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SYNOPSIS
The marked variability in individual susceptibility to the detrimental effects of smoking on lung
function and findings suggest a significant genetic contribution to COPD, which has been
demonstrated in several studies. The only known genetic risk factor for COPD, severe alpha 1
antitrypsin (AAT) deficiency, explains only 1–2% of cases of this disease. Screening for severe
AAT should be conducted in all cases of COPD. Intravenous augmentation therapy should be
combined with currently recommended treatment modalities for COPD when treating patients
with COPD due to severe AAT deficiency. There is considerable interest in identifying
susceptibility genes for COPD unrelated to severe AAT deficiency, as this could greatly enhance
current efforts to prevent, diagnose and treat this disease by yielding novel insights into its
pathogenesis. Genome-wide association studies (GWAS) of COPD and its intermediate
phenotypes (e.g., lung function measures) have identified novel susceptibility loci for COPD.
Some of these susceptibility loci may also influence lung function in the general population (e.g.,
HHIP and FAM13A), while others may affect not only COPD but other diseases related to
smoking behavior (e.g., CHRNA3/CHRNA5). Although much work remains to be done, recent
advances and the implementation of novel approaches to study COPD genetics (e.g., sequencing)
and epigenetics are promising, and could have a profound impact on COPD management.
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INTRODUCTION
Severe alpha 1-antitrypsin (AAT) deficiency is the only well-established genetic risk factor
for chronic obstructive pulmonary disease (COPD). Patients with severe AAT deficiency
(most commonly, Protease Inhibitor [PI] Z) are at increased risk for developing COPD,
particularly if they smoke1–2. However, severe AAT deficiency explains only a small
proportion of cases of COPD (1–2%), and genes other than PI type (genetic modifiers) likely
influence lung function in PI Z subjects3–4.

Burrows et al. noted that the development of chronic airflow obstruction in response to
cigarette smoking is highly variable in the general population, suggesting that individuals
vary in their genetic susceptibility to the detrimental effects of smoking on lung function5.
Several studies have since confirmed a genetic contribution to the pathogenesis of COPD in
cigarette smokers without severe AAT deficiency6–8. A search for COPD-susceptibility
genes other than PI type has included genome-wide linkage analyses, candidate-gene studies
and, more recently, genome-wide association studies (GWAS).

In this chapter, we review the genetics, diagnosis and treatment of severe AAT deficiency.
We then assess findings from recent genetic studies of COPD and its intermediate
phenotypes (e.g., lung function). Finally, we briefly discuss future directions in this field.

COPD DUE TO SEVERE AAT DEFICIENCY
Severe deficiency of AAT was first recognized as a risk factor for COPD in 19639. Since
then, many studies have characterized the genetics and role of this protein in the
pathogenesis of COPD.

Genetics
The AAT protein is encoded by a 12.2 kb gene located on chromosome 14q32.1 called
SERPINA1 or PI10. The gene has seven exons and six introns, is inherited in an autosomal
codominant fashion, and has more than 120 single nucleotide polymorphisms (SNPs)11.
Numerous AAT protein variants can be differentiated by their speed of migration on gel
electrophoresis using isoelectric focusing. The most common alleles are M, S and Z. The M
variants (M1, M2, M3) result in proteins with a medium rate of migration and a normal level
of AAT, the S variant is associated with mild reductions in serum AAT level, and the Z
variant has the slowest rate of migration and leads to severe reduction of AAT level. Null
alleles also occur, with undetectable protein levels. Combinations of the M, S and Z variants
are seen in >95% of the population. Serum AAT levels in subjects with the MZ and ZZ
phenotypes are 60% and 10%, respectively, of those in (normal) subjects with the MM
phenotype.

The most common forms of severe AAT deficiency with a high risk of COPD involve
combinations of two Z alleles (Glu342Lys) and a Z allele with a null allele (both referred as
phenotype PI*Z), or a combination of two null alleles. Combinations of a Z allele and an S
allele (Glu264Val) also confer a moderate risk of COPD12. The phenotype MZ has also
been associated with a lower but still increased risk of COPD, while the MS phenotype has
been associated with only mild reductions in AAT level and no risk of COPD13. AAT
deficiency has been described in all races, although the highest frequencies of the Z allele
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have been described in whites. In the United States, the frequency of the ZZ phenotype is 1
in 4775, SZ phenotype 1 in 1124 and MZ phenotype 1 in 36 individuals14. Worldwide,
severe AAT deficiency affects approximately 3.4 million individuals15.

Pathophysiology
SERPINA1 codes a 52 kDa glycoprotein with 394 amino acids that contains a reactive loop
with an active site at methionine 358. Although AAT is an acute phase reactant synthesized
mostly by liver cells, there also is local synthesis by cells such as neutrophils, monocytes,
macrophages and epithelial cells16–17. The major function of AAT is the neutralization of
serine proteases, particularly neutrophil elastase (NE); other targets include cathepsin G,
trypsin and proteinase-318–19. Severe deficiency of AAT results in excess protease activity
in the lungs, particularly during periods of inflammation, and leads to progressive
degradation of the lung parenchyma (emphysema) and accelerated decline in lung function
over time20. Although protease-antiprotease imbalance is the most important cause of COPD
in severe AAT deficiency, the loss of other functions of AAT likely contribute in COPD
pathogenesis. These include endothelial cell protection against apoptosis by binding to
caspases21, regulation of airway epithelial lining fluid balance by binding to matryptase22,
and inflammatory response modulation. For example, AAT modulates endotoxin-induced
inflammation23, reduces TNF-alpha-induced lung injury in rabbits24, inhibits superoxide
production by neutrophils25 and regulates the response of macrophages to pro-inflammatory
stimuli26.

Z-AAT has reduced capacity to inhibit NE27, as well as a conformational protein change
that enables a loop-sheet polymerization process and its accumulation in the endoplasmic
reticulum (ER) with loss of secretion into the circulation28. The Z-polymers are degraded by
ER-associated degradation pathways via proteasomes and by autophagy as part of the ER
overload response29. If these cellular mechanisms fail, gain-of-toxic function and ER stress
occur, which can lead to inflammation via NFkB activation30, hepatocyte death by
apoptosis31 and –ultimately- liver disease, both during childhood and later in life; a similar
process may occur in the lung but has not been as well characterized.

AAT polymers can also further worsen protease-antiprotease imbalance. When instilled in
the trachea of mice, Z-polymers produce a significant concentration dependent influx of
neutrophils that is not mediated by chemokines32. The polymers can be detected in the
circulation33 and in bronchoalveolar lavage fluid of patients with severe AAT deficiency, in
whom they may also induce inflammation by a direct effect on epithelial cells34.

Diagnosis
Compared to young subjects who have a PI*ZZ phenotype but do not smoke, those who
have a PI*ZZ phenotype and do smoke have significantly lower FEV1/FVC and diffusing
capacity of carbon monoxide35. At age 30 years, Pi*Z subjects who smoke have
significantly more shortness of breath, sputum production and wheezing than Pi*MM
smokers; among nonsmokers, Pi*ZZ subjects report only more wheezing than non-affected
controls35.

Not uncommonly, clinicians stereotype the presentation of severe AAT deficiency as that of
a young (<40 years old) white non-smoker who presents with COPD and pan-acinar
emphysema predominantly in the lower lobes. Although some affected individuals present
this way, most symptomatic individuals have features that resemble those of COPD not due
to severe AAT deficiency. About a third of affected subjects have a more indolent
presentation and are diagnosed after age 50 years36, about a third have emphysema
predominantly located in the upper lobes37 and more than 80% have a significant smoking
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history38; bronchiectasis of variable severity are also common39. Current guidelines thus
recommend screening for severe AAT deficiency in all patients with COPD40. Screening of
relatives of affected subjects may find nonsmokers with the PI*ZZ phenotype but no
respiratory symptoms41.

Genetic Modifiers
The significant variability observed in the development, progression and manifestations of
COPD due to severe AAT deficiency strongly suggests that genetic and/or environmental
factors modify disease expression. Studies of familial aggregation and heritability suggest
that genetic factors other than PI type influence lung function and airflow obstruction in
PI*Z individuals3, 42. Although no genetic modifiers of severe AAT deficiency have been
confidently identified, candidate genes have been examined. In a case-control study, two
coding polymorphisms in NOS3 were associated with severe airflow obstruction in PI*Z
individuals43. In a family-based association study of 10 genes previously associated with
asthma and/or COPD, variants in the genes for TNF and IL10 were associated with lung
function measures44.

In subjects with severe AAT deficiency, the development of airflow obstruction is
associated with age, male sex, bronchodilator responsiveness and chronic bronchitis, and -
most strongly- cigarette smoke45–47.

Treatment
A detailed description of how to treat lung disease in severe AAT deficiency is beyond the
scope of this chapter. The pharmacologic and non-pharmacologic treatment of COPD due to
AATD follows the same guidelines as those for COPD in general48 Interventions showing
benefit in subjects with severe AAT deficiency include disease management programs
(which improve quality of life and decrease healthcare utilization49), lung volume reduction
surgery (which improve 6-minute walking test and dyspnea scores50) and inhaled steroids
(which reduce airflow obstruction and hyperinflation51.

Intravenous augmentation therapy with donor-derived purified AAT is the only FDA-
approved specific treatment for lung disease due to severe AAT deficiency (defined as a
baseline serum AAT level below 11 µM)40. The recommended dose (60 mg/kg once a week)
is intended to keep trough serum AAT above 11 µM. Studies supporting this therapy are
mostly observational52. Whereas results from a recent meta-analysis of observational studies
suggest that augmentation therapy with AAT slows lung function decline in subjects with
moderately reduced lung function53, a meta-analysis of the only two published randomized
placebo-controlled trials concluded that there was not sufficient evidence to recommend this
therapy54. In spite of this controversy, augmentation therapy should be used while the
effectiveness, optimal dosage, therapeutic goals and target populations for this treatment are
further studied. Additional potential treatments for severe AAT deficiency are being
examined, including gene therapy55 and correction of the underlying genetic defect using
inducible stem cells56.

GENETICS OF COPD UNRELATED TO SEVERE AAT DEFICIENCY
Findings from studies of candidate genes for COPD susceptibility, reviewed in detail
elsewhere57, have yielded additional insight into our understanding of COPD pathobiology,
particularly for certain pathways (e.g., TGF-beta, matrix metalloproteinases)57–58. In
contrast to studies of one or few genes selected on the basis of known biology, GWAS are
hypothesis-free studies that leverage information from markers genotyped along the entire
genome, and can thus yield unanticipated discoveries and insights into disease pathogenesis.
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Findings from recent GWAS and other new approaches to study COPD genetics are the
focus of this review.

GWAS of COPD
Published GWAS of COPD are summarized in Table 1. In 2009, Pillai and colleagues
performed the first GWAS of COPD using a multi-stage replication design59. The discovery
(primary or initial) cohort comprised 823 subjects with COPD (cases) and 810 unaffected
smokers (controls) from Bergen, Norway. The 100 SNPs with the lowest P values in the
GWAS of this cohort were then tested for association with COPD in 1,891 members of 606
white families from the family-based International COPD Genetics Network (ICGN). Seven
of the 100 SNPs tested in ICGN showed significant evidence of association and were then
tested for association with COPD in 389 cases from the National Emphysema Treatment
Trial (NETT) and 472 smoking controls from the Normative Aging Study (NAS). Six of
these seven SNPs were also tested for association with lung function measures in 949
members of 127 families in the Boston Early-Onset COPD Study (BEOCOPD)60. Two
SNPs (rs8034191 and rs1051730) in the α-nicotinic acetylcholine receptor (CHRNA3/
CHRNA5/IREB2) locus on chromosome (chr.) 15 showed significant evidence of
association with COPD susceptibility in ICGN and NETT-NAS, and reached genome-wide
(GW) statistical significance in the analysis of three combined cohorts (Norway, ICGN and
NETT-NAS) but were not GW significant in the discovery cohort. Nominal evidence of
significant associations with FEV1 was also noted in BEOCOPD (P=0.03 for each
polymorphism) and ICGN (P= 1.04 × 10−4 for rs8034191 and 1.75 × 10−5 for rs1051730).
Polymorphisms in the gene for hedgehog interacting protein (HHIP) on chromosome 4 were
consistently replicated but did not reach GW statistical significance in the discovery cohort
or the combined analysis. The hedgehog signaling pathway has received continued attention
(see below) due to its involvement in branching morphogenesis of the lung61.

Family with sequence similarity 13, member A (FAM13A) was identified as a susceptibility
gene for COPD in a GWAS of a cohort comprising 4,320 subjects enrolled in three case-
control studies: Norway, NETT- NAS, and the multicenter Evaluation of COPD
Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE62)63. Replication was
then attempted in 502 cases and 504 controls from COPDGene (a multicenter study of the
genetics and epidemiology of COPD)64, BEOCOPD, and ICGN. A polymorphism in
FAM13A (rs7671167) on chr. 4q22.1 was associated with COPD in the discovery cohort
and in two of the three replication cohorts (combined P value= 1.2 × 10−11, combined odds
ratio (OR) in the case-control studies=0.76, 95% confidence interval [CI]=0.69–0.83). This
SNP was also associated with pre-bronchodilator FEV1 in BEOCOPD (P = 0.02) and with
pre- (P=5.3 × 10−5) and post-bronchodilator FEV1 in ICGN.

Intermediate phenotypes offer several advantages for genetic studies of complex diseases
such as COPD because they are objectively defined and may be influenced by fewer genes
than the disease per se. Kong et al. conducted a meta-analysis of GWAS results from the
Norway, ECLIPSE and NETT cohorts on percent emphysema from computed tomography
(defined by densitometry as the percentage of lung voxels at −950 Hounsfield Units, and
also qualitatively by visual scoring)65. Though no SNPs in any of the three cohorts were
significantly associated with emphysema, a SNP (rs10844154) in the gene for bicaudal
homolog 1 (BICD1) on chr. 12 reached GW significance for association in the meta-analysis
of emphysema (OR for at least mild emphysema=1.46, P= 5.2 × 10−7 and OR for at least
moderate emphysema=1.56, P=4.8 × 10−8) in computed tomography (CT). Interestingly, the
strongest signal in this study came from radiologist scoring rather than density mask analysis
though the authors stressed that this did not imply superiority of one method over the other.
The authors noted that variants in BICD1 are associated with length of telomeres, suggesting
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that a mechanism linked to accelerated aging may be involved in the pathogenesis of
emphysema.

Five SNPs in loci previously associated with COPD (HHIP, CHRNA3/CHRNA5/IREB2,
and FAM13A), were tested for association with COPD-related phenotypes (smoking
behavior, lung function, body mass index [BMI], fat-free body mass, BODE index66,
emphysema and airway wall thickness determined by CT) in ECLIPSE and then validated in
ICGN67. A SNP in the CHRNA3/CHRNA5 locus (rs8034191) was associated with
increased smoking intensity (expressed as pack-years), radiologist’s assessment of
emphysema on high-resolution CT of the chest, and airflow obstruction in the ECLIPSE and
ICGN cohorts. In ECLIPSE, subjects with COPD who were current or former smokers and
homozygous for the rs8034191 risk allele had 7.5 more cumulative pack-years of smoking
(P=0.002) than those who were heterozygous or homozygous for the non-risk allele; this
association was confirmed in the ICGN. SNPs in HHIP or FAM13A loci were not associated
with smoking intensity. A SNP in HHIP was associated with FEV1/FVC in the ECLIPSE
and ICGN cohorts; this SNP was also significantly associated with fat-free body mass and
COPD exacerbations in ECLIPSE. FAM13A SNPs were associated with lung function but
this association was not consistently significant across cohorts. These findings, taken
together with others, suggest that: 1) the CHRNA3/CHRNA5 locus, which has also been
associated lung cancer68, influences COPD-related phenotypes –at least partly-through its
effects on smoking behavior69; 2) the HHIP locus, which has also been associated with lung
cancer70 and lung function in subjects with asthma71, has effects on lung function and the
systemic component(s) of COPD; and 3) FAM13A influences lung function and airflow
obstruction.

Cachexia, which is common in subjects with advanced COPD, is associated with increased
severity of airflow obstruction and increased mortality. Wan et al. conducted a GWAS of
BMI in 2,950 subjects with COPD in three cohorts (ECLIPSE, Norway and NETT), with
replication attempted in 502 subjects from COPDGene72. A GWAS of fat-free mass index
(FFMI) was also conducted in the ECLIPSE and Norway cohorts. SNP rs8050136, located
in the intron of the fat mass and obesity–associated gene (FTO) was significantly associated
with BMI (P=4.97 × 10−7) and FFMI (p = 1.19 × 10−7) in the discovery cohort. Findings for
BMI were replicated in COPDGene (P=6 × 10−3). These findings suggest that FMO
influences anthropometric measures in subjects with COPD.

GWAS of Lung Function: Relevance to COPD
Spirometric measures of lung function such as FEV1 and FEV1/FVC are key intermediate
phenotypes of COPD. Thus, some genes that influence lung function in the general
population may also be relevant to the pathogenesis of COPD. Wilk and colleagues
conducted a GWAS of lung function measures in 7,691 participants in the Framingham
Heart Study (FHS) with validation in an independent cohort of 835 subjects in the Family
Heart Study that was enriched for airflow obstruction73. Four SNPs in tight linkage
disequilibrium (e.g., highly correlated) on chr. 4q31were significantly associated with FEV1/
FVC percent predicted in the discovery (FHS) cohort. The association between one of the
four SNPs (rs13147758) and FEV1/FVC was replicated in the Family Heart Study, in which
significant associations were also shown with FEV1 and binary airflow obstruction
phenotypes (particularly in smokers). The associated SNPs were not in a gene transcript but
were near HHIP, a candidate gene for COPD susceptibility (see above).

In a meta-analysis of GWAS results for lung function in 20,890 participants from four
CHARGE consortium studies (Atherosclerosis Risk in Communities, Cardiovascular Heath
Study, FHS, and the Rotterdam Study), HHIP and FAM13A (see above) were among the
eight loci associated with FEV1/FVC (the other six were GPR126, ADAM19, AGER-PPT2,
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PTCH1, PID1, and HTR4) at or near the threshold for GW statistical significance74. In a
separate study, a GWAS of lung function measures was conducted in 20,288 subjects of
European ancestry in the Spirometa Consortium (discovery cohort); this GWAS was then
followed by a meta-analysis of data for the top signals from the discovery cohort and 32,184
subjects in the CHARGE consortium, as well as in silico summary association data from
21,209 individuals from the CHARGE consortium and 883 individuals in the Health 2000
Survey75. This study confirmed the previously reported locus on chromosome 4q31 near
HHIP (see above) and identified five novel loci for FEV1 or FEV1/FVC: 2q35 in TNS1,
4q24 in GSTCD, 5q33 in HTR4, 6p21 in AGER and 15q23 in THSD4.

Two recent studies have assessed whether loci identified by GWAS on lung function also
influence COPD. Soler-Artigas and colleagues studied a large sample of subjects of
European ancestry (including individuals with and without COPD) and constructed a risk
score including six SNPs in HTR4, GSTCD, TNS1, AGER, THSD4, and near HHIP76.
Compared to subjects in a common baseline group, those in the highest risk category
(estimated as approximately 5% or Europeans) had a 1.6-fold increased risk of developing
COPD76. In another study, Castaldi et al tested whether 32 SNPs in or near 11 loci
associated with lung function in prior GWAS were associated with COPD in 5,362 subjects
in four cohorts (NETT-NAS, ECLIPSE, Norway, and the first 1000 subjects in
COPDGene)77. Of the previously identified susceptibility loci for lung function, three
genomic regions harbored polymorphisms associated with susceptibility to COPD at a 5%
false discovery rate: the FLJ20184/INTS12/GSTCD/NPNT locus on chromosome 4q24, the
chromosome 6p21 locus including AGER and PPT2, and the chromosome 5q33 locus that
includes ADAM19.

Beyond GWAS
As with other complex diseases, GWAS have identified susceptibility loci that explain a
modest fraction of the heritability (the proportion of variation in a phenotype due to genetic
factors) of COPD, with nominal explanation of disease risk78. Additional work is needed for
functional characterization and full assessment of variation in these susceptibility loci, as
well as for understanding their individual and combined (e.g., gene-by-gene and gene-by-
environment [i.e., smoking]) effects on COPD-related phenotypes.

Beyond GWAS, additional approaches to the study of COPD genetics include sequencing
exomes and/or the whole genome to identify rare susceptibility variants, and conducting
studies of integrative genomics (where genetic variants are evaluated for their contribution
to gene expression) and epigenetics (heritable changes in gene expression that occur without
changes in DNA sequence).

Genetic variants that are uncommon (minor allele frequency [MAF]=1%–4%) or rare (MAF
<1%) may confer greater susceptibility to COPD in certain individuals and/or ethnic groups.
Because the genotyping platforms used for GWAS of COPD predominantly include variants
with MAF ≥5%, they would not be able to detect these uncommon/rare variants with
moderate to strong genetic effects. Next-generation sequencing technologies provide this
capability79. Exome sequencing allows investigators to detect rare variants in protein-coding
regions of the genome. Compared to whole-genome sequencing, exome sequencing is less
expensive and thus allows studying a larger number of subjects80. Exome sequencing has
been successful in identifying the genetic etiology of a rare Mendelian disorder81 and is
currently being applied to the investigation of COPD. As prices of whole-genome
sequencing drop, this will become a feasible and attractive method to detect rare variants
with strong effects on COPD, particularly regulatory (non-coding) variants. Integration of
data from GWAS and sequencing studies with those from studies of gene expression and
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proteomics should allow researchers to focus on the most promising candidate genes for
COPD susceptibility.

Studying epigenetic mechanisms (including DNA methylation, histone modification, and
micro-RNA) provides a unique opportunity to examine the potential impact of demographic,
environmental and lifestyle factors (e.g., diet, aging, and cigarette smoking)82) on gene
expression in the lung and COPD. Whole-genome studies of DNA methylation, the best
characterized epigenetic mechanism, and COPD are now in progress.

SUMMARY
Although much remains to be done, recent advances and the advent of new methodologies
are promising and should yield increased understanding of the genetic and epigenetic
mechanisms influencing the pathogenesis of COPD, both related and unrelated to severe
AAT deficiency. Such understanding should ultimately be translated into novel approaches
to prevent, diagnose and treat COPD.
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Table 1

Genome-wide Association Studies of COPD and COPD-related Phenotypes

Reference Study Design Results Limitations

Pillai SG, et
al. (2009)59

GWAS of COPD in 1,633
participants in a case-control
study in Norway, with
subsequent replication of top
results in additional cohorts
(ICGN, NETT-NAS, and
BEOCOPD)

1 Two SNPs in the CHRNA3/CHRNA5/
IREB2 locus on chromosome (chr.) 15
(rs803491 and rs1051730) were
significantly associated with COPD in two
replication cohorts (ICGN and NETT-
NAS) and in a combined analysis
including the discovery (Norway) cohort

2 These SNPs were also associated with
lung function in ICGN and BEOCOPD

1 No genome-wide
significant association
with any SNP in the
discovery cohort

2 No functional data

Cho MH, et
al. (2010)63

GWAS of COPD in 4,320
subjects in three case-
control studies: Norway,
NETT-NAS, and ECLIPSE.
Replication was attempted
in the COPDGene,
BEOCOPD and ICGN
studies.

A SNP in FAM13A, rs7671167, was significantly
associated with COPD in the discovery cohort and in
two of three replication cohorts (combined P=1.2 ×
10−11, combined odds ratio for case-control studies
0.76, 95% confidence interval 0.69–0.83).

1 No functional data

Kong X, et
al. (2011)65

GWAS of percent
emphysema detected by
computed tomography (CT)
in the Norway, ECLIPSE,
and NETT studies.

1 A SNP (rs10844154) in BICD1 on chr. 12
was significantly associated with
emphysema in the meta-analysis of the
three cohorts (OR for at least mild
emphysema=1.46, P= 5.2 × 10−7 and OR
for at least moderate emphysema=1.56,
P=4.8 × 10−8)

2 Strongest signals came from radiologist
scoring rather than density mask analysis

1 No GW significant
association with
emphysema in any of
the three individual
cohorts

2 No functional data

Wan E, et al.
(2011)72

GWAS of body mass index
(BMI) in ~3,000 subjects
with COPD in three cohorts:
ECLIPSE, Norway, and
NETT, with replication
attempted in 502 subjects in
COPDGene. A GWAS of
fat-free mass index (FFMI)
in COPD subjects was
conducted in ECLIPSE and
Norway

SNP rs8050136, located in the intron of the fat mass
and obesity–associated gene (FTO) was significantly
associated with BMI P=4.97 × 10−7) and FFMI (p =
1.19 × 10−7) in the discovery cohort. Findings for BMI
were replicated in COPDGene (P=6 × 10−3).

1 No functional data

SNP = single nucleotide polymorphism
ICGN = International COPD Genetics Network
NETT = National Emphysema Treatment Trial
NAS = Normative Aging Study
BEOCOPD = Boston Early-Onset COPD
Genetic Epidemiology of COPD: COPDGene Study
HRCT = high resolution computed tomography of the thorax
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