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Composition of the summer photosynthetic pico and
nanoplankton communities in the Beaufort Sea
assessed by T-RFLP and sequences of the 18S rRNA
gene from flow cytometry sorted samples

Sergio Balzano, Dominique Marie, Priscillia Gourvil and Daniel Vaulot
Universite Pierre and Marie Curie (Paris 06) et CNRS, UMR7144, Station Biologique de Roscoff, Diversite du

plancton oceanique, Roscoff, France

The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East
Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in
summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and
pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using
terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S
ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green
algae previously included in the prasinophytes: in the North East Pacific, the contribution of an
Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at
most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North
Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were
dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and
Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within
picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote
community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what
occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea
could be successfully established in culture.
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Introduction

Photosynthetic pico and nanoeukaryotes account for
a significant proportion of marine primary produc-
tion (Li, 1994). Assessing their composition is
crucial for a better understanding of carbon fluxes
in the ocean as some taxa account for higher CO,
fixation rates than other (Jardillier et al., 2010).
Molecular-based approaches such as cloning/
sequencing techniques have revealed a high diver-
sity of small eukaryotes highlighting the presence of
many uncultured lineages (Lopez-Garcia et al., 2001;
Moon-van der Staay et al., 2001; Diez et al., 2001b).
However, assessing the diversity of small photosyn-
thetic eukaryotes is complicated by the prevalence
in marine waters of sequences from heterotrophic
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eukaryotes (Vaulot et al., 2002) including small
predators (Massana et al., 2004) and parasites
(Guillou et al., 2008). 18S ribosomal RNA (rRNA)
gene primers biased toward known photosynthetic
groups (Viprey et al., 2008) or plastidial primers for
the 16S rRNA (Fuller et al., 2006; McDonald et al.,
2007; Treusch et al., 2011) or psbA (Man-Aharono-
vich et al., 2010) genes allow to target phototrophic
groups. However, biased 18S rRNA primers do not
recover all the photosynthetic taxa and plastidial-
based approaches are limited by the lack of a
sufficient number of reference sequences. Flow
cytometry sorting of photosynthetic populations
based on size and pigment composition followed
by amplification and cloning of the 18S rRNA
nuclear gene (Shi et al., 2009; Yoshida et al., 2009;
Cuvelier et al., 2010; Marie et al., 2010) or of the 16S
rRNA plastid gene (Jardillier et al., 2010; Shi et al.,
2011) have confirmed the importance of uncultured
microorganisms within photosynthetic pico and
nanoplankton.

Small plankton in polar waters was previously
investigated in the Southern Ocean (Diez et al.,
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2001b), North Atlantic (Not et al., 2005; Luo et al.,
2009) and the Canadian Arctic (Lovejoy et al., 2006).
Seawater temperature rise and ice pack retreat
(Comiso et al., 2008) are highly affecting phyto-
plankton biomass, production and composition in
the Arctic (Wassmann et al, 2011) implying an
increase in picoplankton and a decrease in nano-
plankton abundances (Li et al, 2009). Recent
studies have demonstrated that a picoplanktonic
Mamelliophyceae, forming an endemic lineage
within the genus Micromonas (and referred as
Arctic Micromonas throughout this paper) is wide-
spread throughout the Arctic (Lovejoy et al., 2007).
Larger phytoplankton is more diverse and mainly
dominated by diatoms (Lovejoy et al., 2002; Sukha-
nova et al., 2009) with late spring/early summer
blooms of Thalassiosira species, Chaetoceros socialis
and Phaeocystis pouchetii (Booth et al., 2002;
Wassmann et al., 2005). However, most previous
studies either provided information on a very
limited number of sites or did not focus on the
composition of small photosynthetic eukaryotes.

In the present work, flow cytometry was used to
sort photosynthetic pico and nanoeukaryote popula-
tions in North Pacific and Arctic Oceans, with a
special focus on the Beaufort Sea. The diversity of
these populations was mapped by terminal-restric-
tion fragment length polymorphism (T-RFLP) of the
18S rRNA gene, which allows the rapid analysis of a
very large number of samples (Baldwin et al., 2005;
Vigil et al., 2009). In a second step, cloning/
sequencing was applied to two selected stations
deemed to be representative of the Beaufort Sea
based on the T-RFLP patterns.

Materials and methods

Sample collection and processing

The MALINA cruise took place on board the
Canadian research vessel CCGS Amundsen during
summer 2009 from Victoria (BC, Canada) to the
Beaufort Sea (Leg 1b) and then throughout the
Beaufort Sea (Leg 2b). Seawater samples were
collected in surface during Leg 1b and at different
depths during Leg 2b (Figure 1). Ancillary data of
temperature, salinity, chlorophyll and nitrate con-
centration were kindly provided by JE Tremblay and
] Gagnon (Table 1). Seawater was collected with a
bucket (Leg 1b) or using Niskin bottles mounted on a
CTD (conductivity temperature depth probe) frame
(Leg 2b). Chlorophyll-a was measured by high
pressure liquid chromatography after methanol
extraction (Ras et al., 2008). Samples for nitrates
were poisoned by HgCl, and nitrates were analysed
using an automated colorimetric procedure (Raimbault
et al., 1990).

Samples were analysed on-board by flow cytometry
(Marie et al., 1997) using a FACSAria (Becton
Dickinson, San José, CA, USA) to determine
the abundance of the photosynthetic pico and
nanoeukaryotes (Table 1). These two groups were
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defined operationally on the basis of scatter vs
chlorophyll fluorescence cytograms (Supplementary
Figure S1) in a manner consistent with our previous
work (Shi et al.,, 2009; Marie et al., 2010). The
boundary between the two populations does not
correspond exactly to the precise size threshold of
2 um that formally separates pico from nanoplank-
ton. Flow cytometry data are available at http://
tinyurl.com/67wn5qc. Four litres were concentrated
down to 25ml by tangential flow filtration as
described previously (Marie et al., 2010). Concen-
tration factors averaged 64- and 81-fold for pico and
nanoplankton, respectively, with average recovery
rates of 38% and 49%. In contrast with our previous
work (Marie et al., 2010), we performed during the
MALINA cruise a two-step sorting procedure to
minimise contamination (Supplementary Informa-
tion). First, between 10 000 nano to 100 000 picoeu-
karyotic cells were sorted in enrichment mode,
based on their scatter and chlorophyll fluorescence.
Then, these sorted samples were stained by SYTO
13, a live stain for DNA (del Giorgio et al., 1996) at a
final concentration of 5 uM. Pico and nanoeukaryotes
were discriminated as described previously (Marie
et al., 2010) and about 5000 and 50 000 cells of pico
and nanoeukaryotes, respectively, were sorted in
purity mode. Sorted populations were immediately
frozen at —80 °C.

Cultures

Twenty phytoplankton strains (Supplementary
Table S1) isolated during the MALINA cruise (Balzano
et al. in preparation) and available from the Roscoff
Culture Collection (http://www.sb-roscoff.fr/Phyto/
RCC) were used to calibrate the T-RFLP patterns (see
below). DNA was extracted from these strains using
Qiagen Blood and Tissue kit (Qiagen, Courtaboeuf,
France) as described in Supplementary Information.

Molecular and phylogenetic analysis

Molecular methods are described in greater details
in Supplementary Information. For T-RFLP, PCR of
the 18S rRNA gene was performed in triplicate,
directly from lysed cells (95 °C, 5min) of pico (59
samples) and nanoplankton (79 samples) using the
primers 63f (6-FAM labelled) and 1818r (Lepere
et al., 2011). Amplification from lysed cells was
found to be more reproducible than from extracted
DNA. For 12 samples that could not be amplified
directly, we performed first a Multiple Displacement
Amplification of genomic DNA (Table 1).

Replicate amplicons were combined and incu-
bated with Mung Bean Nuclease (New England
Biolabs, Ipswich, MA, USA), purified with a Ultra-
Clean PCR kit (Mo-Bio Laboratories, Carlsbad, CA,
USA), and digested with the restriction endonu-
cleases Mnll, Hhal and Hpy188I (New England
Biolabs) as described previously (Vigil et al., 2009).
Hpy188I was only used to discriminate among the
different Mamiellophyceae.
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Figure 1 MALINA station locations for Legs 1b and 2b. Grey shades correspond to bottom depths.

The T-RFLP digests were then diluted in HiDi
Formamide (Applied Biosystems, Foster City, CA,
USA) and terminal-restriction fragments (T-RFs)
were separated in a 3130 xI/ Genetic Analyzer
(Applied Biosystems). Data were analysed using
the PeakScanner software (Applied Biosystems).
Peaks with T-RFs comprised between 100 and
500 bp were binned at 0.4-bp resolution, the relative
peak area was exported, and the total peak area of
each sample was normalised to one.

We define a ribotype by a unique set of T-RFs for
the enzymes used (2—4, Table 2). T-RFs obtained
experimentally from our clone libraries (see below)
and phytoplankton cultures were compared with
T-RFs obtained from environmental samples for
ribotype identification. Other ribotypes were tenta-
tively identified using an in silico T-RF database
(Supplementary Information).

For cloning and sequencing purposes, the 18S
rRNA gene was amplified from four samples of
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nanoeukaryotes and four samples of picoeukaryotes,
sorted from the surface and the DCM of the stations
320 and 390 (Figure 1). PCR was performed in
triplicate as described above, but an unlabelled rather
than labelled 63f primer was used. Replicate ampli-
cons were combined and purified using a UltraClean
PCR kit (Mo-Bio Laboratories). Purified PCR products
were cloned into vector PCR4-TOPO (Invitrogen,
Carlsbad, CA, USA) and transformed into Escherichia
coli competent cells following the manufacturer
instruction. Clone inserts were then amplified using
the same (unlabelled) primers as above and purified
using Exosap (USB products, Santa Clara, CA, USA).
Partial sequences were determined by using Big Dye
Terminator V3.1 (Applied Biosystems) and the inter-
nal primer Euk528f (Zhu et al., 2005) or a slightly
modified Euk528f primer (5-CCGCGGTAATTCCA
GCT-3') for C. socialis, which has a mismatch to
Euk528f. DNA was sequenced using an ABI prism
3100 sequencer (Applied Biosystems).
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Partial sequences were grouped into 48 opera-
tional taxonomic units (OTUs, 99.5% similarity)
and the full 18S rRNA gene was sequenced from
at least one sequence per OTU as well as from
20 phytoplankton cultures using the primers
63f, 528f and 1818r. Full-length 18S rRNA gene
sequences were analysed using Bioedit software
(Hall, 1999) then aligned using clustalW2 (http://
www.ebi.ac.uk/Tools/msa/clustalw2). A neighbour-
joining (Saitou and Nei, 1987) phylogenetic tree
was constructed using Geneious software (www.
geneious.com, Supplementary Information).

Sequences have been deposited to GenBank under
the accession numbers JF698738 to JF699043 for the
MALINA samples and JF794039 to JF794059 for the
MALINA cultures.

Statistical analyses
Spearman rank correlation coefficients (p) and
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conditions (Supplementary Information) were
computed with the Vegan package (Legendre and
Legendre, 1998) of the R software (http://www.r-
project.org). As both methods provided similar
results, only p-values are shown here.

Results

Oceanographic context
During Leg 1b of the MALINA cruise (Figure 1),
temperature, salinity and nitrates decreased more or
less regularly going northward through the Pacific
and Arctic Oceans (Table 1). During Leg 2b in the
Beaufort Sea, the salinity was generally lower at the
western stations whereas the temperature was gener-
ally higher at coastal stations. Both temperature and
salinity varied very little at the deep chlorophyll
maximum (DCM, —-0.7 to —1.4°C and 26.8 to
31.9psu).

Chlorophyll-a concentration was higher at the
DCM compared with the surface for all stations

Fragment size (bp)
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Figure 2 Diversity of flow cytometry sorted photosynthetic picoeukaryotes and nanoeukaryotes from the surface at stations 320 and 390
assessed by T-RFLP chromatograms of MnlI digests of 18S rDNA. Please note that the identification shown here has been confirmed by
T-RFLP chromatograms of Hhal digests. The enzyme Hpy188I, which allows discriminating among the different Micromonas clades
(Supplementary Table S7), was also used to validate the identification of the Arctic Micromonas ecotype. The full list of ribotypes

identified is shown on Table 2. C., Chaetoceros.
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except Stn 170. Surface waters were depleted in
nitrates (0.01-0.04 pM) whereas much higher levels
(1.88-6.93 uM) were found at the DCM for all the
stations except Stn 110 (0.33 uM, Table 1).

Cyanobacteria were present in the North Pacific,
found in very low concentrations in the Bering
Sea, and not detected at all the other stations of
both Leg 1b and Leg 2b. During Leg 1b, photo-
synthetic pico and nanoeukaryotes were more
abundant in the Pacific Ocean and the Bering
and Arctic Seas compared with the Beaufort Sea.
During Leg 2b, photosynthetic picoeukaryotes ranged
two orders of magnitude (110-13 000 cell ml™) and
were generally more abundant in surface compared
with the DCM (Table 1) whereas photosynthetic
nanoeukaryotes at the DCM often exceeded those
measured at the surface and ranged from 170 to
7200 cellml—.

T-RFLP of the 185 rRNA gene

In order to assess the diversity of photosynthetic
pico and nanoeukaryotes, we amplified the 18S
rRNA gene from populations sorted by flow cyto-
metry on the basis of their size and chlorophyll
fluorescence. The diversity of the amplified se-
quences was analysed by T-RFLP following enzyme
digestion, which allowed obtaining a semi-quanti-
tative image of the major taxa present (Figure 2,
Table 2). Environmental ribotypes were identified
up to the species level by comparison with ribotypes
obtained from clones and strains or Genbank
sequences.

At the North Pacific station PAC08 (Leglb,
Figure 1) photosynthetic picoplankton was domi-
nated by an undescribed Mamiellophyceae. Its
relative abundance decreased northward and the
Arctic Micromonas ecotype became increasingly
dominant (Figure 3). During Leg 2b through the
Beaufort Sea, the only ribotype found in 36 out of 54
sorted picoeukaryote samples and dominating 12
other samples corresponded to Arctic Micromonas
(Supplementary Table S2). It was the only photo-
synthetic picoeukaryote species present at most
stations, especially in offshore waters (Figure 4).
Ribotypes associated with other Mamiellophyceae
(Bathycoccus prasinos and Mantoniella squamata),
diatoms (Chaetoceros socialis and Chaetoceros cf.
neogracile) and Pelagophyceae were occasionally
present. Only 4 samples from three coastal stations
(680, 690 and 390) did not contain, or contained in
very low proportions, T-RFs specific of Arctic
Micromonas (Figure 4). In these samples, ribotypes
of C. socialis were in general dominating, but the
total abundance of photosynthetic picoplankton was
very low compared with that measured for the other
stations (Table 1). A more detailed vertical profile
was analysed at station 235 (eastern Beaufort Sea),
revealing that Arctic Micromonas was the unique
taxon throughout the water column, except in the
very surface layer (Figure 5).
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Figure 3 Taxonomic composition of photosynthetic pico and
nanoeukaryotes based on T-RFLP on 18S rRNA gene sequences
obtained from sorted photosynthetic populations at the different
surface stations across the Leg 1b. Please note that while for
picoplankton only one Chrysophyceae ribotype has been found
(uncultured Chrysophyceae, Table 2), several have been found for
nanoplankton. See Figure 1 for station locations.

During Leg 1b, photosynthetic nanoplankton was
dominated by Pseudo-nitzschia sp. in the North
Pacific and by C. cf. neogracile and C. socialis in the
Bering and Arctic Seas (Figure 3). Station BEA14 in
the Beaufort Sea was more diverse than the others
and dominated by Pyramimonas spp., Pelago-
phyceae, and Chrysophyceae. During Leg 2b in the
Beaufort Sea, nanoplankton communities were more
diverse at the surface than at the DCM and in
offshore compared with coastal waters (Figure 6).
Surface samples were dominated by Chaetoceros
species (C. cf. neogracile, C. socialis and, to a minor
extent, two additional Chaetoceros spp., Supple-
mentary Table S3) as well as Chrysochromulina
spp., Chrysophyceae and Pelagophyceae. Within
surface samples, the contribution from Chaetoceros
species tended to be higher in coastal compared
with offshore waters. At the DCM, ribotypes from
C. socialis dominated at 10 out of 15 stations. Pelago-
phyceae, Arctic Micromonas and Chrysochromulina
spp. occasionally dominated offshore stations. The
detailed profile obtained at station 235 demonstrated
sharp community changes with depth as well as a
decrease in diversity (Figure 5). In surface waters,
C. cf. neogracile, Chrysophyceae and Pyramimonas
sp. I dominated, whereas Chrysochromulina spp.,
mainly occurred in colder deeper layers.
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Figure 4 Taxonomic composition of photosynthetic picoeukaryotes based on T-RFLP on 18S rRNA gene sequences obtained from
photosynthetic populations sorted from the surface and the DCM throughout the Beaufort Sea.

Cloning/sequencing

Genetic libraries of the 18S rRNA were constructed
for pico and nanoeukaryotes samples sorted from
the surface and the DCM at one coastal (390) and one
offshore (320) station. These stations were selected
because they are located on the same transect and
showed remarkably different microbial composi-
tions (Figures 4 and 6). Overall, we obtained 303
partial 18S rRNA gene sequences: 289 belonged to
putative photosynthetic groups (Supplementary
Table S4), and the others belonged to groups
containing mainly heterotrophic micro-organisms
(mostly Cercozoa, Supplementary Information).

At the coastal station 390, the composition of the
pico and nanoplankton communities were quite
similar (Table 3). Communities were more diverse
in surface compared with the DCM. In surface,
picoplankton was dominated by C. socialis,
C. cf. neogracile, and uncultured Cercozoa, whereas

nanoplankton was dominated by C. cf. neogracile
and Pseudo-nitzschia sp. At the DCM, only diatoms
(mostly C. socialis) were recovered in both fractions.

In contrast, at the offshore station 320, the pico-
plankton communities were monospecific (Arctic
Micromonas) at both depths and different from nano-
plankton communities (Table 3), which were rather
diverse and dominated by diatoms: the most abundant
sequences retrieved from the surface layer belonged to
C. cf. neogracile, M. squamata, Chrysochromulina sp.,
Florenciella parvula, Fragilariopsis cylindrus, uncul-
tured Naviculales, whereas C. socialis and F. cylindrus
dominated the DCM nanoplankton communities.

The sequences belonging to the Arctic Micromo-
nas clade were highly similar (>99.5% identity)
whereas those affiliated to the genera Chaetoceros
and Chrysochromulina were more divergent because
we obtained 11 and 4 OTUs for these two genera,
respectively (Figure 7).
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Figure 5 Temperature profile, absolute abundance and taxo-

nomic composition of photosynthetic pico and nanoeukaryotes
sorted from different depths at station 235.

Comparison of cloning/sequencing vs T-RFLP

The comparison of the cloning and the T-RFLP data
revealed that the two approaches provided very
similar images of the communities in particular for
the major taxonomic groups (Figure 8). OTU rich-
ness generally exceeded the number of T-RFs
detected for each enzyme (Supplementary Table S5).
For example, the different OTUs found within the
genera Chaetoceros (11) and Chrysochromulina (4)
grouped into 5 and 2 ribotypes, respectively.
Overall from 43 ribotypes occurred within our
T-RFLP chromatograms, 31 were associated to OTUs
sequenced from clones (Table 2). Discrepancies
occurred (Supplementary Figure S2) but rather in
terms of relative abundance of the different ribo-
types. Only at station 390 in surface, pico and
nanoplankton sequences affiliated to Rhizaria and at
station 320, M. squamata sequences were recovered
by cloning but not by T-RFLP.

Statistical analysis
The Spearman rank correlation coefficient showed
in general a poor (<0.5) correlation between

The ISME Journal

ribotypes and environmental conditions (Table 4).
Chaetoceros socialis appeared related (0.59) with
Chl-a, whereas Chaetoceros spp., Pyramimonas spp.
and Chrysophyceae displayed significant negative
correlations (<—0.5) with salinity, nitrate concen-
tration and Chl-a.

Discussion

In this study, eukaryotes were sorted by flow
cytometry to allow focusing on photosynthetic
communities and to remove heterotrophic eu-
karyotes, which often dominate 18S rRNA gene
sequences obtained from filtered samples (Marie
et al., 2010). Sorted populations were analysed by
T-RFLP. We chose this approach because it is rapid,
cost-effective, and highly reproducible. T-RFLP was
successfully applied to investigate microbial eukar-
yotes in aquatic systems from filtered samples (Diez
et al., 2001a; Countway et al., 2005; Lepere et al.,
2006). In this study, a total of 59 picoplankton and
79 nanoplankton samples were analysed (Supple-
mentary Tables S2 and S3). Treating such a large
number of samples with the classical cloning/
sequencing approach would have been expensive
and time consuming.

The combination of flow cytometry sorting and
T-RFLP is particularly interesting because the com-
plexity of the community is reduced compared with
filtered samples, making T-RFs identification much
easier. The use of two (or three) restriction enzymes
allowed identifying most of the T-RFs found in the
environmental samples by comparing them with
those determined from our clones and cultures
(Supplementary Information) or alternatively, for
T-RF's not represented in clones and cultures, by an
in silico analysis of the large 18S rRNA gene database.
Overall, we identified 43 ribotypes (Table 2) by
comparison with the experimental database from
clones (48 OTUs) and strains (20 OTUs) or with an
in silico database (5 OTUs). Several T-RFs, espe-
cially occurring at the DCM of Stn 110 (Figure 6)
could not be identified and were likely associated
with unknown eukaryotes. Overall unidentified
peaks did not seriously affect our ribotype identifi-
cation (Supplementary Information). The validity of
our assignments is confirmed by the good agreement
(p>0.5) of community structures estimated from
T-RFLP vs cloning/sequencing for seven out of
eight samples for which both approaches were used
(Figure 8, Supplementary Figure S2).

Picoplankton community composition in the Arctic

In opposition to other oceanic waters, picocyano-
bacteria (Synechococcus and Prochlorococcus) were
completely lacking in Arctic waters as observed
previously (Li, 1998). This contrasts with the fact
that cyanobacteria are an important component of
Arctic freshwater systems including Mackenzie
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Figure 6 Taxonomic composition of photosynthetic nanoeukaryotes based on T-RFLP of 18S rRNA gene sequences obtained from
photosynthetic populations sorted from the surface and the DCM throughout the Beaufort Sea.

River, but their abundance decreases sharply with
increasing salinities (Vallieres et al., 2008). There-
fore, only eukaryotes account for marine primary
production in the Arctic.

The most dramatic observation from our data set,
which covers with unprecedented resolution the
Beaufort Sea during mid-summer, is that Arctic
Micromonas was the unique photosynthetic picoeu-
karyote occurring at many stations, confirming its
importance within Arctic picoplankton (Not et al.,
2005; Lovejoy et al., 2007). The other Mamiellophy-
ceae, B. prasinos, only had a very marginal role
(Figure 4), in contrast with observations in the
Beaufort Sea in late summer (Lovejoy et al., 2007)
and in the Barents Sea in mid-summer (Not et al.,
2005). The genus Micromonas has been clustered
into three to six distinct clades depending on the
investigators (Guillou et al., 2004; Slapeta et al.,

2006; Worden, 2006; Lovejoy et al., 2007). Almost all
the Micromonas sequences recovered from Arctic
waters in the present (Figure 7) and previous studies
(Lovejoy et al., 2007; Luo et al., 2009) are highly
homogeneous and belong to a distinct lineage
within clade B sensu Guillou et al. (2004). Hpy188I
digests of the 18S rRNA gene from our picoplankton
samples, which allows the different Micromonas
clades to be distinguished, have confirmed that only
clade B occurred during the MALINA cruise
(Supplementary Table S7). In contrast, clade A
occurred in the Barents Sea, dominating surface
waters, probably because of the influence of Atlantic
water (Foulon et al, 2008) whereas a single
study detected sequences from clade C in the
Beaufort Sea, although in very low number
compared with those of the Arctic ecotype (Lovejoy
and Potvin, 2011).
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Table 3 Summary of phylogenetic assignments for sequences obtained from the stations 320 and 390 for sorted photosynthetic pico

and nanoeukaryotes

Division Station 390 390 320 320 390 390 320 320
Clone library ES018 ESo020 ES064 ES068 ES019 ES021 ES065 ES069
Fraction Picoeukaryotes Nanoeukaryotes
Depth 30 3 70 3 30 3 70 3
Class
Haptophyta 1 1 4 9
Telonemia 1
Alveolata Dinophyceae 1 1
Alveolata Unknown 1
Rhizaria Cercozoa 4 1
Rhizaria Unknown 8
Cryptophyta 2
Chlorophyta Prasinophyceae 1 1
Chlorophyta Mamiellophyceae 1 17 22 1 7
Heterokontophyta Chrysophyceae 1 2
Heterokontophyta Dictyochophyceae 2 5
Heterokontophyta Pelagophyceae 2 1
Heterokontophyta Bolidophyceae 2
Heterokontophyta Bacillariophyceae 51 30 25 40 36 22
Number of clones sequenced 51 46 17 22 25 43 50 49

More details are shown on Supplementary Table S4.

As a consequence, the abundance of picoeu-
karyotes measured by flow cytometry during the
MALINA cruise in the Beaufort Sea (Table 1)
corresponds, for most stations, to that of Arctic
Micromonas. The nitrate limitation detected
in surface waters, as well as the wide ranges
observed in temperatures (—1.1 to 7 °C) and salinities
(19-31 psu), did not seem to affect the abundance of
the Arctic ecotype (p=—0.21, P-value =0.22). In con-
trast in the Barents Sea, clade B was outnumbered
by clade A in waters where temperature was in the
same range than at the coastal stations in the
Beaufort Sea (~7°C), in August/September 2002
(Foulon et al., 2008). However, it should be noted
that the areas in the Beaufort Sea where the water
temperature was higher are surrounded by low
temperature areas. Therefore, the other Micromonas
clades may not be able to recolonise these areas after
the Arctic winter. In temperate areas, Micromonas
abundance was high in the nutrient rich English
Channel (Not et al., 2004) but low in oligotrophic
environments such as the Mediterranean Sea
(Marie et al., 2006) and the Indian Ocean Gyre
(Not et al., 2008) where only clade C occurred
(Foulon et al., 2008). In contrast, in the Beaufort Sea,
the Arctic Micromonas ecotype was found under
both nitrate deplete and nitrate replete conditions
(Table 1).

Besides Arctic Micromonas, a few other species,
mostly diatoms, were observed to contribute to the
photosynthetic picoeukaryote community (Figure 4).
Their presence was limited to samples with low
picoeukaryote abundances, mostly in coastal waters
(Table 1). Although most diatoms are >2 um, diatom
sequences are often found in picoplankton clone
libraries (Vaulot et al., 2008). These sequences may

The ISME Journal

derive from male gametes or early stage auxospores,
which could fit within the size range of picoplank-
ton as shown for Chaetoceros (Jensen et al., 2003;
Assmy et al.,, 2008) and Pseudo-nitzschia (Sarno
et al., 2010). Individual Skeletonema cells may also
be occasionally <2pm in size (Sarno et al., 2005;
Balzano et al., 2011).

The diversity found in this study for sorted
photosynthetic picoeukaryotes is very low com-
pared with that previously estimated for small
(<3pum) filtered plankton in the Beaufort Sea
(Lovejoy and Potvin, 2011) and other Arctic systems
(Lovejoy et al., 2006). This is likely due to the
removal of heterotrophic groups through sorting
(Marie et al., 2010). Tyramide signal amplification—
fluorescent in situ hybridisation in the Norvegian
and Barents Sea revealed that besides Mamiello-
phyceae, other Chlorophyta as well as Haptophyta
occurred within the small (<3 pm) photosynthetic
plankton (Not et al., 2005). Overall, the diversity of
photosynthetic picoeukaryotes in the Arctic is far
lower than that found in the South East Pacific (Shi
et al., 2009, 2011), the Sargasso Sea (Not et al., 2007;
Cuvelier et al., 2010), the North East Atlantic Ocean
(Jardillier et al., 2010) and the English Channel
(Marie et al.,, 2010). Micromonas has also been
observed in winter in the Canadian Arctic (Sherr
et al., 2003) and is likely to be the only organism in
this size range that can adapt to both the very low
temperatures and the long period of darkness
encountered in these waters.

Nanoplankton diversity in the Arctic
Photosynthetic nanoeukaryotes investigated here
constitute a more diverse community compared
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for values >70%.

with picoeukaryotes. Only 7 out of 38 OTUs
recovered from the nanoplankton are closely related
(>99.5% similarity) to existing Arctic sequences
(Supplementary Table S4), whereas the others either
match sequences from elsewhere (8 sequences,
mostly from the Baltic Sea) or belong to novel
OTUs. This suggests that some of the OTUs found in
this study have a global oceanic distribution and can
be detected in similar (cold and salinity-changing)
environments (Nolte et al., 2010) whereas other
OTUs might be restricted to the Beaufort Sea, which

seems to constitute a microbial province favouring
endemism (Lovejoy et al., 2007).

Strains representative of 28 out of 47 OTUs have
been successfully brought in culture previously
or during the MALINA cruise (Figure 7). The 11
T-RFLP ribotypes found more frequently (>10
samples) include OTUs from strains cultured during
the MALINA cruise (8) or previously (3, Table 2)
suggesting that the majority of phytoplankters from
the Beaufort Sea have cultured representatives. This
clearly contrasts with small phytoplankton from

The ISME Journal
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oligotrophic areas such as the Mediterranean Sea
(Viprey et al, 2008), the North East Atlantic
(Jardillier et al., 2010), the Sargasso Sea (Not et al.,
2007) or the South East Pacific (Shi et al., 2009),
which are dominated by microorganisms that cannot
be cultured despite extensive isolation efforts
(Le Gall et al., 2008). Such waters may contain
slow-growing, low-nutrient adapted microorganisms
that cannot adapt to the media used for micro-algae
or that are outcompeted by rarer but faster growing
species (for example, Pelagomonas calceolata, a
species often isolated from oligotrophic waters,
Le Gall et al., 2008). In contrast, the seasonal vari-
ability in temperature, salinity and nutrients typical
of the Beaufort Sea (Carmack and MacDonald, 2002;
McLaughlin et al., 2004) may select resilient geno-
types that can adapt to a broad range of conditions
and therefore can be easily brought into culture.
The diversity and abundance of Chaetoceros
species is confirmed by phytoplankton counts
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Figure 8 Overall comparison of composition of photosynthetic
pico and nanoeukaryotes assessed by T-RFLP and cloning/
sequencing of the 18S rRNA gene. Only ribotypes from which
at least three sequences were recovered by cloning/sequencing
are represented.

(S Lessard, personal communication) and has been
previously documented in Arctic waters (Booth and
Horner, 1997; Lovejoy et al., 2002) with C. socialis
often forming late spring blooms (Booth et al.,
2002; Degerlund and Eilertsen, 2010). The ribo-
types found here are likely associated with single
cells either from occasionally non-colonial species
(C. cf. neogracile) or detached from colonies in the
water column or during the tangential flow filtration
(C. socialis). Resting spores, which have been
observed previously for C. socialis (Booth et al.,
2002) as well as in sorted samples from the MALINA
cruise (M Kawachi, personal communication), prob-
ably contributed also to these sequences. The
contribution of C. socialis was usually higher at
the DCM compared with the surface (Figure 6). In
contrast, the other Chaetoceros species were found
more frequently in surface waters. The vertical
profile at station 235 (Figure 5) displays a drastic
change in the microbial community between 25 and
45m associated with decreases in temperature and
total abundance of photosynthetic nanoeukaryotes.
This may suggest a transition between ribotypes
adapted to surface waters (C. cf. neogracile, Chaeto-
ceros spp., Chrysophyceae, Pyramimonas sp. 1) and
Chrysochromulina spp., which occur mainly at the
DCM. This is consistent with the negative correla-
tion between surface ribotypes and salinity, nitrate
concentration and to a lesser extent with the
positive correlation with temperature (Table 4).
Chrysophyceae, mainly represented by Dinobryon
spp. were restricted to surface waters (Figure 6).
A number of Dinobryon species were previously
reported in marine (Lovejoy et al., 2002) and
freshwater environments (Brutemark et al., 2006)
of the Arctic but they were never characterised
genetically and we do not know whether they
correspond to the ribotypes found here. The occur-
rence of Pelagophyceae in the Beaufort Sea is
consistent with a previous study (Suzuki et al,
2002) indicating the prevalence of Pelagophyceae-
specific pigments (19’-Butanoyloxyfucoxanthin) in
the Bering Sea. Three OTUs undistinguishable

Table 4 Spearman rank correlation coefficients and P-values between nanoplankton groups or taxa and environmental variables

for Leg 2b
Temperature Salinity Nitrate Chlorophyll-a Pico Nano

C. socialis —0.16 (0.35) 0.36 (0.03) 0.47 (<0.01) 0.59 (<0.01) —0.49 (<0.01) 0.40 (0.02)
C. cf. neogracile 0.36 (0.04) ~0.40 (0.02) ~0.43 (0.01) ~0.31 (0.07) 0.10 (0.58) 0.05 (0.78)
Chaetoceros spp. 0.33 (0.05) —0.51 (<0.01) —-0.50 (<0.01) —0.62 (<0.01) 0.28 (0.10) —0.12 (0.48)
Other diatoms —0.14 (0.41) ~0.20 (0.25) ~0.11 (0.53) ~0.22 (0.21) 0.02 (0.92) ~0.10 (0.58)
Pelagophyceae ~0.16 (0.36) ~0.11 (0.53) 0.14 (0.43) ~0.27 (0.12) 0.41 (0.02) ~0.11 (0.52)
Dictyochophyceae 0.38 (0.02) —0.43 (0.01) —0.55 (<0.01) —0.44 (0.01) 0.39 (0.02) <0.01 (0.98)
Chrysophyceae 0.62 (<0.01) ~0.67 (<0.01) —0.71(<0.01)  —0.70 (<0.01) 0.39 (0.02) —0.09 (0.59)
Alveolata 0.11 (0.52) ~0.10 (0.55) ~0.33 (0.05) ~0.20 (0.24) 0.05 (0.76) ~0.20 (0.24)
Arctic Micromonas 0.04 (0.81) —0.01 (0.94) 0.04 (0.83) 0.16 (0.36) 0.13 (0.46) 0.07 (0.68)
Mantoniella squamata ~0.29 (0.09) 0.15 (0.38) 0.05 (0.77) 0.06 (0.73) 0.12 (0.49) ~0.10 (0.56)
Pyramimonas spp. 0.35 (0.04) —0.58 (<0.01) —0.50 (<0.01) —0.64 (<0.01) 0.40 (0.02) —0.24 (0.16)
Chrysochromulina spp. ~ —0.25 (0.14) <0.01 (0.99) ~0.12 (0.50) —0.32 (0.06) 0.14 (0.41) —0.46 (0.01)

Significant coefficients are indicated in bold.
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by T-RFLP (Table 2) appear to constitute novel
Pelagophyceae lineages (Figure 7).

Among Haptophyta, the high occurrence (Figure 6)
and the wide diversity (Figure 7) of Chrysochro-
mulina ribotypes found here is consistent with pre-
vious findings in North waters (Lovejoy et al., 2002).
Although Phaeocystis pouchetii forms blooms in the
Barents (Wassmann et al., 2005) and Greenland Seas
(Cota et al., 1994), it occurs rarely in the Beaufort
Sea (Campbell et al., 2009) and its contribution to
Beaufort Sea nanoplankton in this study was very
low (Table 2) as confirmed by phytoplankton counts
(S Lessard, personal communication). Surprisingly,
uncultured Haptophyta that typically dominate the
3—4um fraction in many marine waters (Cuvelier
et al., 2010; Jardillier et al., 2010) were not detected
in our samples.

Pyramimonas spp. were found only in surface
waters (Figures 5 and 6). A number of Pyramimonas
species have been isolated from Arctic (Daugbjerg
and Moestrup, 1993) and Antarctic (Daugbjerg, 2000)
environments. Previous reports from blooms under
the ice (Gradinger, 1996) and growth in the laboratory
across a broad (15-35 psu) salinity range (Daugbjerg,
2000) indicate that some Pyramimonas species
are adapted to salinity-changing environments as
encountered in surface waters of the Beaufort Sea.

The contribution of dinoflagellates to our samples
was very low (Figures 5 and 6). Although a number
of dinoflagellate species have been reported for the
Arctic (Okolodkov, 1999), their presence in the
Beaufort Sea remains very scarce (Okolodkov and
Dodge, 1996), especially in mid-summer when
pigments specific of diatoms, green algae, and
Haptophyta mainly occur (Hill et al, 2005).
Dinoflagellates become more abundant in autumn
(Brugel et al., 2009).

The nanoplankton community was less diverse at
the DCM compared with the surface (Supplemen-
tary Figure S3). This could be due to the narrower
variability of both temperature and salinities en-
countered there (Supplementary Figure S4).

Conclusions

Although surface waters in the Beaufort Sea were
quite oligotrophic in summer with nearly undetect-
able nitrate levels during the MALINA cruise
(Table 1), small phytoplankton communities here
were very different from those observed in warmer
oligotrophic waters such as the South East Pacific
gyre (Shi et al., 2009) or the Mediterranean Sea
(Man-Aharonovich et al., 2010). First, photosyn-
thetic picoeukaryotes were dominated by a single
ecotype of the Mamiellophyceae genus Micromonas
and we did not find any other species at most of the
stations analysed, whereas temperate and tropical
oligotrophic waters contain much more diverse
communities. Second, nanoeukaryotes were domi-
nated by diatoms and other stramenopiles groups,
which representatives, at least for the taxa most
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frequently found, can be easily isolated and culti-
vated. This contrasts with temperate and tropical
small phytoplankton communities, which contain
many uncultivable taxa. These differences may be
explained by the fact that only few resilient ecotypes
can adapt to the sub-freezing temperatures and
variable salinities observed in the Arctic.
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