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Two types of stem cells are currently defined in small

intestinal crypts: cycling crypt base columnar (CBC) cells

and quiescent ‘þ 4’ cells. Here, we combine transcrip-

tomics with proteomics to define a definitive molecular

signature for Lgr5þ CBC cells. Transcriptional profiling of

FACS-sorted Lgr5þ stem cells and their daughters using

two microarray platforms revealed an mRNA stem cell

signature of 384 unique genes. Quantitative mass spectro-

metry on the same cell populations identified 278 proteins

enriched in intestinal stem cells. The mRNA and protein

data sets showed a high level of correlation and a com-

bined signature of 510 stem cell-enriched genes was

defined. Spatial expression patterns were further charac-

terized by mRNA in-situ hybridization, revealing that

approximately half of the genes were expressed in a

gradient with highest levels at the crypt bottom, while

the other half was expressed uniquely in Lgr5þstem cells.

Lineage tracing using a newly established knock-in mouse

for one of the signature genes, Smoc2, confirmed its stem

cell specificity. Using this resource, we find—and confirm

by independent approaches—that the proposed quiescent/

‘þ 4’ stem cell markers Bmi1, Tert, Hopx and Lrig1 are

robustly expressed in CBC cells.
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Introduction

The epithelium of the small intestine represents a prototypic

example of a mammalian stem cell-driven self-renewing

tissue. The epithelium consists of luminal protrusions called

villi, and pit-like recessions called crypts. A small number of

stem cells reside at crypt bottoms. Daughter cells exit the

stem cell compartment into the transit amplifying (TA)

compartment. TA cells go through 4–5 divisions of unusually

short duration, that is, 12 h (Marshman et al, 2002). During

this process, the TA cells move towards the crypt-villus

junction and differentiate into enterocytes, goblet cells and

enteroendocrine cells. These differentiated cells continue to

move upwards towards the tip of the villus. Upon reaching

the villus tip after 2–3 more days, the differentiated cells

undergo apoptosis and are shed into the gut lumen. A fourth

cell type, the Paneth cell, also derives from the stem cells, but

migrates towards the crypt bottom where it resides for 6–8

weeks (Bjerknes and Cheng, 2006).

Recently, we have described that small cycling cells located

between the Paneth cells, previously termed as crypt base

columnar (CBC) cells (Cheng and Leblond, 1974), specifically

express the Lgr5 gene (Barker et al, 2007). By lineage tracing,

we demonstrated that these Lgr5þ cells generate all cell

lineages of the small intestinal epithelium over the lifetime

of the animal. Similar data were published utilizing a Prom1/

Cd133-based lineage tracing strategy (Zhu et al, 2009).

Deletion of adenomatous polyposis coli (Apc), the first hit

in colorectal cancer initiation, leads to adenoma formation

specifically in Lgr5þ stem cells and thus these cells can be

regarded as the cell-of-origin for intestinal cancer (Barker

et al, 2009). As further proof of their stem cell identity, we

demonstrated that single Lgr5þ cells can be cultured into

ever-growing epithelial organoids, which possess all

characteristics of the epithelial tissue in the living animal

(Sato et al, 2009). In the colon, hair follicle and stomach, Lgr5

also marks stem cells (Barker et al, 2007, 2010; Jaks et al,

2008). Clonal Lgr5-derived colon organoids can be grafted

into recipient mice to yield functionally normal epithelium

that persists for 46 months (Yui et al, 2012). The related Lgr6

gene is expressed by a population of multipotent skin stem

cells (Snippert et al, 2010b).
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Potten et al (1974) have previously postulated that a

cycling, yet DNA label-retaining cell residing at position

þ 4 relative to the crypt bottom represents a stem cell

population. Sangiorgi and Capecchi (2008) have employed

lineage tracing based on Bmi1 expression, which reportedly

occurred specifically in þ 4 cells. Long-term lineage tracing

was observed with kinetics that were similar to the kinetics

obtained in the Lgr5-based tracing experiments. Contrasting

with the previous report, we observed that Lgr5þ cells

express the highest levels of Bmi1 as determined by cell

sorting and qPCR analysis (van der Flier et al, 2009a).

Furthermore, single molecule mRNA in-situ hybridization

revealed that the Bmi1 transcripts are expressed throughout

the entire crypt (Itzkovitz et al, 2011). This broad expression

pattern of Bmi1 was also observed in a recent publication

analysing in detail the starting position of lineage tracing

from the Bmi1 locus (Tian et al, 2011). Three other markers

are proposed more recently for the quiescent ‘þ 4’ cell: Hopx

(Takeda et al, 2011), Tert (Montgomery et al, 2011) and Lrig1

(Powell et al, 2012). In an independent study, Lrig1 was

found to be expressed highest in CBC cells (Wong et al,

2012). Together, these studies suggest that Lgr5þ cells

appear to be the ‘workhorse stem cells’ fuelling the daily

self-renewal of the small intestine, while a pool of quiescent

‘reserve’ Lgr5 negative (Lgr5� ) stem cells may exist above

the crypt base (Li and Clevers, 2010). However, based on the

discrepant studies on marker gene expression, it appears of

paramount importance to obtain detailed molecular

signatures for the two stem cell types before definitive

conclusions can be drawn. The availability of a knock-in

mouse expressing GFP from the Lgr5 locus allows the

isolation of CBC stem cells from the intestine (Barker et al,

2007), providing a unique entry to understand ‘stemness’

(Vogel, 2003) and the in vivo differentiation process of this

tissue (Simons and Clevers, 2011). Therefore, we have

characterized transcriptomic and proteomic differences

between Lgr5þ stem cells and their daughter cells enabling

us to define a definitive Lgr5 intestinal stem cell (ISC)

signature.

Results

Transcriptomic profile of Lgr5þ stem cells

Transcriptional differences between ISCs and their daughter

cells can be explored by use of the Lgr5-EGFP-ires-CreERT2

knock-in (Lgr5-ki) mouse (Supplementary Figure S1A; Barker

et al, 2007). In this mouse model, GFP expression is driven

from the Lgr5 locus, leading to highest GFP levels in Lgr5þ

cells (GFPhigh). Yet, due to the stability of the GFP protein, it

is distributed upon cell division to the daughter cells, which

form a clearly distinguishable daughter cell population

(GFPlow). Previously, we performed a gene expression

analysis of intestinal Lgr5þ stem cells, which led to the

identification of the transcription factor Ascl2 as a regulator

of ISC fate (van der Flier et al, 2009a). Since then, we have

systematically optimized the workflow for Lgr5þ cell sorting,

resulting in a better separation of different GFP cell fractions

and shorter isolation time, minimizing sample manipulation

and, ultimately, leading to better RNA quality for

transcriptional profiling. Here, two independent microarray

platforms (Affymetrix and Agilent) were used to compare

ISCs and their daughters (Supplementary Figure S1B). These

two expression array platforms were chosen for their distinct

configurations (two colours versus one colour) and their

ability to complement each other (Patterson et al, 2006). A

comparison to our previously published Agilent data set

revealed that the average intensity of established stem cell

genes (e.g., Lgr5, Ascl2, Olfm4 and Tnfrsf19) in the GFPhigh

fraction increased by seven-fold upon using the improved

FACS sorting procedure, resulting in a five-fold increase

(56 versus 274) in the number of identifiable stem cell-

enriched genes.

For the Affymetrix platform, ratios for all 20 819 unique

genes represented on the arrays were calculated (Figure 1A).

Using a combination of statistical significance and fold

change (see Materials and methods), a set of 379 stem cell-

enriched genes was defined (Figure 1A; Supplementary Table

S1). For Agilent arrays, 13 967 unique genes were consistently

expressed above background (Figure 1B) from which 291

genes were found to be expressed significantly higher in the

stem cells (Figure 1B; Supplementary Table S2). Comparing

the two platforms, we found an overall good correlation of

r¼ 0.85 (Figure 1C). Nevertheless, a strikingly low overlap

(161 genes) was observed when the stem cell signatures of

the two platforms were compared (Figure 1D). The subse-

quent inspection of the non-overlapping genes revealed that a

substantial fraction (59 and 164 genes, respectively) was

enriched 41.5-fold, although not significantly, in the other

platform (Figure 1D). Combining the genes that were sig-

nificant in both platforms with the genes significant in one

and enriched 41.5-fold in the other platform, we could

define a high-confidence list of 384 stem cell-enriched tran-

scripts (referred to as the ‘mRNA stem cell signature’;

Supplementary Table S3). From the genes that remained to

be defined by only one of the two microarray platforms, 72%

(51/71) and 57% (31/54) showed a low enrichment (log2 of

40.2 and o0.58) on the other platform (Supplementary

Tables S4 and S5). Thus, although the two platforms show

a high level of concordance, the necessity to define thresholds

for the definition of significantly changed genes is the reason

for missing a substantial number of stem cell-enriched genes.

Our results demonstrate that Agilent and Affymetrix plat-

forms complement each other and may be used in parallel if a

high level of comprehensiveness is desired.

Proteomic profile of Lgr5þ stem cells

mRNA levels do not always reflect the abundance of the

translated protein (Schwanhausser et al, 2011). Therefore,

examination of the actual protein content might give further

insight into the molecular stem cell signature. We applied a

mass spectrometry (MS)-based proteomics approach to study

the protein content of Lgr5þ cells and their daughter cells

(Supplementary Figure S1C), confidently identifying 7967

unique protein groups (Supplementary Figure S2;

Supplementary Tables S6 and S7). Among them, we obtained

an excellent representation of proteins that are known to be

expressed at a low-copy number in mammalian cells includ-

ing 648 transcription factors, 276 protein kinases and 248

signalling molecules. Of note, Lgr5 itself was not identified.

The identification of plasma membrane proteins by MS is

challenging due to insolubility in standard proteomic sample

preparations. Nevertheless, our data set contains 1278

proteins with predicted trans-membrane domains (Krogh

et al, 2001), and Gene Ontology analyses detected no

Transcriptomic and proteomic signature of Lgr5þ stem cells
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underrepresentation of this protein class (plasma membrane;

P40.05). However, Lgr5 encodes a 7-transmembrane (7-TM)

receptor expressed at low levels (van der Flier et al, 2009b).

Both the high hydrophobicity and low expression probably

contributed to its absence in our MS survey. Indeed, Gene

Ontology analyses showed a clear underrepresentation of

7-TM proteins in our data set (G-protein coupled receptors;

P¼ 8.4E–54). For 92% of the identified proteins, mRNA

expression was confirmed in the transcriptomic profiling,

demonstrating the confidence of our proteomic data set.

Most importantly, 4817 unique proteins were quantified in

common in two biological replicates (6075 in total)

(Figure 2A; Supplementary Figures S3 and S4;

Supplementary Table S8). In all, 278 were found to be

enriched 41.5-fold (consistently in both replicates) in stem

cells (referred to as the ‘protein stem cell signature’;

Supplementary Table S9). Our proteomic data confirmed

several proteins previously described to be specific for the

Lgr5þ stem cells, such as Ascl2 (van der Flier et al, 2009a),

Olfm4 (van der Flier et al, 2009b), Sox9 (Bastide et al, 2007)

and Msi1 (Kayahara et al, 2003; Potten et al, 2003)

(Figure 2A).

Complementary transcriptomic and proteomic profiling

define the ISC signature

Having established both the mRNA and protein signatures of

ISCs, we next asked if post-transcriptional regulation might

play an important role in regulating specific protein levels.

The overall correlation between the mRNA and protein data

was high (r¼ 0.78 for Agilent and r¼ 0.80 for Affymetrix;

Supplementary Figure S5). This result, besides authenticating

both the mRNA and the proteomic measurements, suggests

that the ISC phenotype as well as the early differentiation

process is strongly regulated at the transcriptional level. Of

the 278 proteins in the ‘protein stem cell signature’, 72 were

found in the ‘mRNA stem cell signature’ (Figure 2B).

Additionally, 147 proteins were 41.5-fold enriched in either

both or one array platform and were added to the combined

signature (Figure 2B). Nevertheless, some genes were found

enriched at the mRNA level, but not at the protein level and

vice versa. For 27 genes of the ‘mRNA stem cell signature’, no

enrichment was found in the Lgr5þ stem cells although the

protein product was detected by MS (Supplementary Table

S10). As proteins are the main mediators of biological func-

tions, these genes are unlikely to play a specific biological

role in stem cells and were therefore subtracted from the

signature. Conversely, no array platform could detect a sig-

nificant enrichment on the mRNA level for 59 proteins within

the ‘protein stem cell signature’ (Figure 2B). Nevertheless,

78% (46/59) of these proteins were enriched (yet below the

significance level) in at least one of the array platforms

(Supplementary Table S11). For only five proteins, no enrich-

ment on mRNA level was found. Therefore, post-transcriptional

regulation did not appear to represent a major mechanism

regulating protein levels of ISC-related genes. Nevertheless, the

MS data allowed us to define a set of 147 proteins, which could

be added to the signature due to their consistent enrichment in

Lgr5þ cells on both protein and mRNA levels. As a result of the

combined proteomic and transcriptomic profiling, we were able

to define a set of 510 genes with stem cell-enriched expression,

which we termed the ‘intestinal stem cell signature’ (Figure 2B;

Supplementary Table S12).
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Expression pattern of novel Lgr5 stem cell-enriched

genes within the intestinal crypt

Subsequently, we investigated the spatial expression pattern

of genes enriched in the intestinal stem cell. Enriched genes

may exhibit different expression patterns, that is, they may be

entirely CBC restricted or display a more extensive gradient

within the crypt (Supplementary Figure S1D). We attempted

to perform RNA in-situ hybridization for the 33 genes found

in all three data sets (Figure 2B). Of these, no or non-specific

staining was obtained for 11 genes, most likely reflecting low-

level expression of the pertinent gene. The expression pattern

of five genes was already known (Ascl2, Cd44, Msi1, Olfm4

and Sox9). From the remaining 17 genes, 9 showed a gradient

within the crypt with highest expression at the crypt bottom

(Afap1l1, Agr3, Cnn3, Dach1, Slc12a2, Slco3a1, Sorbs2, Tns3

and Vdr; Supplementary Figure S6). Finally, for eight genes

an expression pattern restricted to the very bottom of the

crypt in the stem cell zone was observed (Aqp4, Cdca7, Cdk6,

Clca4, Kcnq1, Nav1, Smoc2 and Soat1; Figure 3). Thus, these

results confirmed the findings derived from the transcrip-

tomic and proteomic screenings and provided additional

information on the specificity for Lgr5 stem cells.

Smoc2 is expressed specifically in ISCs in vivo

To validate the list, we studied one of the novel CBC marker

genes, Smoc2, in more detail. The Xenopus laevis orthologue

of Smoc1/2 has been described as a BMP signalling inhibitor

(Thomas et al, 2009). BMP signalling is active in the

intestinal villus compartment where it inhibits de-novo
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crypt formation (Haramis et al, 2004), and its inhibition by

Noggin is essential to maintain intestinal organoid cultures

(Sato et al, 2009). As Noggin is not expressed in the intestinal

epithelium, Smoc2 expression by ISCs might be a physio-

logical way to block BMP signalling in the stem cell niche. To

confirm the stem cell-specific expression of Smoc2, we

generated a Smoc2-EGFP-ires-CreERT2 knock-in (Smoc2-ki)

mouse model in analogy to the Lgr5-ki (Figure 4A).

Homozygous Smoc2-ki mice, constituting functional Smoc2

null mice, did not show any intestinal nor gross non-intest-

inal phenotype. As expected, GFP expression was detected in

CBC cells (Figure 4B). Similarly to the Lgr5-ki, variegated

expression of the transgene was detected throughout the

small intestine. Lineage tracing performed in Smoc2-ki mice

crossed with the R26R-LacZ Cre reporter strain resulted in

typical stem cell tracings events: long-lived ‘ribbons’ span-

ning the entire crypt-villus axis (Figure 4C). This new stem

cell-specific mouse model validated the usefulness of the Lgr5

signature for defining stem cell-related genes in vivo.

Expression pattern of proposed quiescent ‘þ4’ marker

genes in the intestinal crypt

We then interrogated the Lgr5 stem cell signature for the

expression behaviour of the quiescent/‘þ 4’ stem cell

markers mentioned above, that is, Bmi1, Tert, Hopx and Lrig1.

Of note, all these markers were validated in the initial studies by

genetic lineage tracing (Sangiorgi and Capecchi, 2008;

Montgomery et al, 2011; Takeda et al, 2011; Powell et al,

2012). Both array platforms detected a slight enrichment of

Bmi1 (1.4-fold in Affymetrix and 1.6-fold in Agilent), Tert (1.4-

fold and 1.3-fold) as well as of Hopx (1.6-fold and 1.7-fold) in

Lgr5þ stem cells. Lrig1 showed a 42-fold enrichment in Lgr5þ

stem cells (3.2-fold 2.3-fold). Proteomics did not detect protein

expression of Bmi1 and Tert, probably due to their low

expression levels. The highly expressed Hopx and Lrig1 were

detected by proteomics in Lgr5þ stem cells as well as their

daughter cells, with Hopx showing a slight (1.3-fold) and Lrig1

a clear enrichment (2.5-fold) in Lgr5þ stem cells.

We then documented the expression of these four genes in

an independent sorting experiment in which we arbitrarily

subdivided all Lgr5-GFP positive cells into five fractions

(Figure 5A). The four lower fractions were individually

hybridized against the highest (5þ ) GFP fraction on

Agilent arrays, allowing us to draw detailed gradient plots

along the crypt axis. In addition, we performed qPCR for the

four genes on cDNA obtained in an independent sorting

experiment. As expected, the CBC stem cell markers Lgr5

and Olfm4 were strongly enriched in Lgr5þ stem cells

(Figure 5B). Of the four proposed quiescent/‘þ 4’ markers,

Hopx and Lrig1 were most highly expressed in the 5þ
fraction (Figure 5C and D). Bmi1 showed no difference

between the highest four fractions and only then dropped

in expression (Figure 5E), while Tert was expressed at rather

similar levels throughout the fractions (Figure 5F).

To further validate these expression data on unmanipulated

crypts, we performed single molecule mRNA hybridizations

for all marker genes, as published before (Itzkovitz et al,

2011; Figure 6). Lgr5 was most exclusively expressed in cells

intermingled with Paneth cells. Olfm4, Lrig1 and Hopx were

enrichedat the bottom of crypts, but the expression gradient

extended to varying degrees above the Paneth cell compart-

ment. Tert and Bmi1 appeared expressed at similar low levels

throughout the crypt with the inclusion of the Paneth cell

zone. We did not detect specific enrichment of mRNA mole-

cules of any marker at the ‘þ 4’ position, nor did we detect

heterogeneity between crypts, making an enrichment at this

position in only a low fraction of crypts unlikely.

We next addressed the expression pattern of the encoded

proteins. A recent study documented that Lrig1 protein

expression is highest in Lgr5þ stem cells and forms an

extended expression gradient along the crypt axis in perfect

accordance to its mRNA expression pattern (Wong et al,

2012). Tert enzymatic activity has been shown to be highest

in CBC stem cells (Schepers et al, 2011). Immuno-

histochemistry for Hopx, Bmi1 (including Bmi1-mutant

crypts as negative control) and Olfm4 revealed the expected

extended expression domains as observed at the mRNA level

(Figure 7).

Since these data are in direct disagreement with previous

studies, we focused on the prototypic quiescent/‘þ 4’ marker

Bmi1. We next asked, if the reported tracing initiation percen-

tage of 95% (86/91 crypts) at the ‘þ 4/þ 5’ position might be

a specific feature of the Bmi1-ires-CreER knock-in mouse

(Sangiorgi and Capecchi, 2008). To revisit this model, we

crossed the single colour R26R-LacZ reporter or the multi-

colour R26R-confetti reporter into this strain. Cre activity was
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induced by a single injection of tamoxifen in adult offspring

and the first 10 cm of the small intestine were analysed, exactly

as performed previously (Sangiorgi and Capecchi, 2008). In

both models, the reporters became visible at 20 h after

tamoxifen induced Cre activation (p.i.), as reported

(Sangiorgi and Capecchi, 2008; Figure 8). Tracing events at

this time point typically presented as single cells. In contrast to

the original report, we noted that these single marked cells

appeared at any position along the crypt-villus axis, for

example, at the CBC location between Paneth cells

(Figure 8A, E and I), at the þ 4 position directly above the

Paneth cells (Figure 8B, F and J), higher up in crypts (Figure 8C

and G) and even on the villus flanks (Figure 8D and H). When

the number of marked cells at each cell position along the

crypt axis was quantified, a substantial number of tracing

events was found to occur within the CBC compartment

(positions 1–4), and that almost 70% of tracing events oc-

curred in TA cells (position þ 5 and higher). We even noted

rare tracing events at 20 h p.i. in fully differentiated Goblet

cells (Supplementary Figure S7A and B), as well as Paneth

cells at crypt bottoms (Supplementary Figure S7C and D). No

tracings were seen in uninduced mice. As predicted from these

observations, most tracing events evolved into ‘signature’

tracings from TA cells at 2 and 3 days p.i.: small trains of

differentiated cells that move upwards within the crypt

(Supplementary Figure S7F, G and J) or already reached the

flanks of the villi, to be ‘washed’ out within the next 24–48 h

by apoptosis at villus tips (Supplementary Figure S7H, K and

L). More rarely, we observed extended tracing within crypts,

typically initiating in the Lgr5 stem cell compartment (e.g.,

Supplementary Figure S7E and I).

Discussion

In this study, we have attempted to generate a definite Lgr5

stem cell signature by using two different array platforms,

thus measuring both mRNA and protein levels in FACS-

sorted, highly pure cell populations. The double transcrip-

tomic approach indeed resulted in an increase (46-fold) in

the number of identified stem cell-enriched genes compared

with our previous report (van der Flier et al, 2009a). As a

poor correlation between mRNA and protein levels has been

documented before in several biological systems including

mouse embryonic stem cells (Lu et al, 2009), analyses at both

levels appear to be of importance. The proteomic analysis of a

limited number of FACS-sorted stem cells necessitates a
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Figure 4 Smoc2 marks intestinal stem cells in vivo. (A) An EGFP-ires-CreERT2 cassette was inserted at the translational start site of Smoc2 by
homologous recombination, followed by excision of the Neo cassette by Cre mediated recombination. (B) Endogenous GFP expression was
readily detectable in crypt base columnar cells, the Lgr5þ stem cells of the small intestine. Of note, the expression of GFP was patchy as in the
Lgr5-ki mouse, indicating a silencing in the majority of crypts. (C) Lineage tracing in Smoc2-EGFP-ires-CreERT2/R26RLacZ mice showed long-
term labelling (46 month) of intestinal stem cells and revealed typical intestinal stem cell tracing events.
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strategy that balances comprehensive proteome coverage and

quantitative precision with sensitive sample preparation. The

use of metabolically labelled rodents has been reported (Wu

et al, 2004; Krüger et al, 2008). Although precision and

sensitivity of the procedure is excellent, it is a high-cost

technology considering the large number of animals

required to obtain sufficient material. Alternatively, label-

free approaches can be used, though multiple replicas are

necessary to control technical variability (Luber et al, 2010).

Often, such an approach precludes the use of multiple

separations, reducing protein identifications and limiting

comprehensiveness. Here, we combined a highly sensitive

chemical labelling method with a refined SCX fractionation to

quantify proteome changes (Munoz et al, 2011). The analysis

of 300 000 cells (B30mg of total protein) resulted in the

quantification of 4817 unique proteins from which 278

showed enrichment in the stem cells.

Comparison of the proteomic data with the mRNA data

revealed an overall good correlation. Even the most differen-

tially expressed genes such as Olfm4, Nav1 and Hmgsc2

exhibited an excellent agreement between mRNA and protein

levels. The combination of the proteomic data with the

transcriptomic data further refined the stem cell signature.

Genes only enriched at the mRNA level (n¼ 27) could be

removed from the list, whereas a substantial number of genes

(n¼ 147) could be added to the signature, as a clear enrich-

ment at both mRNA and protein levels was detected. The

applied ‘minimum 2 out of 3’ strategy outperformed the use

of absolute cutoff values or statistical tests and resulted in the

definition of a comprehensive ISC signature comprising 510

genes. An overview of the GO categories in which the Lgr5

signature genes fall is given in Figure 9.

One of the immediate uses of this resource is the definition

or validation of stem cell markers. For the alternative stem

cell of the small intestinal crypt, the quiescent/‘þ 4’ cell, the

molecular markers Bmi1, Tert, Hopx and Lrig1 have been

reported (Sangiorgi and Capecchi, 2008; Montgomery et al,

2011; Takeda et al, 2011; Powell et al, 2012). We readily detect

expression of all four genes in Lgr5þ CBC cells and find no

evidence for specific enrichment of any of these markers

outside the Paneth cell/Lgr5 stem cell zone. Our observations

confirm that Bmi1 is expressed at relatively low, yet equal

levels in all crypt cells (Itzkovitz et al, 2011). Furthermore,

our reassessment of the Bmi1-ires-CreER knock-in mouse

does not agree with the originally published observation

that this mouse marks a unique population of Lgr5 negative

quiescent/‘þ 4’ cells (Sangiorgi and Capecchi, 2008). Bmi1

tracing can initiate in any cell type in the crypt, as predicted
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by our expression array, single-molecule marker analysis and

immunohistochemistry. Of note, the same observation

concerning the initiation of Bmi1-based lineage tracing was

reported in Tian et al (2011) and the broad protein expression

pattern of Bmi1 has been independently documented in

Takeda et al (supporting Figure 7 in Takeda et al, 2011).

Lrig1 and Hopx expression is highest in Lgr5high cells and

tapers off further up in the crypt. Finally, Tert is expressed at

very low levels throughout the crypt, as we published

previously (Schepers et al, 2011). From these data, we

conclude that lineage tracing or organoid-culturing

experiments using these mouse models will report

characteristics of Lgr5þ stem cells. While the existence of a

quiescent reserve stem cell population should not be

excluded (Li and Clevers, 2010), our data imply that Bmi1,

Hopx, Tert and Lrig1 cannot be used as a marker for such

cells. Finally, de Sauvage and colleagues have shown in an

elegant genetic model that selectively killed Lgr5 cells can be

replenished from Lgr5–/Bmi1þ cells elsewhere in the crypt

(Tian et al, 2011). Both Potten and colleagues (Marshman

et al, 2002) and Cheng and Leblond (1974), the discoverers of

the CBC cell, have postulated that TA cells above the stem cell

zone may display plasticity upon damage, and revert to stem

cells. Given our observation that all cells in the crypt express

Bmi1, it appears attractive to revive this concept of TA cell

plasticity and postulate that they serve as reserve cells upon

damage to the stem cell compartment.

In conclusion, the Lgr5þ ISC signature reported in this

study represents a rich resource for functional studies of Lgr5

stem cells in the intestine and for comparative studies on

other candidate ISC populations.
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figures show average expression profiles (patches are standard
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Figure 7 Protein expression pattern of Bmi1 and Hopx.
Immunohistochemistry was performed on small intestine of wild-
type mice. Bmi1-stained cells at equal levels throughout the crypt.
Control staining (insert i) was performed on small intestine of
Bmi1-knockdown mice. A representative crypt is shown in insert
(ii). Hopx showed nuclear staining in the bottom half of the crypt.
A representative crypt is shown in the insert. Olfm4 expression was
restricted to the crypt bottom.
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Materials and methods

Cell sorting
Freshly isolated small intestines of Lgr5-ki mice were incised along
their length and villi were removed by scraping. The tissue was then
incubated in PBS/EDTA (5 mM) for 5 min. Gentle shaking removed
remaining villi and intestinal tissue was subsequently incubated in
PBS/EDTA for 30 min at 41C. Vigorous shaking yielded free crypts
that were incubated in PBS supplemented with Trypsin (10 mg/ml)
and DNAse (0.8mg/ml) for 30 min at 371C. Subsequently, cells were
spun down, resuspended in SMEM (Invitrogen) and filtered through
a 40-mm mesh. GFP-expressing cells were isolated using an MoFlo
cell sorter (DAKO). Approximately 300 000 cells were sorted per
population for each experiment.

Transcriptomic analysis
The Affymetrix analysis was performed on a genome-wide mRNA
expression platform (Affymetrix HT MG-430 PM Array Plate).
Labelled material from clearly distinguishable GFPhigh and GFPlow

populations (Lgr5 stem cell and daughter cell populations, respec-
tively) was hybridized individually on single colour arrays.
Three independent experiments were performed, resulting
in six arrays (three for GFPhigh and three for GFPlow). The expres-
sion data extracted from the raw files were normalized with the
RMA-sketch algorithm from Affymetrix Power Tools. Data
were analysed using the R2 web application, which is freely
available at http://r2.amc.nl. In total, 20 819 unique genes are

represented on the array. If a gene was represented with multiple
probes, we selected the one with the highest average expression
level across the six arrays. Expression levels were averaged for the
three GFPhigh and GFPlow arrays, respectively, and ratios calculated.
ANOVA with false discovery rate (FDR) correction for multiple
testing was applied to all 20 819 genes. An FDR-corrected P-value
(ANOVA) of o0.1 together with an expression difference of 42-fold
(log2 of 1) as well as an average expression level in the GFPhigh

arrays 420 was defined as a threshold for significantly changed
genes.

For Agilent arrays, 4� 44K Agilent Whole Mouse Genome dual
color Microarrays (G4122F) were used. Two independent experi-
ments were performed. In the first, GFPhigh and GFPlow populations
(Lgr5 stem cell and daughter cell populations, respectively) were
hybridized directly against each other on two-colour arrays. Two
replicates were performed in dye swaps to compensate for dye bias,
resulting in four individual arrays. For the second experiment, GFP-
positive cells were arbitrarily sorted in five fractions ranging from
highest GFP levels (fraction 5þ ) to the lowest GFP fraction (1þ ).
The lower GFP fractions 1þ to 4þ were hybridized each against
the highest GFP fraction 5þ . The experiment was performed with
dye swaps, resulting in eight individual arrays. Array data were
normalized using Feature Extraction (V.9.5.3, Agilent) and data
analyses were performed using Excel (Microsoft). Features were
flagged and not further analysed, if signal intensities for both the
Cy3 and Cy5 channel did not pass the Feature Extraction Filter
‘Significant and Positive’ or ‘Well above Background’. For the first
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experiment (GFPhigh versus GFPlow), 21 720 features passed this
filter and were additionally found in all four arrays. Some genes are
contained multiple times within these 21 720 features. To remove
redundancy, we selected for each gene the feature with the highest
expression level (average of Cy3 and Cy5 channel over all four
arrays). This resulted in a list of 13 967 unique genes. The average
of all four arrays was used to compare mRNA expression ratios with
Affymetrix arrays or protein expression ratios. SAM (Statistical
Analysis of Microarrays) analysis was used to calculate q-values
(FDR-adjusted P-values) for all 13 967 genes (Tusher et al, 2001). A
q-value of o0.05% together with an average expression difference
of 42-fold (log2 of 1) was defined as a threshold for significantly
changed genes.

Microarray data for the GFPhigh and GFPlow Agilent and
Affymetrix arrays are publicly available in the GEO repository
(http://www.ncbi.nlm.nih.gov/geo) under the super-series record
GSE33949. The Agilent arrays containing the five fraction data can
be found under the record GSE36497.

Proteomic analysis
Lgr5þ stem cells and daughter cells (Supplementary Table S6) were
pelleted by centrifugation at 2500 g for 10 min at 41C. Cell lysis was
performed in a buffer containing 8 M urea in a solution of 50 mM
ammonium bicarbonate pH 8.2 with protease and phosphatase
inhibitors (Roche). Proteins (B30 mg) were first reduced/alkylated
and digested for 4 h with Lys-C. The mixture was then diluted four-
fold and digested overnight with trypsin. Resulting peptides were

chemically labelled with stable isotope dimethyl labelling as de-
scribed previously (Boersema et al, 2009). Briefly, Lgr5þ stem cells
peptides were labelled with a mixture of formaldehyde-H2 and
sodium cyanoborohydride (‘light’ reagent). For daughter cells
peptides, formaldehyde-D2 with cyanoborohydride (‘heavy’
reagent) was used. A second biological replica experiment was
performed where labels were swapped. The ‘light’ and ‘heavy’
dimethyl labelled samples were mixed in 1:1 ratio based on total
peptide amount, which was determined by running an aliquot of the
labelled samples on a regular LC-MS/MS run and comparing overall
peptide signal intensities. Prior to the MS analysis, samples were
fractionated to reduce the complexity using a strong cation
exchange (SCX) system as described earlier (Pinkse et al, 2008).
The SCX system consisted of an Agilent 1100 HPLC system (Agilent
Technologies, Waldbronn, Germany) using a C18 Opti-Lynx
(Optimized Technologies, Oregon OR) trapping cartridge and a
Zorbax BioSCX-Series II column (0.8 mm i.d.� 50 mm length,
3.5mm). The labelled peptides were dissolved in 10% FA and
loaded onto the trap column at 100ml/min and subsequently
eluted onto the SCX column with 80% acetonitrile and 0.05% FA.
SCX Solvent A consists of 0.05% formic acid in 20% acetonitrile
while solvent B was 0.05% formic acid, 0.5 M NaCl in 20%
acetonitrile. The SCX salt gradient is as follows: 0–0.01 min
(0–2% B); 0.01–8.01 min (2–3% B); 8.01–18.01 min (3–8% B);
18.01–28 min (8–20% B); 28–38 min (20–40% B); 38–44 min
(40–90% B); 44–48 min (90% B); 44–74 min (0% B). A total of 50
SCX fractions (1 min each, i.e., 50-ml elution volume) were collected
and dried in a vacuum centrifuge.

Figure 9 Functional classification of genes from the intestinal stem cell signature. Genes comprising the intestinal stem cell signature were
functionally classified with PANTHER (www.pantherdb.org) by molecular function. Annotations were manually checked and, when
applicable, re-assigned to a different category based on literature. The figure represents 279 genes for some of the most functionally relevant
categories. The complete list containing all 510 genes enriched in stem cells can be found in Supplementary Table S12.
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Nanoflow LC-MS/MS was carried out by coupling an Agilent 1200
HPLC system (Agilent Technologies) to an LTQ-Orbitrap Velos mass
spectrometer (Thermo Electron, Bremen, Germany) as described
previously (Frese et al, 2011). Collected SCX fractions were dried,
reconstituted in 10% formic acid and delivered to a trap column
(AquaTM C18, 5 mm (Phenomenex, Torrance, CA); 20 mm� 100-mm
inner diameter, packed in-house) at 5ml/min in 100% solvent A
(0.1 M acetic acid in water). Next, peptides eluted from the trap
column onto an analytical column (ReproSil-Pur C18-AQ, 3mm
(Dr Maisch GmbH, Ammerbuch, Germany); 40 cm� 50-mm inner
diameter, packed in-house) at 100 nl/min in a 90-min or 3-h
gradient from 0 to 40% solvent B (0.1 M acetic acid in 8:2 (v/v)
acetonitrile/water) depending on sample amount and complexity.
Eluted peptides were introduced by ESI into the mass spectrometer
that was operated in a data-dependent acquisition mode. After the
survey scan (30 000 FHMW), the 10 most intense precursor ions
were selected for subsequent fragmentation in a data-dependent
decision tree as described before (Frese et al, 2011) using HCD
(essentially beam type CID), ETD-IT and ETD-FT activation
techniques. In brief, doubly charged peptides were subjected to
HCD fragmentation and higher charged peptides were fragmented
using ETD. The normalized collision energy for HCD was set to
35%. ETD was enabled with supplemental activation and the
reaction time was set to 50 ms for doubly charged precursors.

Raw files were processed with Proteome Discoverer (Beta version
1.3, Thermo). Peptide identification was carried out with Mascot 2.3
(Matrix Science) against a concatenated forward-decoy SwissProt
mouse database (version 56.2, 31 862 entries). The following para-
meters were used: 50 p.p.m. precursor mass tolerance, 0.6 Da frag-
ment ion tolerance for ETD-IT, and 0.02 Da for HCD and ETD-FT
modes. Up to three missed cleavages were accepted, carbamido-
methylation of cysteines was set up as fixed modification whereas
methionine oxidation and ‘light’ and ‘intermediate’ dimethyl labels
as variable modifications. Mascot results were filtered afterwards
with 10 p.p.m. precursor mass tolerance, Mascot Ion Score 420 and
a minimum of 7 residues per peptide. Using these criteria, FDRs
were calculated: 1.26% for biological replica 1 (1577 decoy PSMs
and 242 439 forward PSMs) and 1.46% for biological replica 2 (1806
decoy PSMs and 247070 forward PSMs). Panther was used to
classify proteins by GO terms. The official gene symbols (HUGO)
were used to compare the transcriptomic and proteomic data sets.

The MS data associated with this manuscript can be downloaded
from the website ProteomeCommons.org under the Tranche hash:

hbKgQ0wYwJjRbUNEwGnJcANtg7LMLC4l4gDpCySnM4snf7uCT
4dy27ReNSI3MTUqJOFLoCYneGOcz7Qn3rKvQdhb9GQAAAAAAA
AGfw¼ ¼

mRNA in-situ hybridization
RNA in-situ hybridization was performed as described before
(Gregorieff et al, 2005). The in-situ hybridization probes utilized
in this study correspond to Mammalian Gene Collection (MGC)
clones obtained through Source BioScience.

Generation of the Smoc2 knock-in mouse
Smoc2-EGFP-ires-CreERT2 knock-in (Smoc2-ki) mice were generated
by homologous recombination in embryonic stem cells targeting an
EGFP-ires-CreERT2 cassette at the translational start site of Smoc2
(Figure 5A). Details of embryonic stem cell targeting are described
elsewhere (Barker et al, 2007). In adult mice, Cre-recombinase was
activated in Smoc2þ /ki;RosaLacZ reporterþ /Rep mice by IP injection of
tamoxifen (Sigma, T5648). Mice were maintained within the animal
facilities at the Hubrecht Institute, and experiments were performed
according to the national rules and regulations of the Netherlands.

qPCR analyses
qPCR analyses were performed as described before (van der Flier
et al, 2009a). cDNA was synthesized from 0.5mg of total RNA of five
(1þ to 5þ ) GFP-positive cell fractions (see Transcriptomic
Analysis above) from an independent sorting experiment as for

the arrays from Lgr5-EGFP-ires-CreERT2 mice using random primers,
according to manufacturer’s instructions (Promega). Primer
sequences are given in Supplementary Table S14.

Single molecule mRNA in-situ hybridization
Single molecule mRNA in-situ hybridization was performed as
described before (Raj et al, 2008). Probe libraries consisted of
typically 48 probes 20 bp of length complementary to the coding
sequence. Probe libraries for Lgr5, Olfm4, Tert and Bmi1 can be
found elsewhere (Itzkovitz et al, 2011). Probe libraries for Hopx and
Lrig1 can be found in Supplementary Table S13. Each crypt was
analysed based on 12 z-stacks spaced 0.3mm apart and multiple
crypts (Lgr5: 337 crypts, Bmi1: 168 crypts, mTert: 30 crypts, Olfm4:
30 crypts, Hopx: 30 crypts, Lrig1: 30 crypts).

Immunohistochemistry
Bmi1 (Abcam, #ab14389) was diluted 1:100 in TBST/10% goat serum.
Control staining was performed on small intestine of Bmi1-knock-
down mice (Maarten van Lohuizen, NKI, The Netherlands; to be
described elsewhere). Hopx (Santa Cruz, #sc-30216) was diluted 1:500
in PBS. Antigen retrieval was performed using citrate buffer. Olfm4
(Abcam, #ab85046) was diluted 1:200 in TBST/5% goat serum.

Bmi1-ires-CreER lineage tracing
Bmi1-ires-CreER (Sangiorgi and Capecchi, 2008), R26R-LacZ
(Soriano, 1999) and R26R-Confetti (Snippert et al, 2010a) mice
were described previously. Tamoxifen induction was performed
according to Sangiorgi and Capecchi (2008). In brief, Bmi1-CreER/
R26R-LacZ and Bmi1-CreER/R26R-Confetti mice, 5–9 weeks
of age, were injected with 9 mg tamoxifen (20 mg/ml) per 40 g
body weight. Standard techniques were applied for immuno-
histochemistry. Sectioning and staining of Bmi1-CreER/R26R-
Confetti was performed according to Snippert et al (2011).
Lysozyme antibody used was Polyclonal Rabbit Anti-Human
(Dako A0099). Secondary antibody used was Alexa 647, Goat
anti-Rabbit (Invitrogen 56834A). Confocal images were acquired
using a Leica Sp5 AOBS microscope. Images were processed using
ImageJ, Photoshop and Volocity (Perkin-Elmer).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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