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Abstract
Although in cancer research microarray gene profiling studies have been successful in identifying
genetic variants predisposing to the development and progression of cancer, the identified markers
from analysis of single datasets often suffer low reproducibility. Among multiple possible causes,
the most important one is the small sample size hence the lack of power of single studies.
Integrative analysis jointly considers multiple heterogeneous studies, has a significantly larger
sample size, and can improve reproducibility. In this article, we focus on cancer prognosis studies,
where the response variables are progression-free, overall, or other types of survival. A group
minimax concave penalty (GMCP) penalized integrative analysis approach is proposed for
analyzing multiple heterogeneous cancer prognosis studies with microarray gene expression
measurements. An efficient group coordinate descent algorithm is developed. The GMCP can
automatically accommodate the heterogeneity across multiple datasets, and the identified markers
have consistent effects across multiple studies. Simulation studies show that the GMCP provides
significantly improved selection results as compared with the existing meta-analysis approaches,
intensity approaches, and group Lasso penalized integrative analysis. We apply the GMCP to four
microarray studies and identify genes associated with the prognosis of breast cancer.
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1. Introduction
Cancer is a disease of the genome. The development of microarray technologies makes it
possible to simultaneously profile the expressions of thousands of genes, searching for those
associated with the development and progression of cancer. This article focuses on cancer
prognosis studies, where the response variables are progression-free, overall, or other types
of survival. Microarray studies have been conducted on the prognosis of breast cancer,
ovarian cancer, lung cancer, lymphoma, and other types of cancers [1]. Significant progress
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has been made. As an example, with breast cancer prognosis, several gene signatures have
been validated in wet labs and are currently being tested in prospective clinical studies [2].

Despite promising successes, markers identified from the analysis of single-cancer
microarray studies often suffer a lack of reproducibility. This problem has been noted in
multiple studies [3–5] and can also be partly seen from our numerical study in Sections 4
and 5. There are multiple possible causes for the lack of reproducibility. First, the
microarray profiling technique is still not perfect. The gene expression measurements are
noisy and subject to measurement errors. Although profiling techniques have been
significantly improved in the past few years, the corresponding improvement in the
reproducibility of identified markers has not been observed. Second, most cancer prognosis
microarray studies are retrospective and do not have strict subject selection criteria. The
heterogeneity among study subjects may reduce the comparability of gene signatures. The
lack of reproducibility caused by difference in study subjects can be partly improved by
properly adjusting for demographic and other variables in the construction of gene
signatures. Third, it is possible that multiple distinct sets of genes belong to the same
pathways and/or have the same biological functions. Pathway-based and network-based
studies have been conducted, which have led to improved reproducibility for some gene
signatures. The last and perhaps the most important reason for the lack of reproducibility is
the small sample sizes and hence lack of power of single studies—a typical cancer
microarray study profiles the expressions of ~103–4 genes on ~102–3 subjects.

For the prognosis of multiple cancers including for example breast cancer, ovarian cancer,
and lymphoma, there are multiple independent studies sharing comparable designs. In
addition, many researchers have made raw data from their studies publicly available. Data
warehouses that host cancer microarray studies include GEO, Array Express, Oncomine,
and others. Thus, a cost-effective remedy for the lack of power and lack of reproducibility
problem is to pool and analyze data from multiple comparable studies. A series of recent
studies show that, despite the heterogeneity among studies, pooling and analyzing multiple
datasets may significantly improve reproducibility [5–7].

Multi-dataset approaches can be classified as meta-analysis and integrative analysis
approaches. In meta-analysis, multiple datasets are analyzed separately. Then summary
statistics, for example the lists of identified markers or p-values, are combined across
multiple datasets. Integrative analysis, in contrast, pools and analyzes raw data. A family of
integrative analysis approaches, referred to as ‘intensity approaches’ in the literature,
transform gene expressions from different studies and different platforms to the same
reference distributions. After transformation, multiple datasets are combined and analyzed
using single-dataset approaches. A significant drawback of intensity approaches is that they
need to be conducted on a case-by-case basis with no generically applicable transformation.
In recent studies, Ma and Huang [5], Ma et al. [8], and others developed approaches that do
not require the full comparability of measurements from different studies/platforms. Those
studies focus on diagnosis studies with categorical response variables under the logistic
regression model. Performance of those approaches with prognosis studies has not been
investigated. In addition, the approach in [5] does not have a well-defined objective
function. The group bridge approach in [8] is computationally expensive.

To overcome the limitations of current genome-wide profiling studies and translate the
research results into real clinical practice, we need to identify a small set of markers, use
high-quality Clinical Laboratory Improvement Amendments certified assays to measure the
mRNA expressions of these markers for patient samples, and then develop and validate
prediction models in well-designed clinical studies. As this type of clinical studies is very
expensive and time consuming, accurate identification of markers is crucial. The goal of this
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study was to accurately identify a set of cancer prognosis markers using a novel integrative
analysis approach which can combine information from multiple heterogeneous studies.
Through simulation studies and data example, we shall show that the proposed method can
significantly improve the accuracy of marker identification. As discussed in [6, 7] and
others, additional complications in analysis of multiple datasets (compared with analysis of
single datasets) may include data selection, interpretation of identified markers, utilization of
identified markers, and others. As they are not the focus of this study, we acknowledge their
importance but refer to published studies for established guidelines.

For cancer prognosis studies, we describe the relationship between survival and gene
expressions using the accelerated failure time (AFT) model. Unlike the Cox or additive risk
models, the AFT model describes the event time directly and may have more lucid
interpretations [9]. It has been adopted in [10–13] and several other studies for modeling
prognosis data with microarray measurements. For marker selection, we adopt a group
minimax concave penalty (GMCP) penalization approach. Penalization approaches have
been extensively adopted for variable selection with single high-dimensional datasets. The
literature is too vast to be reviewed here. With single prognosis studies, available
penalization approaches include Lasso, elastic net, Smoothly Clipped Absolute Deviation
(SCAD), bridge, minimax concave penalty (MCP), their extensions and many others. Those
approaches have been developed for the analysis of single datasets and cannot be directly
applied to the analysis of multiple heterogeneous datasets. Ma et al. [8] adopts a two-norm
group bridge approach for the analysis of binary classification data with logistic regression
models. Its performance with survival data has not been investigated. The GMCP approach
is proposed in [14] for the analysis of single datasets. This study differs significantly from
[14] along the following aspects. Huang et al. [14] analyzes continuous response variables
under the linear regression model, whereas this study analyzes censored survival data. In
[14], the grouping structure comes from dummy variables for categorical data or clusters of
covariates. In contrast, in this study, the grouping structure comes from effects of single
genes in multiple studies and is naturally defined.

This study has been motivated by the prevalence of cancer prognosis studies with gene
expression measurements, effectiveness of integrative analysis in improving the
reproducibility of identified markers, and the significant difference in data and model
settings from existing integrative analysis studies. The rest of the article is organized as
follows. In Section 2, we describe the data and model settings. In Section 3, we describe
marker selection using the GMCP. We also develop an effective computational algorithm.
We conduct a simulation study in Section 4 and analyze four breast cancer prognosis studies
in Section 5. The article concludes with discussion in Section 6.

2. Integrative analysis of multiple cancer microarray prognosis studies
The strength of meta-analysis and integrative analysis lies in their ability to borrow
information across multiple datasets. To make this feasible, when pooling and analyzing
multiple datasets, it is usually required that those datasets share certain common ground [7].
As the goal of this study is to identify cancer genomic markers, we focus on the scenario
where multiple datasets share the same set of markers. This can be achieved by carefully
evaluating and selecting datasets using for example the Minimum Information About a
Microarray Experiment criteria and personal expertise. A representative example is the
pancreatic cancer study in [6]. In addition, for data deposited at the National Center for
Biotechnology Information, GEO datasets have been assembled by GEO staff using a
collection of biologically and statistically comparable samples. With those selected studies,
it is reasonable to expect that they share the same set of markers.
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In microarray studies, measurements from different studies and different platforms (for
example cDNA and Affymetrix) are not directly comparable, which makes directly combing
multiple datasets inappropriate. There is no guarantee that cross-study (platform)
normalization or transformation always exists. In addition, other confounders may alter the
relationship between gene expressions and cancer outcomes. For example, for both smokers
and nonsmokers, gene NET1 is a marker for the development of lung cancer. However, the
strengths of associations measured with magnitudes of regression coefficients are different
between the two groups.

2.1. Data and model settings
Suppose that there are M independent studies measuring the same cancer prognosis
outcomes, and within each study, there are the same d gene expressions. With the
pangenomic arrays becoming the routine practice, the matched gene sets can often be
achieved. The discussion on partially matched gene sets is postponed to Section 4. Let T1,
…, TM be the logarithms (or other known monotone transformations) of the failure times
and X1, …, XM be the length d covariates (gene expressions). For m = 1, …, M, assume the
AFT model

(1)

Here αm is the unknown intercept, βm ∈ ℝd is the regression coefficient vector, βm′ is the
transpose of βm, and εm is the random error with an unknown distribution. Denote C1, …,
CM as the logarithms of random censoring times. Under right censoring, observations are
(Ym, δm, Xm for m = 1 … M. Here Ym = min(Tm, Cm) and δm = I(Tm ≤ Cm).

To more explicitly describe the essential data and model settings, consider a hypothetical
example with four independent studies and d = 1000 gene expressions. Assume that only the
first two genes are associated with prognosis. A hypothetical set of regression coefficients
are presented in Table I. The regression coefficients and corresponding statistical models
have the following features. First, only the first two prognosis-associated genes have
nonzero regression coefficients. That is, the models are sparse. Marker identification
amounts to discriminating genes with nonzero coefficients from those with zero coefficients.
Second, as the four studies share the same set of markers, the four models have the same
sparsity structure. Third, to accommodate heterogeneity, the nonzero coefficients of markers
are allowed to differ across studies. This strategy has been proved to be effective in [5, 15]
and others.

2.2. Weighted least squares estimation
With the AFT model, popular estimation approaches include those proposed in [16,17]
among others. A common drawback of those approaches is the high computational cost,
which makes them unsuitable for gene expression data. A computationally more affordable
approach is the weighted least squares estimation developed in [18]. Particularly, this
estimation approach has been applied to gene expression data in [11,13].

In study m(= 1, … M), assume nm iid observations ( ), i = 1 … nm. Denote the
total sample size n = Σm nm. Let F̂m be the Kaplan–Meier estimate of Fm, the distribution

function of Tm. It can be computed as . Here  are

the order statistics of s. Denote  as the associated censoring indicators and

 as the associated covariates. s are the jumps in the Kaplan–Meier estimate
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and can be computed as  and  for i = 2 … nm. For
study m, the weighted least squares objective function is defined as

We center  and  as  and . We
define the overall objective function as

(2)

where β = (β1, …, βM) is the d × M regression coefficient matrix.

The objective functions Rms are not normalized by sample size. Thus, larger datasets have
more contributions. This is intuitively reasonable as larger studies have more power and thus
should have more ‘weights’.

3. Marker selection using group minimax concave penalty
For marker selection in analysis of single datasets, Zhang [19] proposes the MCP approach.
With MCP, the penalty function is defined as

where λ is the penalty parameter and γ is the regularization parameter. x+ = max(0, x).

The most popular penalty is the Lasso penalty, where the penalty is a linear function of the
absolute value of the regression coefficient. However, as it applies ‘too much penalty’ to
large regression coefficients and ‘too little penalty’ to small regression coefficients, the
Lasso tends to over-select. Under certain data and model settings, a few penalties,
particularly including the bridge, SCAD, MCP, and adaptive Lasso, have been shown to
have the selection consistency property. With small regression coefficients, the MCP applies
the same amount of penalization as the Lasso. When regression coefficients increase, the
degree of penalty decreases. When |t|> γλ, the penalty drops to zero.

Consider the integrative analysis settings described in Section 2. Denote  as the j th

component of βm.  is the j th row of β and represents the coefficients of gene
j across M studies. Define

Ma et al. Page 5

Stat Med. Author manuscript; available in PMC 2012 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

where  is the L2 norm.

The GMCP penalty has been motivated by the following considerations. When M = 1 (a
single dataset), the GMCP simplifies to the MCP penalty, which has been shown to have the
selection consistency property [19]. In integrative analysis of multiple prognosis studies, for
a specific gene, we need to evaluate its overall effects in multiple datasets. To achieve such
a goal, we treat its M regression coefficients as a group and conduct group-level selection.
When a group is selected, the corresponding gene is identified as associated with prognosis.
Otherwise, it is identified as noise. Within specific groups, as genes are expected to have
consistent (either all zero or all nonzero) effects across multiple studies, the L2 group norm
is adopted.

The GMCP penalization approach adopted in this study differs from the one in [13] along
the following aspects. The first and most significant difference comes from the data
structure. In [13], the grouping structure comes from clusters of covariates within single
datasets. In contrast, in this study, one group corresponds to one gene but from multiple
independent datasets. Second, Huang et al. [13] investigates continuous data, whereas we
analyze censored survival data. Third, in [13], the L2 norm is rescaled by the sample
variance–covariance matrix. Such a rescaling is necessary in [13] as covariates in the same
groups tend to be correlated. In contrast, in this study, different components within the same
groups correspond to different independent datasets. Thus, in this study, we choose not to
conduct the rescaling, which may make the penalized estimates more intuitive and more
interpretable. In addition, unlike in [13], different groups have the same sizes—all equal to
the number of independent studies. Thus, rescaling of parameter λ is not needed.

3.1. Computational algorithm
We use a group coordinate descent approach, which is a natural extension of regular
coordinate descent algorithm, to compute the proposed GMCP estimate. In analysis of single
datasets, the coordinate descent algorithm has been extensively used for computing
penalized estimates [20]. The group coordinate descent algorithm is the integrative analysis
counterpart of the algorithm described in [21] and proceeds as follows.

Algorithm
1. Initialize β̂ = 0;

2. for j = 1, …, d,

a. With the current estimate β̂, define β̂(j), which is a d × M matrix with its
kth row β̂(j)k = β̂k for k ≠ j. The j th row of β̂(j)j = b =(b1, …, bM) is the
vector of unknown regression coefficients of gene j.

b. Compute β̂ = argmin{R(β̂(j)) + nρ(||b||2; λ, γ)};

c. Update β̂j = b̂;

3. Repeat step 2 until convergence. In numerical study, we use the L2 norm of the
difference between two consecutive β̂ < 0.01 as the stopping rule. With our
simulated and breast cancer data, convergence is achieved within 20 iterations.
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The above algorithm only involves iterative computations of the marginal GMCP estimates,
which can be obtained as follows. Denote b̃ = argminR(β̂(j)). Note that because usually n ≫
M and because of the simple least squared format of R, b̃ can be easily obtained. The
marginal GMCP estimate is then

(4)

The above procedure only involves simple calculations. Thus, the proposed algorithm,
although iterative, is computationally affordable.

3.2. Tuning parameter selection
The GMCP involves two tuning parameters, λ and γ, which jointly determine properties of
the GMCP estimates. Specifically, with a fixed γ, a larger value of λ leads to fewer genes
identified as associated with prognosis. With a fixed λ, as γ → ∞, the proposed GMCP
estimates converge to group Lasso-type estimates, as can be seen from the definition of the
penalty. As γ → 0, the GMCP estimates converge to AIC/BIC-type estimates. In our
numerical study, we adopt V-fold cross validation for tuning parameter selection. For λ, we
search over the discrete grid of 2…, −1, −0.5, 0, 0.5, 1, …,. For γ, we search over the discrete
grid of 1.5, 2.0, …, 5.5, 6. We have numerically experimented with alternative tuning
parameter selection approaches, including BIC, AIC, and leave-one-out cross validation
(results omitted). We find that other tuning parameter selection techniques do not
significantly outperform V-fold cross validation. We choose V-fold cross validation because
of its computational simplicity.

4. Simulation study
For simplicity of notation, we have assumed matched gene sets across multiple studies.
When different sets of genes are measured in different studies, we use the following
rescaling approach. Assume that gene 1 is measured only in the first K(< M) studies. We set

 and replace ρ(||β1||2; λ, γ)with . The proposed
approach and computational algorithm are then applicable with minor modifications.

Our simulation settings closely mimic pharmacogenomic studies, where genes have the
pathway structures. Genes within the same pathways tend to have correlated expressions,
whereas genes within different pathways tend to have weakly correlated or independent
expressions. Among large number pathways, only a few are associated with the responses.
Within those important pathways, there are some important genes, and the rest are noises.
Specifically, we simulate data for four independent studies, each with 100 subjects. We
simulate 50 or 100 gene clusters, with 20 genes in each cluster. Thus, the total number of
gene expressions simulated is 1000 or 2000. Gene expressions have marginally normal
distributions. Genes in different clusters have independent expressions. For genes within the
same clusters, their expressions have the following correlation structures: (i) auto-regressive
correlation, where expressions of genes j and k have correlation coefficient ρ|j−k|; (ii) banded
correlation, where expressions of genes j and k have correlation coefficient max(0, 1 −|j − k|
×ρ); and (iii) compound symmetry, where expressions of genes j and k have correlation
coefficient ρ when j ≠ k. Under each correlation scenario, we consider two different ρ values
(weak and strong correlations). Within each of the first four clusters, there are five genes
associated with the responses. There are thus a total of 20 important genes, and the rest are
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noises. For important genes, we generate their regression coefficients from Unif[0.5, 1]. Ten
per cent of important and noisy genes are only measured in two studies. We note that for a
specific important gene, its regression coefficients in the four studies are separately
simulated. Thus, with probability 1, they are not equal, reflecting the heterogeneity across
studies. We generate the log event time from the AFT model with intercept equal to 0. The
censoring time is generated independent of event. We adjust the censoring time distribution
so that the censoring rate is ~50%.

To better gauge performance of the proposed approach, we also consider the following
alternatives. (i) Meta-analysis. We first analyze each dataset separately. Genes that are
identified in at least one study are identified in meta-analysis. An alternative is to consider
genes identified in all four studies. However, we have examined all simulation settings and
found that there are only a few such genes. When analyzing each dataset, we consider both
the Lasso and MCP; (ii) an intensity approach. Since all four datasets are generated under
similar settings, we adopt an intensity approach, make transformations of gene expressions,
combine the four datasets, and analyze as if they were from a single study [22]. For the
combined dataset, we analyze using both the Lasso and MCP; and (iii) integrative analysis
with group Lasso (GLasso). The proposed GMCP approach is the integrative analysis
counterpart of the MCP. Following a similar strategy, it is possible to extend the Lasso
penalty to its integrative analysis counterpart—the GLasso penalty. With all the six
approaches, we select the tuning parameters using fourfold cross validation. Different
approaches have different ways of accommodating the heterogeneity across studies. With
meta-analysis, only the lists of identified genes are pooled, which are expected to be
consistent across studies. Intensity approaches attempt to remove the heterogeneity via
transformations prior to analysis. In contrast, integrative analysis approaches accommodate
the heterogeneity by allowing for different regression coefficients across studies.

Simulation suggests that the GMCP approach is computationally affordable. Its
computational cost is comparable with that of meta-analysis and lower than that of intensity
approaches. With GMCP, analysis of one replicate (with 2000 genes) takes about 3 min on a
desktop PC. Summary statistics on the numbers of genes identified and true positives based
on 200 replicates are shown in Table II. We can see that, although the meta-analysis
approaches can identify the majority or all of the true positives, they also identify a large
number of false positives. The intensity approaches can significantly outperform the meta-
analysis approaches. The satisfactory performance of intensity approaches is not surprising,
considering that the four simulated datasets are very similar to each other—the degree of
similarity is higher than that encountered in practical data analysis. The integrative analysis
approaches outperform alternatives by identifying the majority or all of true positives and a
smaller number of false positives. Among the integrative analysis approaches, the GMCP
significantly outperforms the GLasso by identifying a much smaller number of false
positives, at the price of a very small number of false negatives. We have also experimented
with a few other simulation settings and reached similar conclusions.

5. Analysis of breast cancer prognosis studies
Among women in the USA, breast cancer is the most commonly diagnosed malignancy after
skin cancer and is the second leading cause of cancer deaths after lung cancer. According to
the American Cancer Society, in 2009, an estimated 192,370 new cases of breast cancer
were diagnosed, and 40,160 died from breast cancer. Women in the USA have a one in eight
lifetime risk of developing invasive breast cancer and a one in 33 overall chance of dying
from it. Biomedical studies suggest that genomic measurements may have independent
predictive power for breast cancer prognosis [1, 2]. Multiple gene profiling studies have
been conducted, searching for genomic measurements with predictive power for breast
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cancer prognosis. We collect and analyze four breast cancer prognosis studies with
microarray measurements. The same datasets have been analyzed in [4, 23]. Analysis in this
study differs significantly from that in [4,23]. Specifically, the previous studies investigate
the marginal effects by analyzing genes or pathways separately. In contrast, in this study, we
assume that prognosis is associated with the combined effects of multiple genes.

We provide brief descriptions of the four studies in Table III and refer to the original
publications for more detailed information. Among the four datasets, two used cDNA, one
used oligonucleotide arrays, and one used Affymetrix genechips for profiling. We first
conduct normalization of gene expressions for each dataset separately. With Affymetrix
chips, the measurements are log2 transformed. We impute missing expressions with means
across samples. We then standardize each gene expression to have zero mean and unit
variance. The proposed approach does not require the direct comparability of measurements
from different studies. Additional transformations, which are necessary for intensity
approaches, are not needed. We match genes in the four studies using their Unigene Cluster
IDs. Although the proposed approach can accommodate partially matched gene sets, for
reliability, we focus on the 2555 genes that are measured in all four studies.

With the GMCP approach, 13 genes are identified as associated with breast cancer prognosis
(Table IV). Searching literature suggests that several of the identified genes may have sound
biological implications, which may partly support the effectiveness of the proposed
approach. Particularly, gene RLF has been shown to be in fusion with gene MYCL1, which
is an established marker for multiple cancers particularly including breast cancer [24]. Gene
IRAK1 encodes the interleukin-1 receptor-associated kinase 1, one of the two putative
serine/threonine kinases that become associated with the interleukin-1 receptor (IL1R) upon
stimulation. Its involvement in breast cancer development has been investigated in [25]. The
protein encoded by gene RNF14 contains a RING zinc finger, a motif known to be involved
in protein–protein interactions. This protein interacts with androgen receptor (AR) and
functions as a coactivator that induces AR target gene expression. A dominant negative
mutant of this gene has been demonstrated to inhibit the AR-mediated growth of cancer. The
protein encoded by gene GLS is the major enzyme yielding glutamate from glutamine.
Significance of this enzyme derives from its implication in behavior disturbances in which
glutamate acts as a neurotransmitter. Its implication in breast cancer has been discussed in
[26] and references therein. Adenine phosphoribosyltransferase belongs to the purine/
pyrimidine phosphoribosyltransferase family. A conserved feature of this gene is the
distribution of CpG dinucleotides. This enzyme catalyzes the formation of adenosine
monophosphate and inorganic pyrophosphate from adenine and 5-phosphoribosyl-1-
pyrophosphate. It also produces adenine as a by-product of the polyamine biosynthesis
pathway. Its implication in breast cancer is inferred in [27]. In [28], gene GSN is found co-
expressed with ALCAM (activated leukocyte cell adhesion molecule), which is
overexpressed in many mammary tumors. The protein encoded by gene RAD50 is highly
similar to Saccharomyces cerevisiae Rad50, a protein involved in DNA double-strand break
repair. This protein, cooperating with its partners, is important for DNA double-strand break
repair, cell cycle checkpoint activation, telomere maintenance, and meiotic recombination.
Knockout studies of the mouse homolog suggest that this gene is essential for cell growth
and viability. Gene PIGC encodes an endoplasmic reticulum associated protein that is
involved in glycosylphosphatidylinositol (GPI) lipid anchor biosynthesis. The GPI lipid
anchor is a glycolipid found on many blood cells and serves to anchor proteins to the cell
surface. Chitotriosidase, encoded by gene CHIT1, is secreted by activated human
macrophages and is markedly elevated in the plasma of Gaucher disease patients. It is
expressed and secreted by several types of solid tumors including glioblastoma, colon
cancer, breast cancer and malignant melanoma. Vasodilator-stimulated phosphoprotein
(VASP) is a member of the Ena-VASP protein family. VASP is associated with filamentous
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actin formation and likely plays a widespread role in cell adhesion and motility. VASP may
also be involved in the intracellular signaling pathways that regulate integrin–extracellular
matrix interactions.

We note that the estimated regression coefficients are in general small. This is mainly
caused by the ‘small event times’ after the logarithm transformation. In addition, as other
penalization approaches, the GMCP has the shrinkage property. It is possible to re-estimate
the regression coefficients using only the identified markers to partly release the shrinkage.

Besides the GMCP, we also analyze data using the alternative approaches described in
Section 4 and present summary results in Table V. More details are available from the
authors. As seen in simulation, meta-analysis approaches identify a relatively large number
of genes, with small overlap among the sets of genes identified in different datasets. Both
the intensity and integrative analysis approaches identify a small number of genes. The
genes identified using the proposed approach can differ significantly from those identified
using alternatives. The number of overlapped genes ranges from 1 to 12.

With practical data, it is difficult to objectively evaluate marker identification accuracy. As
an alternative, we evaluate prediction performance, which may provide an indirect
evaluation of gene identification accuracy. It is expected that if the identified markers are
more meaningful, prediction using those markers is more accurate. Specifically, we first
split each dataset randomly into a training set and a testing set, with sizes 3:1. We carry out
the GMCP estimation (which involves tuning parameter selection via cross validation and
penalized estimation and marker selection) with the training set only and then make
prediction for subjects in the testing set. Based on the predicted β̂m′Xm, we generate two
risk groups with equal sizes. The logrank statistic is computed to evaluate the difference
between survival of the two groups. For each random split, we compute the mean logrank
statistics over four datasets. To avoid an extreme split, we repeat the whole process 50
times, compute the mean logrank statistics, and present the results in Table V. The proposed
approach has the best prediction performance, with the logrank statistic equal to 6.576.

6. Discussion
In cancer prognosis studies with gene expression measurements, markers identified from
analysis of single datasets often suffer low reproducibility because of small sample sizes and
hence lack of power. Several published studies suggest that pooling and analyzing multiple
studies with comparable designs may improve power and reproducibility. In this study, with
multiple heterogeneous cancer prognosis studies, we adopt a GMCP penalization approach
for marker selection. The proposed approach is intuitive and has affordable computational
cost. Numerical studies, including simulation and analysis of breast cancer prognosis
studies, suggest satisfactory performance of the proposed approach.

When modeling survival, we adopt the AFT model, which is one of the most extensively
used survival models. It is of interest to investigate similar penalized integrative analysis and
marker selection with alternative models such as the Cox model. However, single-dataset
studies suggest that such an extension is highly nontrivial and warrants separate
investigation. The proposed penalty has been motivated by the MCP penalty for the analysis
of single datasets. When analyzing single datasets, a few other penalties, including the
bridge, SCAD, and adaptive Lasso, have the selection consistency properties. We conjecture
that it is possible to develop the integrative analysis counterparts of those penalties. As
analysis of single datasets does not suggest the superiority of any penalty over the MCP, we
will not further discuss other penalties. In this study, we investigate performance of the
proposed approach via extensive numerical studies. With a single dataset, continuous
response variable (no censoring), and simple linear regression model, Huang et al. [14] show
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that asymptotic properties of the GMCP penalty can be extremely difficult to establish. The
present data setting is significantly more complicated than that in [14] because of censoring.
We postpone asymptotic studies to future research. Simulation study clearly establishes the
superiority of the proposed approach. We choose MCP for comparison in meta-analysis and
intensity approach because its penalization framework is closest to the proposed one. Lasso
is also compared as it has been used as a benchmark in many studies. We acknowledge that
a large number of alternative penalties can also be used in meta-analysis and intensity
approach. However, as their performance is expected to be comparable with or inferior to
that of MCP, we focus on MCP and Lasso for comparison. In analysis of breast cancer data,
the proposed GMCP identifies the shortest list of genes, which can lead to more focused
hypothesis for future validation studies and hence may be preferred. The satisfactory
prediction performance partly supports the validity of proposed model and marker selection
approach. With high dimensional prognosis data, there is still no well-established model
diagnostics tool. Thus, model checking is not conducted. The identified markers need to be
validated in independent studies before any clinical usage.
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Table I

Matrix of regression coefficients for a hypothetical study with four datasets and 1000 genes. Only the first two
genes are associated with prognosis.

Gene

Dataset

D1 D2 D3 D4

1 0.20 0.05 0.13 0.27

2 −0.11 −0.17 −0.12 −0.21

3 0 0 0 0

… …

999 0 0 0 0

1000 0 0 0 0
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Table III

Breast cancer prognosis studies.

Reference Platform Gene Sample

Sorlie et al. [29] cDNA 8102 58

van’t Veer et al. [30] Oligonucleotide 24,481 78

Huang et al. [31] Affymetrix 12,625 71

Sotiriou et al. [32] cDNA 7650 98
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Table V

Analysis of breast cancer prognosis studies. With meta analysis approaches, numbers in the ‘()’ are the
number of genes identified with each individual datasets. Overlap: number of overlapped genes with those
identified with GMCP.

Approach Gene Overlap Logrank

Meta-analysis Lasso 81 (25, 20, 24, 13) 10 2.661

MCP 59 (10, 13, 16, 21) 8 1.612

Intensity approach Lasso 32 2 1.884

MCP 24 1 3.849

Integrative analysis GLasso 42 12 2.100

GMCP 13 – 6.576
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