDN14
gene expression in the TAL and the pro-
ximal tubules of mouse kidneys,58 while
another study reported no CLDN14
expression in the kidney.41 In a CLDN14
lacZ reporter mouse, Gong et al. have found
the promoter activity and the mRNA level
of CLDN14 highly localized in the TAL
segment.59 The protein level of CLDN14,
however, was extremely low in kidneys of
mice fed a basal or low Ca2+ diet. Feeding
mice a high Ca2+ diet profoundly upre-
gulated the protein levels of CLDN14 in
the TAL segment, suggesting a regulatory
role for CLDN14 in renal function.59

When expressed alone in LLC-PK1 cells,
CLDN14 was without any significant
effect on PNa or PCl. Coexpression of
CLDN14 with CLDN16 abolished the
cation permeability of CLDN16 channel
by reducing PNa.59 CLDN14 expression
produced no difference in CLDN19
channel function. CLDN14 knockout
(KO) mice show normal renal function
under basal dietary condition.27,58 When
fed with a high Ca2+ diet, CLDN14 KO
animals excreted significantly less Ca2+

and Mg2+ than wild-type (WT) animals.59

The plasma Mg2+ level was significantly
higher in CLDN14 KO than in WT.59

Together, CLDN14 KO animals develop
the renal phenotypes exactly opposite to
those in CLDN16 KD, which supports
the in vitro finding that CLDN14 blocks
CLDN16 channel permeability.

The Dynamic Trio in Renal Disease

The phenotypic similarities of CLDN19
KD with CLDN16 KD can be explained

by the cis interaction between the two
claudins. Using a split-ubiquitin yeast
2-hybrid (Y2H) assay, we found strong
CLDN16 and CLDN19 heteromeric
interaction.55 In mammalian cells such as
human embryonic kidney (HEK) 293
cells, CLDN16 can be coimmunoprecipi-
tated with CLDN19.55 Freeze-fracture
replicas revealed the assembly of tight
junction strands in L cells coexpressing
CLDN16 and CLDN19, supporting
their heteromeric interaction. The point
mutations in CLDN16 (L145P, L151F,
G191R, A209T and F232C) or CLDN19
(L90P and G123R) that are known
to cause human FHHNC disrupt the
CLDN16 and CLDN19 heteromeric
interaction.55 The same mutations also
abolish the cation selectivity generated by
CLDN16 and CLDN19 in LLC-PK1
cells, suggesting a mechanism for the role
of claudin mutations in the development
of FHHNC.55 In vivo, knockdown of
CLDN19 causes a loss of CLDN16 from
tight junctions in the TAL without a
decrease in CLDN16 expression level,
whereas knockdown of CLDN16 pro-
duces a similar effect on CLDN19.56

CLDN14 was observed to interact with
CLDN16 but not with CLDN19 using
several criteria.59 Y2H analysis showed
strong CLDN14–16 interaction the
strength of which was similar to the
CLDN16–19 interaction.59 In doubly
transfected HEK293 cells, CLDN14
coprecipitated with CLDN16 but not
with CLDN19. Intriguingly, in triply
transfected HEK293 cells, CLDN14
coprecipitated not only with CLDN16
but also with CLDN19.59 There are two
explanations for these findings relating to
the CLDN14 assembly mechanism: (1)
CLDN14 integrates into the CLDN16–
19 channel to form a higher oligomeric
complex with novel physiological signa-
ture; (2) CLDN14 replaces CLDN19
to form an independent channel with
CLDN16 that coexists with the CLDN16–
19 channel. The available biochemical data
clearly favor the first hypothesis.

MicroRNA as Guardian Molecule
for Claudin

Although the promoter activity and the
mRNA level of CLDN14 are very high in
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the kidney, its protein level is surprisingly
low, suggesting post-transcriptional regu-
lation. MicroRNAs are key regulatory
molecules that regulate gene expression
on the post-transcriptional level by indu-
cing target mRNA decay or translational
repression.60 Gong et al. have identified
two microRNA molecules—miR-9 and
miR-374 from TAL cells, both of which
recognize partially complementary binding
sites located in 3'-UTRs of CLDN14
mRNA.59 MiR-9 and miR-374 suppress
CLDN14 translation and induce its
mRNA decay in a synergistic manner.59

Under normal dietary conditions, miR-9
and miR-374 tightly regulate the gene
expression level of CLDN14 and protect
CLDN16–19 channel function. The
observed association between CLDN14
and hypercalciuric nephrolithiasis57 can be
explained by CLDN14 deregulation that
escapes microRNA suppression, inhibits
CLDN16–19 channel permeabilites and
phenocopies FHHNC to variable degrees.
High Ca2+ intake significantly downregu-
lates the expression levels of miR-9 and

miR-374 in TAL cells,59 which in turn
causes an increase in CLDN14 expression
level discussed elsewhere in this review.
The microRNA-CLDN14 cascade is
under direct regulation of the Ca2+ sensing
receptor (CaSR) in the TAL, a site at
which the CaSR monitors the circulating
Ca2+ levels and adjusts excretion rates
accordingly.59 The dietary regulation of
microRNA suggests a physiological role for
microRNA based signaling in the kidney.
A physiological role of microRNA signal-
ing provides a rationale for studying
pathological changes such as nephrolithia-
sis, because any pathological abnormality
must have a physiological origin.

An Integrated Signaling Pathway

The thick ascending limb (TAL) is a
predominant renal tubular segment res-
ponsible for Mg2+ and Ca2+ reabsorp-
tion.61,62 The epithelial cells in the TAL
form a water-impermeable barrier, actively
transport Na+ and Cl2 via the transcellular
route, and provide a paracellular pathway

for the selective reabsorption of Mg2+ and
Ca2+.63–64 The paracellular reabsorption of
Mg2+ and Ca2+ is driven by a lumen-
positive transepithelial voltage (Vte). The
generation of Vte can be attributed to: (1)
the active transport Vte due to apical K+

secretion through ROMK and basolateral
Cl2 exit through ClC-Kb/barttin chan-
nels; (2) the diffusion Vte generated
because of the transepithelial NaCl con-
centration gradient and the cation selec-
tivity of the tight junction.65 In the early
TAL segment, it is the first mechanism
that provides a voltage around +8 mV.
There is minimal contribution of diffusion
potential at this early segment since the
concentration gradient has not yet been
built up (Fig. 4A). With continuous NaCl
reabsorption along the axis of the TAL,
the lumen fluid is diluted and a large
NaCl gradient is generated in the late
TAL segment. Because the paracellular
permeability of the TAL is cation-selective,
the diffusion Vte is superimposed onto
the active transport Vte and becomes the
major source of the lumen-positive Vte,

Figure 4. Transepithelial ion transport in the thick ascending limb segment. (A) When similar salt concentrations are present at the luminal and
basolateral sides, the luminal spontaneous potential Vte of +8mV is generated by the concerted action of luminal K+ channels, basolateral Cl2 channels,
the Na+2Cl2K+ cotransporter, and the Na+K+-ATPase. Vte drives Na+ absorption through the paracellular pathway. (B) When a dilute luminal fluid is present
after NaCl absorption along the water-tight TAL, the luminal potential Vte of +30 mV is now generated as a diffusion voltage by the ‘backleak’ of Na+.
The diffusion voltage depends on the permselectivity of the tight junction. The membrane voltage (Vm) trace depicts the virtual measurement
by an electrode that is pushed from the basolateral side through the cell to the luminal side.
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which now increases substantially—up to
+30 mV (Fig. 4B).

It is clear that two basic prerequisites
are required for the paracellular Mg2+ and
Ca2+ reabsorption in the TAL: the lumen-
positive Vte as the driving force and the
paracellular cation permeability. The
CLDN16 channel provides cation per-
meability to the tight junction. The
CLDN19 channel increases the cation
selectivity of the tight junction and the
diffusional Vte by: (1) selectively blocking
anion permeation; (2) interacting with
CLDN16 to increase the overall cation
selectivity of the tight junction. Removal
of either claudin would cause the tight
junction to lose its cation selectivity and
generate renal defects in Mg2+ and Ca2+

reabsorption. The phenotypic similarities
between CLDN16 KD and CLDN19 KD
animals can be explained by the mole-
cular interaction between CLDN16 and
CLDN19. This molecular interaction
provides a mechanistic basis for the role
of claudin mutations in the development
of FHHNC. The discovery of CLDN14
as a regulatory molecule for renal Ca2+

homeostasis is particularly important.
First, accumulating data have demon-
strated that paracellular Ca2+ reabsorption
in the TAL can be directly regulated by
CaSR activation during hypercalcemia.66,67

CLDN14 is the “underlying factor” sought
for many years. Through physical inter-
actions, CLDN14 blocks the paracellular
cation channel made of CLDN16 and
CLDN19, suggesting a mechanism for its
role in nephrolithiasis. Second, tight junc-
tion proteins were previously considered

as constitutive and structural molecules.
CLDN14 is the first TJ molecule the
expression level of which can be regulated
in response to pathophysiological changes.
The tight junction is not as ‘lethargic’ as
previously thought. The renal regulation
of Ca2+ excretion involves the functional
interplay of three important claudin
genes: CLDN14, 16 and 19, all of which
are associated with human kidney dis-
eases. The claudin channel molecules are
part of the CaSR signaling cascade that
employs two microRNA molecules to
transduce signals. The molecular axis of
CaSR-microRNA-CLDN14-CLDN16/19
provides a feedback mechanism to
counterbalance extracellular Ca2+ varia-
tions. Increases in extracellular Ca2+ levels
activate CaSR → CaSR activation down-
regulates miR-9 and miR-374 expression
→ decreases in microRNA levels relieve
their suppression of CLDN14 →
increases in CLDN14 levels suppress
CLDN16–19 permeabilities, promoting
Ca2+ excretion by the kidney; and vice
versa (Fig. 5).

The Journey Ahead

The GWAS study established a genetic
link between CLDN14 sequence variants
and nephrolithiasis.57 However, none of
the identified sequence variants in
CLDN14 appear to be causative. Because
two of the four identified variants are
located in the last exon of CLDN14 gene,
this exon may contain rare causative
variations related to microRNA regula-
tion, mRNA stability and translational

efficiency. Gong et al. have established a
physiological role for CLDN14 in renal
Ca2+ handling.59 It will be essential to
understand the pathogenic role of
CLDN14 in nephrolithiasis. There are
two interrelating hypotheses: (1) CLDN14
overexpression in the kidney leads
to hypercalciuria and nephrolithiasis.
Because CLDN14 is a negative regulator
of the CLDN16–19 channel, overexpres-
sion of CLDN14 will lead to renal Ca2+

wasting. This hypothesis can be tested by
generating a CLDN14 overexpressing
(CLDN14OX) mouse model. (2) The
kidney will restore normal Ca2+ home-
ostasis through other nephron segments
when the TAL is deregulated. Because the
distal convoluted tubule (DCT) expresses
a Ca2+ channel—TRPV5, Ca2+ excretion
changes in the TAL will be compensated
for in the DCT. This hypothesis can be
tested by crossing CLDN14OX with
CLDN142/2 to generate a TAL deregu-
lated animal model—CLDN14OX2/2. The
microRNAs identified by Gong et al. are of
critical importance.59 Owing to the short
seed sequence of microRNA, a cognate
microRNA regulates multiple target genes.
Although miR-9 and miR-374 converge
onto CLDN14, they could extend extra-
cellular Ca2+ signaling to cellular functions
beyond the paracellular channel in the TAL.
What remain largely unknown are the
microRNA targeted genes in the kidney.
From a therapeutic point of view, small
RNA molecules such as antagomirs that
repress microRNA function in vivo in the
kidney may represent a novel tool for
clinical intervention in renal Ca2+ excretion.
Nevertheless, manipulation of microRNAs
in vivo may induce unwanted side effects
if their downstream target genes have not
been thoroughly studied.

Questions and Answers

Dr Eduardo Slatopolsky, Joseph Friedman
Professor of Medicine: You showed very
nicely the importance of the thick ascend-
ing limb of Henle (TAL) and claudin on
magnesium reabsorption. But still there is
a significant amount of magnesium that
escapes the reabsorption and goes into
the distal tubule where the epithelial
magnesium channel, Transient Receptor
Potential Melastatin subtype 6 (TRPM6)

Figure 5. The feedback loop of CaSR signaling in the thick ascending limb cell. The microRNAs and
CLDN14 are intermediate molecules that transduce CaSR signals to the Ca2+ effector in the plasma
membrane. The claudin interactions underlie the function change in paracellular permeability.
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participates in its reabsorption. Do defects
in magnesium reabsorption in more distal
nephron segments result in stone disease?

Dr Jianghui Hou, Assistant Professor
of Medicine: Indeed, the TRPM6 channel
plays an important role in the kidney, in
addition to its role in the colon. Muta-
tions in the TRPM6 channel are linked
to HSH syndrome: hypomagnesemia with
secondary hypocalcemia. I am not aware
of a TRPM6 knockout mouse model that
is not an embryonic lethal.68 The human
patient data suggest hypocalcemia and
possibly hypercalciuria are caused by
parathyroid gland failure induced by
hypomagnesemia. When there is hyper-
calciuria, the risk of developing kidney
stones will be higher. The mystery is where
calcium loss occurs. In contrast to the
TAL where calcium and magnesium
handling is coupled, the distal convoluted
tubule employs a different mechanism to
handle calcium, through another channel:
TRPV5.

Dr Slatopolsky: So your point is that
they get hypermagnesuria but they do not
get kidney stones.

Dr Hou: They may develop kidney
stones or have higher risks. The underly-
ing mechanism may be an indirect effect
through claudin-14 or TRPV5 or other
molecules.

Dr Aubrey Morrison, Professor of
Medicine: How do you think the calcium
sensing receptor (CaSR) functions in the
presence of the lower magnesium? Are
you implying that the calcium sensory
receptor is able to discriminate between
the calcium and magnesium?

Dr Hou: That is a very good question.
Unlike in the parathyroid gland where
CaSR shows higher affinity toward cal-
cium than magnesium (approximately
5:1), kidney tubular cells seem to show
a different affinity pattern. Our in vitro
measurements found a rather equal affinity
of CaSR toward calcium and magnesium.

Actually, there is an independent study
published a few years ago that supports our
data and shows slightly higher affinity of
CaSR toward magnesium than calcium in
kidney tubular cells.69

Dr Slatopolsky: Alex, are you aware of
two different types of calcium receptors?

Dr Alex Brown, Associate Professor
of Medicine: No. The calcium receptor
turns on different signaling pathway in
different cell types.

Dr Slatopolsky: We joke and we call
the calcium receptor a promiscuous recep-
tor because it can detect not only calcium
and magnesium, but also many other
agonists. Have you tried other CaSR
agonists?

Dr Hou: Yes, we have tried another
CaSR agonist, Gadolinium, and found a
similar effect on claudin-14 and micro-
RNA expression. In addition, we tested
the effects of PTH on claudin expression
but found none, suggesting the observed
effects are mediated through the CaSR
but not PTH.

Dr Jeffrey Miner, Professor of Medic-
ine: Have you tried expressing the claudin-
14 either in vitro or in vivo without the
3' untranslated region?

Dr Hou: I haven’t done it. We are
generating mutations in the microRNA
binding sites in claudin-14 3'UTR in
order to determine whether microRNA
effects are mediated through the 3'UTR of
claudin-14.

Dr Maggie Chen, Assistant Professor
of Medicine: I think the current concept
is that after activation of the CaSR in the
basal lateral membrane of the TAL there
is inhibition of the ROMK channel in
the apical membrane that can cause
hypercalciuria and hypermagnesuria.
Which part plays the bigger role?

Dr Hou: I will answer your question
from two perspectives. The traditional
view of CaSR function in the kidney is
that it will transduce signals germane to

the transcellular pathway, e.g., ROMK
channel. The microRNAs we have iden-
tified may also regulate the transcellular
pathways and serve as a converging point
for signal transduction. My colleague
Markus Bleich has measured the effects
of CaSR activation on both the trans-
cellular and paracellular ion conductance
in perfused TAL. He was able to capture
changes in the paracellular pathway but
not in the transcellular pathway, further
supporting our view of paracellular chan-
nels playing a major role in the CaSR
signaling pathway.70

Dr Maggie Chen: You said there are
two types of CaSR: in the basolateral
membranes of the TAL and also in the
apical site of the proximal tubule and
the collecting duct. What is the role of the
apical CaSR?

Dr Hou: That is a major mystery. Some
suspect the apical CaSR senses changes of
calcium in the tubular filtrate and trans-
duces signals to cells. For example, CaSR
in the proximal tubule could transduce
signals to regulate calcitriol synthesis,
which in turn affects calcium reabsorption
in the distal nephron. The CaSR in the
collecting duct has also been implicated in
the regulation of water transport. How-
ever, I think the primary role of CaSR is
still its classic role in the TAL—sensing
the changes in circulating calcium levels.

Note

Edited transcripts of research conferences
sponsored by Organogenesis and the
Washington University George M.
O’Brien Center for Kidney Disease
Research (P30 DK079333) are published
in Organogenesis. These conferences cover
organogenesis in all multicellular orga-
nisms including research into tissue
engineering, artificial organs and organ
substitutes and are participated in by
faculty at Washington University School
of Medicine, St. Louis, MO USA.
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