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The mature renal medulla, the inner part of the kidney,
consists of the medullary collecting ducts, loops of Henle, vasa
recta and the interstitium. The unique spatial arrangement of
these components is essential for the regulation of urine
concentration and other specialized kidney functions. Thus,
the proper and timely assembly of medulla constituents is a
crucial morphogenetic event leading to the formation of a
functioning metanephric kidney. Mechanisms that direct
renal medulla formation are poorly understood. This review
describes the current understanding of the key molecular
and cellular mechanisms underlying morphological aspects of
medulla formation. Given that hypoplasia of the renal medulla
is a common manifestation of congenital obstructive
nephropathy and other types of congenital anomalies of the
kidney and urinary tract (CAKUT), better understanding of how
disruptions in medulla formation are linked to CAKUT will
enable improved diagnosis, treatment and prevention of
CAKUT and their associated morbidity.

Introduction

Congenital hydronephrosis, defined as increased diameter of the
renal pelvis, is the most frequently identifiable anomaly by
prenatal ultrasound with an overall prevalence of 0.5 to 1%.1,2

Moreover, congenital obstructive nephropathy, frequently accom-
panied by hydronephrosis, is a common cause of renal failure in
children.3 In turn, hydronephrosis is frequently associated with
effacement of the renal medulla, the inner zone of the kidney.4

Small medulla may accompany renal hypodysplasia, a form of
congenital anomaly of the kidney and urinary tract (CAKUT)
characterized by reduced number of ureteric bud (UB) branches,
presence of undifferentiated mesenchymal and stromal cells, cysts
and cartilage, which is observed in 0.027% of fetuses by
ultrasonography.5 For example, renal medullary hypodysplasia is
observed in patients with Simpson-Golabi-Behmel (OMIM#
312870) and Beckwith-Wiedeman (OMIM# 130650) syn-
dromes.6,7 Although hypoplastic renal medulla may result from
backward pressure to the renal parenchyma due to urinary stasis,8

emerging evidence indicates that it may be also due to an intrinsic
defect in medullary morphogenesis.9

Major Steps in Kidney Organogenesis

On the fifth week of gestation in humans (embryonic day E10.5 in
mice), the caudal portion of the nephric duct forms an epithelial
outgrowth called the UB, which invades the metanephric
mesenchyme.10,11 UB branches repeatedly within the mesenchyme
to form the renal collecting system (the ureter, pelvis, calyces and
collecting ducts).10,11 Proximal ureter subsequently translocates from
the nephric duct to fuse with the bladder which originates from the
urogenital sinus.12 As distal UBs branch, the mesenchymal cells
condense around the UB tips to form nephrons (the glomerulus,
proximal and distal tubules and loop of Henle). Kidney vasculari-
zation is synchronized with nephrogenesis and occurs by vasculo-
genesis (formation of new blood vessels from endothelial cell
precursors) and angiogenesis (sprouting of new capillaries from pre-
existing blood vessels).13,14 The stromal mesenchyme or stroma is a
complex mixture of cell types which surround nascent UBs and
nephrons, do not differentiate into nephrons or the UBs/collecting
ducts and give rise to renal interstitium.15

Brief Overview of Morphology and Function
of Mature Renal Medulla

The medulla of the adult kidney has a modified cone shape with a
broad base adjacent to renal cortex and the narrow apex termed
papilla. The mature renal medulla consists of the medullary
collecting ducts, loops of Henle, vasa recta (straight capillaries)
and the interstitium (lipid-laden interstitial cells, lymphocyte-like
cells and pericytes).16 The main function of the medulla is to
regulate concentration of the urine. The urine flows from the
collecting ducts into the renal calyces and pelvis, which undergoes
unidirectional peristaltic movements to allow drainage of the
urine into the downstream ureter and bladder.8 In addition, the
renal papilla is a niche for adult kidney stem cells which may play
a role in repair after ischemic kidney injury.17,18

Developmental Aspects of Medullary Morphogenesis

Development of collecting ducts. Morphologic development of
collecting ducts. Collecting ducts and other components of the
renal collecting system (calyces, pelvis and the ureter) are formed
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during kidney development as a result of sequential branching,
elongation and patterning (gradual acquisition of structure
characteristic of mature organ) of the UB, driven by reciprocal
inductive interactions with the metanephric mesenchyme and
stroma.10,19 In the mouse, renal medulla becomes identifiable
morphologically on E15.5, expands longitudinally (along the
corticomedullary axis), increases in length 4.5-fold from E15.5 to
birth (mouse gestation period is 20 d) and represents 30% of
total kidney volume at birth (Fig. 1).20 The papilla grows through
proliferation of collecting duct cells in a distal-to-proximal
fashion, with cell proliferation arresting in the distal papilla
before E17.5, a time when extensive proliferative growth con-
tinues in the proximal papilla.21 In the human kidney, once UB
branching is completed by 20–22 weeks of gestation, subsequent
morphogenesis of collecting ducts occurs by extension and
patterning of peripheral branch segments.19 Initial generations
of UB branches undergo remodeling (change in structure or form)
by dilatation and growth to form the ureter, renal pelvis and
calyces.11 The 6th–8th generations of UB branches give rise to the
long unbranched outer medullary collecting ducts in mice.20

While significant longitudinal elongation of the medullary
collecting ducts accompanies renal medulla formation,20 the
mechanisms by which linear arrays of inner medullary collecting
ducts converge centrally to form the papilla and how many
collecting ducts enter the tip of the papilla remains unknown.

Genetic control of collecting duct morphogenesis. Recent genetic
studies in mice demonstrate that medullary hypoplasia may be
due, in part, to an intrinsic defect in medullary morphogenesis
normally driven by longitudinal elongation of UB-derived
collecting ducts (Table 1). Global deletion of cell surface
heparan sulfate proteoglycan glypican3 (Gpc3), expressed in the
UB, in mice causes renal medullary cystic dysplasia due to
increased apoptosis of medullary collecting duct cells.22,23 Global
genetic inactivation of a3 integrin, expressed in the UB and their
derivative collecting ducts, in mice results in hypoplastic medulla
due to decreased branching of the medullary collecting ducts.24

Genetic removal of estrogen-related receptor gamma (Esrrg),
expressed in the UB and UB-derived collecting ducts, in mice
results in medullary hypoplasia without detectable morphological
changes in the renal pelvis or the ureter.25 Targeted removal of
bone morphogenic protein (BMP) receptor Alk3 in the UB
reduces the number of UB branches and medullary collecting
ducts resulting in medullary hypoplasia.26 UB-specific inactivation
of the fibroblast growth factor receptor (FGFR) in mice decreases
UB branching and leads to abnormally shaped and hydro-
nephrotic kidneys.27 Deletion of the epidermal growth factor
receptor (EGFR) in the UB in mice, normally expressed in the UB
trunk domain, does not appear to alter UB branching, but results
in moderate dilation of the medullary collecting ducts, thin
medulla and reduced urine-concentrating ability.28 Absence of
Wnt7b, a secreted protein which is also normally expressed in UB
trunk, is accompanied by dilated collecting ducts that have
reduced number of branch points and leads to a failure of
medullary development.9 These changes in Wnt7b mutants are
likely due to an abnormal plane of collecting duct cell division
where cell division occurs orthogonal to the longitudinal axis of

the collecting ducts. In contrast, inactivation of Dickkopf1 (Dkk1),
a secreted Wnt antagonist, in the UB lineage in mice leads
to overgrowth of the whole papilla resulting from enhanced
proliferation of the collecting duct and loop of Henle cells.29

This effect of absent Dkk1 may be due to induction of Wnt7b
signaling from the collecting duct cells to the stroma.29 The

Figure 1. Renal medulla development in the mouse. (A) Whole mount
immunohistochemistry of E13.5 kidney. Ureteric buds (UB) and their
derivatives (ureter, Ur) are visualized with anti-pancytokeratin antibody
(green). Medulla is not identifiable morphologically at this stage.
(B) Longitudinal section through a newborn (postnatal day P1) kidney.
Medulla and papilla (Pa) are identifiable morphologically. UB-derived
collecting ducts (CDs) are visualized with anti-pancytokeratin antibody
(green). (C) Transverse section through P14 kidney stained with
hematoxylin and eosin. Long papilla (Pa) is present at this stage.
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findings that ureter and renal pelvis are comparable between
Wnt7b-null and wild-type kidneys9 indicate that medullary
hypoplasia may occur in the presence of normally structured
pelvis and ureter. Moreover, the findings that selective removal of
β-catenin, a key mediator of canonical Wnt signaling, from the
interstitium phenocopies the medullary hypoplasia of Wnt7b
mutants underscores the importance of cross-talk between nascent
collecting ducts and stroma in medulla formation.9 Together,
these findings demonstrate that defects in UB branching and
collecting duct growth may be causally linked to medullary
hypodysplasia in mice.

Development of the loop of Henle (LOH). Anatomical
development of the LOH. The LOH is the anatomical basis for
the countercurrent multiplier system that maintains the osmotic

gradient in the renal medulla. Two types of LOH are
distinguished in the mature kidney: short and long. Short loops
make a turn in the outer medulla and long loops in the inner
medulla. The outer medulla contains thick descending and
ascending (TAL) limbs and descending thin limbs.16 The inner
medulla contains descending and ascending thin limbs. Long
loops loop back at successive levels in the medulla and only few
penetrate into the tip of the papilla.16 In the adult rat kidney,
about 1,500 of 10,000 loops that enter the inner medulla reach
the second half of the inner medulla and only about 250 enter the
last millimeter of the papilla.16 In the newborn rat kidney, renal
medulla is not separated into an outer and inner zone, lacks
ascending thin limbs and has the structural composition
characteristic of the mature inner stripe of the outer medulla.30

Table 1. Gene mutations leading to defects in morphogenesis of renal medulla in mice

Gene Medullary phenotype Mechanisms References

Metanephric mesenchyme

Cited1-/- Hypoplastic medulla hydronephrosis Increased apoptosis in the medulla 46

Stroma

Foxd1-/- Small, fused low-set kidneys Reduced UB branching 54

FGF7-/- Thin small papilla Reduced UB branching 62

BMP4-/- Medullary hypodysplasia hydronephrosis Reduced UB branching 57

RARa/b2-/- Small kidneys Reduced UB branching 63

Pod1-/- Renal hypodysplasia Reduced UB branching 64

Pbx-1-/- Renal hypodysplasia Reduced UB branching 66

AGT-/- Thin medulla atrophic papilla hydronephrosis Reduced UB branching 81, 82

ACE-/- Atrophic papilla Hydronephrosis Unknown 83

AT2R-/- Hydronephrosis Reduced UB branching 74, 84

Collecting duct

Alk3UB-/- Hypoplastic medulla Reduced UB branching decreased number of
medullary collecting ducts

26

Pax8Cre/Dkk1loxP/loxP Overgrowth of papilla hydronephrosis Increased proliferation of collecting duct and LOH cells 29

Gpc3-/- Large initially and small later kidneys Decreased number of medullary collecting ducts 22

FGFR2UB-/- Abnormally shaped kidneys, hydronephrosis Reduced UB branching 27

EGFRUB-/- Thin medulla, dilated medullary collecting ducts Increased apoptosis of papillary collecting duct cells 28

Esrrg-/- Hypoplastic medulla Reduced UB branching 25

Wnt7bUB-/- Absent medulla, dilated medullary collecting ducts Aberrant division of collecting duct cells
orthogonal to longitudinal axis of collecting ducts

9

Loop of Henle

Adamts1-/- Thin medulla hydronephrosis Expansion of interstitial matrix 34

Brn1-/- Decreased kidney size, reduced number
of LOH, retarded elongation of LOH

Reduced proliferation of LOH cells, expanded area
of apoptotic cells throughout primitive LOH bend

35

Urinary tract obstruction

Rarb2Cre/SmoloxP/- Blunted medulla hydronephrosis Abnormal ureteral peristalsis, reduced number
of ureteral pacemaker cells

77

AT1R-/- Atrophic papilla hydronephrosis, reduced length
of medullary capillaries, impaired organization

of vasa recta bundles

Decreased ureteral peristalsis, reduced expression
of angiogenic growth factors, decreased

proliferation of vasa recta cells

39, 41, 78

Pax3Cre/Cnb1loxP/loxP Hydronephrosis Aberrant ureteral peristalsis 76

Sox17/18-/- Atrophy of outer medulla Reduced neovascularization in kidney outer
medulla vasa recta

43
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During the first 2 weeks of the postnatal life (when nephrogenesis
continues in the rat), immature TALs in the renal papilla are
transformed into thin limbs by apoptotic deletion of cells in thick
limbs and the growth of the loops of Henle occurs mainly at
the corticomedullary junction.21,30,31 Low levels of circulating
glucocorticoids promote proliferation of TAL cells and elongation
of the outer medulla during postnatal development in the rat.32

Genetic control of LOH morphogenesis. Recent studies showed
that several genes are essential in the formation of the LOH
(Table 1). Studies in Xenopus demonstrated that Iroquois (Irx) 3
is necessary for intermediate tubule formation.33 Intermediate
tubule progenitors give rise to epithelia of LOH in mammals.
Generation of conditional Irx3-mutant mice will clarify the role
of Irx3 in LOH development in mammals. In the developing
mouse kidney, Adamts-1 (disintegrin and metalloproteinase
with thrombospondin motifs) expression is specifically detected
in the LOH.34 Adamts-1-null mice display thin medulla and
hydronephrosis in the absence of morphological alterations in the
renal pelvis or ureter.34 Given that Adamts-1 is a secreted zinc
metalloproteinase, it is conceivable that it plays a role in the
remodeling of the ECM in medullary interstitium to facilitate
elongation of maturing LOH. Mice deficient in POU transcrip-
tion factor Brn1, expressed in the TAL, exhibit decreased number
and length of LOH, enhanced apoptosis of LOH cells and
reduced expression of TAL-specific genes.35 Thus, Brn1 is
required for growth and differentiation of the loop of Henle.
One of the mechanisms by which Brn1 promotes elongation of
the LOH may involve suppression of cell apoptosis in primitive
loop. To this end, emerging evidence demonstrates that defects
in growth and elongation of the developing LOH may account
for medullary hypodysplasia. While growth, elongation and
remodeling of LOH can be explained by segment-specific cell
proliferation, apoptosis and differentiation, the mechanisms
directing bending and turning of the loop remain to be
elucidated. Other challenges include identification of molecular
networks that regulate morphogenesis of LOH and their cross-
talk among the loop, stroma/interstitium, collecting ducts and
vasculature.

Development of medullary vasculature. Anatomical develop-
ment of vasa recta. Vasa recta are straight capillaries that branch
off the efferent arterioles of juxtamedullary nephrons, enter the
medulla and surround the LOH. These vessels play an important
role in the maintenance of mass balance and osmotic gradient in
the medulla by returning the NaCl and water reabsorbed in the
LOH and medullary collecting tubule to the systemic circulation.
The vasa recta function as countercurrent exchangers to delay the
washout of NaCl and urea and prevent the excess accumulation
of water in the inner medulla.36 In the developing rat kidney,
vasa recta bundles grow centrally into the medulla around the
previously developed collecting ducts.37

Factors that control angiogenesis of vasa recta. Angiogenic factors.
Angiogenic factors not only direct developmental angiogenesis,
but provide fundamental cues for cell fate specification, embryo
patterning, organ differentiation and postnatal tissue remodel-
ing.38 Recent data demonstrate that impaired development of
medullary microcirculation may be causally linked to medullary

hypoplasia observed in AT1R-mutant mice.39,40 Treatment of
newborn rats with the specific AT1R antagonist reduces length,
volume and surface area of capillaries in the renal medulla, and
inhibits cell proliferation and organization of the developing vasa
recta bundles.41 These changes are accompanied by decreased
expression of angiogenic growth factors such as vascular endo-
thelial growth factor (VEGF), angiopoietins 1 and 2, Flk1/Flt1
and Tie1 in the medulla, and lead to decreased renal blood flow
later in life. Moreover, administration of AT1R antagonist during
pregnancy in humans results in atrophy of the renal medulla and
poorly developed vasa recta in the fetal kidney.42 Double-mutant
mice deficient in high mobility group (HMG) box transcription
factor genes Sox17/Sox18, show reduced neovascularization in the
outer medulla vasa recta on postnatal day 7.43 Notably, AT1R or
Sox17 mutations are causative factors in CAKUT in humans.44,45

Whether structural maldevelopment of the medulla affects vasa
recta formation or defects in vascular development account
for decreased size of the medulla remains to be determined.
Regardless, aberrant medullary microcirculation may have a major
role in how fetal reprogramming results in postnatal diseases such
as hypertension and progressive kidney disease.

Embryonic blood flow and oxygenation. The role of embryonic
blood supply in the development of medullary vasculature in vivo
and the mechanisms by which aberrant blood flow in the
embryonic kidney may affect medulla formation are poorly
understood. It is plausible that the inflow of blood into the renal
medulla, with the resulting increase in oxygen tension, may
regulate both the development of vasa recta and medullary
morphogenesis. This possibility is supported by the findings that
mice deficient in Cited1, a transcriptional co-factor expressed in
the induced metanephric mesenchyme of the embryonic kidney,
have renal medullary dysplasia that does not result from defects in
UB branching or lower urinary tract obstruction, but may be due
to intrauterine hypoxia resulting from placental insufficiency.46

Hypoxia-inducible factors (HIF) HIF-1 and HIF-2 are transcrip-
tion factors induced in hypoxia to alleviate hypoxic stress, in part
by promoting neovascularization.47 HIF-1 and HIF-2 mRNAs are
highly expressed in the medulla, and particularly in the medullary
collecting ducts, of the newborn mouse kidney in vivo.48 In
addition, VEGF mRNA is detected in the outer medullary
collecting ducts dissected from the developing rat kidney on
P14.41 Moreover, the expression of HIF-1, HIF-2 and VEGF, a
crucial regulator of vascular development, is induced in embryonic
kidneys maintained in hypoxic organ cultures.48 These data
suggest that HIF stabilization by hypoxia may be critical for
VEGF production and kidney vascular development. Potential
role for HIF-1 in the regulation of medulla growth is supported
by the findings that administration of dominant-negative HIF-1
induces severe damage in the medulla of normal adult rats.49

Recent studies using in utero intracardiac injection of vascular
tracer to living mouse embryos demonstrate that perfusion of
embryonic pancreas correlates with pancreatic cell differentiation
in the region of the blood flow in vivo.50 Given that the regions
adjacent to perfused vessels have more oxidized thiols, the authors
propose that enhanced oxygen delivery after the inflow of blood is
a likely permissive factor for initiating cell differentiation.50 Thus,
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vascular flow, rather than vascular endothelium alone, may
provide specific signals necessary for regional organ differentiation
and complete vessel morphogenesis (e.g., development of
anastomoses between the main vessels that carry blood flow
and small vessels that do not have blood flow) during early
embryogenesis. In accord with this hypothesis, cardiac-specific
deletion of a key angiogenic factor angiopoietin 1 in mice
recapitulates kidney vascular defects observed in global angiopoie-
tin 1 knockout.51 Application of in utero intracardiac injection of
vascular tracer to living embryos in model organisms to measure
maturation of the embryonic medullary perfusion may provide
correlative evidence that enhanced blood flow underlies normal
morphogenesis of the renal medulla.

Development of interstitium. Anatomical development of
medullary interstitium. The medullary interstitium of the adult
kidney consists of lipid-laden interstitial cells, lymphocyte-like
cells, pericytes and extracellular matrix (ECM), and provides a
structural supportive framework around collecting ducts, loops of
Henle and vasa recta.16,52 Other possible functions of mature
medullary interstitial cells include production of ECM and
prostaglandins.16 The interstitium of the adult kidney originates
from the renal stroma of the developing metanephros.15,53 During
early metanephric development, fibroblast-like spindle-shaped
stromal cells are detected around Pax2-positive cell of the cap
mesenchyme and later on around nascent UBs and nephrons.54

These stromal cells specifically express forkhead box transcription
factor Foxd1.54 Later in kidney development, stroma is divided
into two distinct populations: cortical and medullary. Cortical
stroma is characterized by the expression of Foxd1, retinoic acid
(RA) receptors (RAR) a and β2, and retinaldehyde dehydrogenase
2, an enzyme required for most fetal RA synthesis. Medullary
stroma expresses fibroblast growth factor 7 (FGF7), basic helix-
loop-helix transcription factor Pod1 and bone morphogenic
protein 4 (BMP4).55-57 Whether molecular differences between
these two stromal populations imply a lineage relationship is
currently unknown. While medullary stromal cells eventually
differentiate into mature interstitial cells, pericytes or neurons,58 it
is conceivable that a subpopulation of stromal cells that do not
differentiate into other cell types may undergo apoptosis during
late gestation to free space for LOH as they extend toward the tip
of the papilla.59 Whether apoptosis of medullary stromal cells
indeed promotes elongation of LOH or collecting ducts during
later stages of kidney development warrants further investigations.

Developmental functions of the metanephric stroma. Besides
forming adult interstitium, stroma modulates glomerulogenesis
and UB branching in the developing metanephros.54,60,61 The
contribution of stroma to morphogenesis of renal medulla is
demonstrated by aberrant medullary development in mice that are
deficient in genes expressed exclusively in the stroma (Table 1).
Kidneys of Foxd1-null mice have a reduced number of UB
branches and ectopic mesenchymal condensates in the medulla.54

Genetic inactivation of FGF7 in mice causes a decrease in the size
of the UB compartment and in total kidney size.62 BMP4 mutants
manifest hypoplastic-dysplastic kidneys, duplex kidneys with bifid
ureters and hydronephrosis.57 Combined absence of RA receptors
RAR a and β2 or retinaldehyde dehydrogenase 2 causes formation

of small kidneys with reduced number of UB branches.61,63 In
Pod1-null mice, fibroblast-like spindle-shaped stromal cells are
absent and renal medulla does not form.64 Similar phenotype is
observed in mice that lack a homeodomain transcription factor
Pbx1.65 Notably, Pod1 expressed in the stromal, but not in the
metanephric, mesenchyme is critical for the proper UB and
glomerular development.64 Mutations in cell cycle regulatory gene
p57KIP2, expressed in embryonic renal stroma, in mice leads to
medullary hypodysplasia, a phenotype very similar to that of
patients with Beckwith-Wiedemann syndrome (OMIM# 130650).66

Simpson-Golabi-Behmel syndrome (OMIM# 312870), caused by
mutations of heparin sulfate proteoglycan GPC3, leads to dysplastic
renal medulla secondary to increased proliferation of UB cells
followed by enhanced apoptosis of medullary collecting ducts.7 These
observations suggest that balance of cell proliferation and apoptosis is
essential during morphogenesis of the renal medulla. Collectively,
these findings indicate that aberrant stromal signaling is causally
linked to medullary hypodysplasia.

Development of renal neuronal cells. Anatomical development
of renal nerves. Despite recognition of the important role of the
renal sympathetic nerve activity in the regulation of renin secre-
tion, sodium reabsorption and vascular tone,67 our knowledge
of the role of the renal neuronal cells during metanephric
development is still rudimentary. Sympathetic nerves grow into
the embryonic kidney following the track of blood vessels.68,69

Terminal axon arborization to allow innervation of multiple target
cells also parallels vessel sprouting. Nerve fibers are first detected
in the fetal rat kidney on the outer aspect of the main branches of
the renal artery at E17.69 The density of nerve fibers increases
progressively with age and extends to afferent and efferent
arterioles. On postnatal day 15 of life in the rat, nerve fibers are
also detected in the medulla where vasa recta are developing.68

The human fetal kidney, including renal medulla, is richly
innervated during the 2nd and 3rd trimesters when collecting
duct patterning and nephrogenesis continue.70 In the mature
rabbit kidney, neuropeptide Y-positive neurons are detected in the
medulla where they regulate renal medullary perfusion.71

Factors that control development of renal nerves. The guidance of
axons is directed by guidance molecules such as semaphorin 3A,
Slits and their Robo receptors, Ephrins and their Eph receptors
and others.69 In the rat kidney, neurofilament-, L1 neural cell
adhesion protein- and neurotrophin 3 nerve growth factor-
positive neuronal precursor cells are present early in embryonic
development.72 Functionally, neurotrophin 3 promotes survival
and induces differentiation of embryonic renal neuronal cells.72

Of interest, L1 is expressed in the collecting ducts but not in the
renal stroma. Expression of neurofilament in stromal cells raises
the possibility that they may derive from the neural crest rather
than from the mesoderm. In the central nervous system (CNS),
AT2R promotes neurite outgrowth and elongation.73 Since AT2R
is expressed in the medullary stroma of the embryonic mouse
kidney,74 AT2R may influence nerve growth in the forming
renal medulla. In addition to a potential role in the regulation of
medulla morphogenesis per se, aberrant innervation of the renal
medulla may be causally linked to development of programmed
hypertension in the offspring in later life.75
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Impact of lower urinary tract obstruction on structural
development of the renal medulla. Murine models of renal
hypodysplasia demonstrate that blunting of renal papilla and
medulla may result from anatomical or functional obstruction of
the lower urinary tract at the level of the renal pelvis or the ureter.
Targeted deletion of calcineurin b1 (Cnb1) or hedgehog effector
smoothened (Smo) in periureteral mesenchyme in mice causes
nonobstructive hydronephrosis, hydroureter and medullary
hypoplasia not associated with abnormal collecting duct morpho-
genesis.76,77 Thus, medullary hypoplasia observed in these mice
may result from backward pressure to the renal parenchyma due
to urinary stasis. The mechanisms that have been implicated in
functional ureteral obstruction in these mice include defective
ureteral peristalsis (failure of ureteral peristalsis to propagate in a
sequential proximal-distal direction), reduced number of ureteral
pacemaker cells and decreased proliferation of periureteral
mesenchymal cells.76,77 Although medullary hypoplasia and
hydronephrosis observed in angiotensin (Ang) II AT1 receptor
(AT1R)-deficient mice may result from impaired ureteral
peristalsis due to hypoplastic ureteral smooth muscle layer,78 our
previous studies suggest that aberrant branching morphogenesis of
the UB may also contribute to medullary defects observed in these
mutants.79 The possibility that medullary hypoplasia may be due
in some cases to an intrinsic defect in medullary morphogenesis,
rather than to urinary tract obstruction, is supported by the
findings that Wnt7b- and Adamts 1/4- or Esrrg-null mice exhibit
hypoplastic renal medulla at birth in the absence of structural
abnormalities of the lower urinary tract.9,25,34 Of interest, renal
tubular dysgenesis, a congenital and frequently fatal human
disease due to mutations in angiotensinogen, renin, angiotensin-
converting enzyme or AT1R genes is characterized by collapsed
medullary collecting ducts and abundant interstitial fibrosis that

occur in the absence of papillary hypoplasia or hydronephrosis.80

The reasons for occurance of papillary hypoplasia and hydrone-
phrosis in mice, but not in humans, with AT1R gene mutations
remain to be determined. Defining embryonic origin and
lineage of renal pacemaker cells and the mechanisms that regulate
differentiation of these cells could lead to the discovery of new
treatments for congenital functional obstruction of the urinary
tract.

Conclusions and Perspectives

Although the renal medulla is essential for normal renal physiology,
more work is needed to develop an integrated mechanistic
understanding of its morphogenesis. A novel emerging paradigm
suggests that the cross-talk among renal stroma, collecting ducts,
LOH and vasculature is essential in spatiotemporal development
of the renal medulla. Understanding the molecular cues for
progenitor differentiation, directional elongation, patterning and
remodeling, blood flow and blood-borne oxygen delivery,
developmental transport physiology and collecting system con-
tractility are fundamental biologic questions with applicability to
multiple renal and extrarenal disease processes. Defining the
mechanisms that direct morphogenesis of medulla offers oppor-
tunity to understand pathogenesis of CAKUT, identify biomarkers
of risk and to conceive new preventive and therapeutic strategies.
Future studies investigating the effect of spatiotemporal compart-
ment/cell type-specific inactivation and epigenetic imprinting of
the genes that govern morphogenesis of the medulla, identification
of the association of known genetic mutations linked to medullary
hypodysplasia with human CAKUT will provide essential
information regarding the mechanisms whereby critical signaling
networks direct formation of the medulla.
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