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Abstract

Phenotypic transformation of mesangial cells (MCs) is implicated in the development of glomerular disease; however, the
mechanisms underlying their altered genetic program is still unclear. a-smooth muscle actin (a-SMA) is known to be a
crucial marker for phenotypic transformation of MCs. Recently, E-boxes and the class I basic helix-loop-helix proteins, such
as E12 have been shown to regulatea-SMA expression. Therefore, we tried to identify a novel E12 binding protein in MCs
and to examine its role in glomerulonephritis. We found that PIASy, one of the protein inhibitors of activated STAT family
protein, interacted with E12 by yeast two-hybrid screens and coimmunopreciptation assays. Overexpression of E12
significantly enhanced thea-SMA promoter activity, and the increase was blocked by co-transfection of PIASy, but not by a
PIASy RING mutant. In vivo sumoylation assays revealed that PIASy was a SUMO E3 ligase for E12. Furthermore, transforming
growth factor-b (TGF-b) treatment induced expression of both PIASy and E12, consistent with a-SMA expression. Moreover,
reduced expression of PIASy protein by siRNA specific for PIASy resulted in increased TGF-b-mediated a-SMA expression. In
vivo, PIASy and E12 were dramatically upregulated along with a-SMA and TGF-b in the proliferative phase of Thy1
glomerulonephritis. Furthermore, an association between PIASy and E12 proteins was observed at day 6 by IP-western
blotting, but not at day 0. These results suggest that TGF-b up-regulates PIASy expression in MCs to down-regulatea-SMA
gene transcription by the interaction with E12.
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Introduction

Phenotypic modulation of mesangial cells (MCs) in response to

injury is implicated in the development of glomerular disease.

Activation of MCs in vivo contributes to hyperplasia or hypertro-

phy and marked accumulation and reorganization of the

mesangial matrix, all of which precede glomerulosclerosis

[1,2,3]. Therefore, it is important to elucidate the transcriptional

mechanisms underlying the altered genetic program of MCs and

glomerulosclerosis. a-SMA has been shown to be a crucial marker

for activation and dedifferentiation of MCs [4,5]. Although

elucidating transcriptional mechanisms regulating a-SMA expres-

sion in MCs should yield some insight into genetic mechanisms

that determine the activated phenotype, little is known about the

regulation of a-SMA expression in MCs.

The 59-flanking region of the a-SMA gene contains conserved

E-boxes (CANNTG motifs). E-boxes bind to homo- or

heterodimers of basic helix loop helix (bHLH) proteins, with

the general paradigm being heterodimerization between a

ubiquitously expressed class I bHLH protein and a cell-selective

class II bHLH protein. Kumar et al demonstrated that the two

E-boxes found within the 59 region of the a-SMA promoter

were required for the expression in transgenic mice [6].

Furthermore, they provided evidence that the class I bHLH

proteins (including E2-2, E12, and HEB) are involved in a-

SMA regulation in cultured smooth muscle cells. On the other

hand, a number of studies have suggested that E2A proteins

related to epithelial mesenchymal transition (EMT) [7,8].

Accordingly, we postulated that the class 1 bHLH factor E2A

protein (E12/E47, especially E12) is also involved in a-SMA

regulation in MCs.

The E2A gene encodes two alternatively spliced products, E12

and E47, which differ only in their bHLH domains [9]. Both

proteins are involved in the control of cell-specific differentiation

and cell proliferation [10,11]. Regulation of HLH factors has been

shown to occur through multiple mechanisms including protein

expression, phospholylation, dimerization with other HLH factors,

cell localization, ubiquitination, and subsequent proteasome
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degradation [12,13]. Therefore, strict control of HLH levels and

activity is necessary to prevent uncontrolled cell proliferation and

dedifferentiation and may be necessary for tissue repair following

injury.

The aims of our study were two folds: (i) to identify novel classes

of proteins that interact with E12 and modulate expression of a-

SMA in MCs by utilizing yeast two-hybrid screening; and (ii) to

clarify the role of these genes in experimental mesangial

proliferative glomerulonephritis.

Results

Cloning of PIASy as E12-interacting Proteins
To identify novel classes of proteins that interact with E12 and

modulate expression of a-SMA in MCs, we performed yeast two-

hybrid screening using a mouse mesangial cDNA/GAL4 activa-

tion domain fusion library and the region between amino acids

505 and 651 including bHLH of E12 as bait. From 1.5 x 106

independent transformants, three different clones were found to be

true interacting positives on selection medium SD/2His/2leu/

2Trp plate only when they were co-expressed with Gal4-E12-

bHLH fusion protein. DNA sequence analysis of the plasmid

insert and computer-assisted database search revealed that the

nucleotide sequence of one clone encoded a member of the protein

inhibitor of activated STAT (signal transducers and activators of

transcription) family, PIASy.

To determine whether the interaction of PIASy and E12

proteins observed in our yeast two-hybrid screen also occurs in

mammalian cells, co-immunoprecipitation assays were per-

formed. First, flag epitope-tagged PIASy and myc epitope-

tagged E12 were cotransfected into COS7 cells. Cell lysates

were then subjected to immunoprecipitation with anti-flag

antibody followed by Western blotting with anti-myc antibody.

We showed the presence of E12 in anti-flag immunoprecipitates,

but not in control IgG precipitates based on Western blotting

with anti-myc antibody (Figure 1A). Subsequent immunopre-

cipitation assays were performed with anti-myc antibody

followed by Western blotting with anti-flag antibody

(Figure 1B). Results showed that PIASy was detected in anti-

myc immunoprecipitates. Furthermore, we demonstrated an

association between endogenous PIASy and E12 in cultured

mouse MCs by co-immunoprecipitation with anti-PIASy anti-

body, but not with control immunoglobulin G (Figure 1C). In

vivo, we utilized an acute model of mesangial proliferative

glomerulonephritis known as Thy1 glomerulonephritis (Thy1

GN) to examine whether observed interaction occurs between

partner proteins expressed from endogenous genes in rat

glomeruli. We also demonstrated an association between these

proteins at day 6 by co-immunoprecipitation with anti-PIASy

antibody, but not with control immunoglobulin G; however we

did not detect the association at day 0 (Figure 1D). These

results indicate that the interaction of PIASy and E12 could be

dependent on mesangial activation.

PIASy Blocked the Enhancement of a-SMA Promoter
Activity Induced by E12

To examine whether E12 affects a-SMA gene expression, we

tested the transcriptional activity of the a-SMA promoter

reporter gene by co-transfecting with E12 expression plasmids

to mouse MCs. Luciferase activity of the a-SMA promoter

reporter gene was increased by co-transfection of E12 expres-

sion plasmids in a dose-dependent manner (Figure 2B), which

was confirmed by Western blot analysis (Figure 2A). Then, to

determine the effects of PIASy on a-SMA promoter activities,

mouse MCs were co-transfected with PIASy and E12 expression

plasmids along with the a-SMA promoter reporter gene. As

shown in Figure 2D, E12 markedly increased the a-SMA

promoter activity, whereas co-transfection of PIASy blocked the

E12-induced increase. PIAS family members possess E3-ligase

activity for SUMO (small ubiquitin-related modifier), and the

RING domain of the PIAS protein is essential for this

sumoylation. To examine the involvement of the RING domain

on PIASy-mediated suppression of E12 activity, we used a

PIASy RING mutant (PIASyCA), which was shown to have no

sumoylation activity on Tcf-4 [14]. As shown in Fig. 2E, PIASy,

but not PIASyCA suppressed a-SMA activity induced by E12.

These results suggest that sumoylation of E12 by PIASy through

the RING domain is important for the PIASy-mediated

suppression of a-SMA activation by E12.

PIASy Acts as E3 Ligases for E12 Sumoylation
To determine whether E12 is modified by SUMO-1, in vivo

sumoylation assays were performed by transiently expressing myc-

tagged E12 and HA-tagged SUMO-1. Western blot analysis using

anti-myc antibody revealed the presence of myc-tagged E12 in

cells transfected with the plasmid expressing myc-E12. When HA-

SUMO-1 was co-expressed, an additional slower migrating band

was detected by anti-myc antibody, and anti-HA antibody

identified the slower migrating form of E12 (Figure 3A, lane 2).

These results suggest that SUMO-1 is conjugated to E12. Next, we

examined the effect of PIASy expression on SUMO-1 modifica-

tion of E12 in 293T cells. Sumoylation of E12 was enhanced by

PIASy (Figure 3A, lane 3), indicating that PIASy is targeting E12

for the SUMO-1 modification.

E12 has a consensus sumoylation sequence, IKRE, which is

conserved among other species (Figure 3B). We speculated that

Lys-496 in mouse E12 is a likely target for sumoylation. To

address this hypothesis, mutant E12 (K/R), in which lysine 496

was converted to Arg was prepared. Consistent to the previous

observation, wild-type E12 was sumoylated in vivo; however, the

transfection of E12 (K/R) abrogated the slower migrating band

(Figure 3B), suggesting that Lys-496 is a major SUMO-1

conjugation site.

Sumoylation has been shown to affect the activity of many

transcription factors. Therefore, we investigated whether sumoyla-

tion site mutations with lysine to arginine (K/R) affect a-SMA

transcriptional activity. To test this, mouse MCs were transiently

co-transfected with expression plasmids encoding wild-type E12 or

mutant E12 (K/R), together with the a-SMA promoter reporter

gene. As shown in Figure 3C, mutant E12 (K/R) showed

significantly higher activity compared to that of the wild-type,

suggesting that the sumoylation of E12 antagonizes its transcrip-

tional activation potential.

siRNA Specific for PIASy Increased the Transcriptional
Activity of a-SMA in Cultured Mesangial Cells

To address the role of endogenous PIASy and E12 in the

regulation of a-SMA, we used stealth small interfering RNA

(siRNA) to reduce the expression of PIASy and E12. MCs

transfected with siRNA oligonucleotide against PIASy and E12 or

control siRNA were harvested and analyzed by RT-PCR at 48

hours after transfection. siRNA for PIASy significantly increased

endogenous a-SMA mRNA expression (Figure 4A and 4B), while

siRNA for E12 reduced its expression in MCs (Figure 4F and 4G).

In Western blot analyses, siRNA for PIASy significantly increased

endogenous a-SMA expression (Figure 4C, D, E), while siRNA for

E12 reduced its expression in MCs (Figure 4H, I, J).

PIASy Regulates a-Smooth Muscle Actin Expression
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Figure 1. Interaction of E12 with PIASy. (A) Coimmunoprecipitation of E12 and PIASy. COS7 cells were transfected with expression plasmids
encoding the indicated proteins and incubated for 48 hours. Cell lysates were then prepared, immunoprecipitated (IP) with anti-flag antibody, and
analyzed by Western blotting (WB) with anti-myc (top) or anti-flag (bottom) antibodies (Ab). Mouse IgG was used as a control. Input materials (10%)
were used as a reference standard. Molecular size markers are indicated on the left. (B) Cell lysates were immunoprecipitated with anti-myc antibody
and analyzed by Western blotting (WB) with rabbit anti-flag (top) or anti-myc (bottom) antibodies (Ab). Mouse IgG was used as a control. Input
materials (10%) were used as a reference standard. Molecular size markers are indicated on the left. (C and D) Endogenous PIASy and E12
coimmunoprecipitation. Cell lysates from mouse MCs or glomerular lysates from Thy1 rat were immunoprecipitated with anti-PIASy antibody and
control IgG. The presence of E12 in the immunoprecipitates was determined by Western blotting with E12 antibody.
doi:10.1371/journal.pone.0041186.g001
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TGF-b Increased PIASy and E12 in Mesangial Cells
The importance of TGF-b as a potent stimulus for phenotypic

modulation of MCs has been demonstrated in previous reports

[15,16]. Therefore, we examined the effects of TGF-b on mRNA

levels of PIASy and E12. Total RNA from MCs treated with 1 ng/

ml TGF-b were analyzed by RT-PCR. We found that the levels of

PIASy and E12 mRNA were significantly increased at 24 hours

after TGF-b treatment in accordance with the increase of a-SMA

(Figure 5A). TGF-b also increased PIASy and protein levels in

MCs at 24 hours along with the increase of a-SMA (Figure 5B and

C). Furthermore, the induction of PIASy and E12 proteins was

increased dose dependently in response to TGF-b (Figure 5D and

E).

Effect of siRNA Specific for PIASy on TGF-b Mediated a-
SMA Expression in Mesangial Cells

To examine the role of PIASy in TGF-b mediated a-SMA

expression, knockdown studies were done using siRNA specific for

PIASy. In immunoblot analyses, PIASy was markedly reduced in

cells transfected with siRNA compared with that transfected with

control RNAi in both TGF-b treated or non-treated cells

(Figure 6A and B). The expression of a-SMA protein after 24

hours of stimulation with TGF-b was markedly increased by

siRNA for PIASy, indicating that TGF-b up-regulated PIASy

expression in MCs to down-regulate a-SMA gene transcription

(Figure 6A and C).

Expression of a-SMA TGF-b and E12 in Experimental
Mesangial Proliferative Glomerulonephritis

We utilized an acute model of mesangial proliferative glomer-

ulonephritis known as Thy1 glomerulonephritis (Thy1 GN) to

examine whether PIASy and E12 are up-regulated along with

TGF-b and a-SMA in vivo. In Thy1 GN, the proliferation of MCs

began at day 2, peaked at day 6, and subsided at 12 days after the

injection. Figure 7A shows a representative light microscopic

picture at days 0, 3, 6, and 12. Immunohistochemical analysis

revealed that a-SMA was hardly seen in glomeruli before

induction of Thy1 GN, but was highly expressed at day 6

(Figure 7A). In parallel to the a-SMA expression, E12 was slightly

seen before the induction, but was highly expressed in the

glomeruli at day 6 (Figure 7A). To analyze the development of

Thy1 GN, we examined glomerular gene expression of TGF-b, a-

SMA and E12 by quantitative RT-PCR, and found that TGF-b,

a-SMA, and E12 mRNA were increased at day 6 in a parallel

fashion (Figure 7B, C and D).

PIASy and SUMO-1 Expression in Experimental Mesangial
Proliferative Glomerulonephritis

Glomerular expression of PIASy was then examined by Western

blotting and immunohistochemical analysis. Figure 8A shows that

PIASy protein was significantly increased at day 6. Immunohis-

tochemical analysis confirmed that PIASy was expressed at a low

level in glomeruli before induction, and its expression was

dramatically induced at day 6 (Figure 8E). We noticed that PIASy

and E12 were upregulated and distributed similarly in glomeruli in

the proliferative phase. Moreover, immunohistological analysis

revealed that SUMO-1 was also distributed similarly in glomeruli

at day 6, suggesting that protein sumoylation was involved in the

progression of glomerulonephritis (Figure 8G and H).

PIASy Inhibited Cell Proliferation in MCs
Finally, we determined if E12 and PIASy were involved in cell

proliferation in MCs. Knockdown of E12 alone by siRNA did not

affect the BrdU incorporation, whereas knockdown of PIASy

significantly enhanced the cell proliferation at 48 hours after

transfection. Moreover, the enhancing effect of siPIASy was

significantly attenuated when we knocked down E12 at the same

time (Figure 9). These results indicate that PIASy plays an

important role in cell proliferation of MCs through the interaction

with E12.

Discussion

In this study, we have identified an association between PIASy

and E12 and demonstrated the role of PIASy as a negative

regulater of a-SMA expression in MCs upon the interaction with

E12. Furthermore, at least part of its activity is dependent on E12

sumoylation by PIASy. TGF-b treatment increased PIASy and

E12 in accordance with a-SMA induction. Moreover, reduced

expression of PIASy protein by siRNA specific for PIASy leads to

an increase in the magnitude of TGF-b mediated a-SMA

expression. We also demonstrated that the expression of PIASy

and E12 was markedly increased in the proliferative phase in Thy1

GN concomitant with a-SMA expression, suggesting that PIASy

and E12 are involved in the regulation of a-SMA.

In the present study, the a-SMA gene is regulated by E12 in

MCs, suggesting that E12 functions as a transcription factor.

Furthermore, PIASy negetively regulates a-SMA expression upon

the interaction with E12. Interestingly, Kawai-Kowase et al

reported that PIAS1 induces transcriptional activation of SMC

differentiation marker genes through cooperative interactions with

both SRF and class1 bHLH proteins in cultured smooth muscle

cells [17]. This difference might be derived from that PIAS

proteins exert differential effect on E12. Alternatively, tissue-

specific factors may modulate the PIAS function.

Moreover, we found that disruption of the E3-ligase activity of

PIASy abolished its ability to down-regulate the a-SMA promoter,

suggesting that at least part of its activity is dependent on protein

sumoylation. PIAS family proteins have been originally identified

as a cofactor that inhibits the transcriptional activation potential of

STAT and in mammals five PIAS proteins (PIAS1, 3, Xa, Xb,

and y) have been reported [18]. Recently, PIAS family proteins

have been proposed to function as a SUMO-E3 ligase [19]. PIASy

Figure 2. Effect of E12 and PIASy on a-SMA gene expression. (A) Effect of E12 on a-SMA gene expression. Mouse MCs (0.256105) were plated
in 12-well plates, and six hours later, transfected with the E12 expression plasmid (100, 200, 500 ng plasmid DNA/well). After 48 hours, cell lysates
were prepared, and a-SMA was visualized by Western blot analysis. Results are means 6 SD (n = 5). (B) Mouse MCs (0.156105) were plated in 24-well
plates, and six hours later, cotransfected with 25, 50, and 150 ng of the E12 expression plasmid, and 150 ng of the reporter construct. Luciferase
activities in lysates prepared 36 hours post-transfection were measured. The activity of the reporter plasmid alone was arbitrary given a value of 1,
and the activities of the other transfections were adjusted relative to this assay. Means of three independent experiments in triplicate are shown. (C)
Mouse MCs were cotransfected with 150 ng of the PIASy expression plasmid, 25 ng of the E12 expression plasmid, and 150 ng of the reporter
construct. Luciferase assay was performed as described in the legend for B. (D) Extracts from mouse MCs transfected as in C were prepared for
Western blotting with anti-myc, anti-flag, and anti-GAPDH antibodies (Ab). (E) Mouse MCs were cotransfected with 25 ng of the E12 expression
plasmid, and 150 ng of the reporter construct, together with or without increasing amounts of PIASy or PIASyCA as indicated. Luciferase assay was
performed as described in the legend for B. *P,0.05, v.s. control.
doi:10.1371/journal.pone.0041186.g002
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Figure 3. PIASy promotes sumoylation of E12 in vivo. (A) 293T cells were cotransfected with (+) or without (2) 2 mg of plasmid expressing myc-
E12, 2 mg of plasmid expressing HA-SUMO-1, and 2 mg of plasmid expressing flag-PIASy. Cell lysates were immunoprecipitated (IP) with anti-myc
antibody. The immunoprecipitates were subjected to SDS-PAGE and analyzed by Western blotting (WB) with anti-myc antibody. After ECL
development, the filter shown in the first panel was stripped and reproved with anti-HA antibody (second panel). The levels of proteins expressed in
whole cell lysates (WCL) were analyzed and shown as indicated. Each experiment was performed at least three times and representative data was
shown. (B) SUMO-1 is conjugated at lysine 496 of E12 in vivo. Upper panel, schematic representation of mouse E12. The activation domain I (AD I),
activation domain II (AD II) and ubiquitin ligase domain (ULD) are shown. The lysine residue in the putative SUMO-1 acceptor site is indicated by a
black dot within the consensus sumoylation sequence. Lower panel, sumoylation of wild-type E12 but not mutant E12 (K/R) in vivo. 293T cells were
transfected with plasmids expressing myc-E12 or myc-E12 (K/R) with (+) or without (2) HA-SUMO1. Cell lysates were immunoprecipitated (IP) with
anti-myc antibody. The immunoprecipitates were subjected to SDS-PAGE and analyzed by Western blotting(WB) with anti-myc antibody. After ECL
development, the filter shown in the first panel was stripped and reproved with anti-HA antibody (second panel). (C) Mouse MCs (0.156105) were
plated in 24-well plates, and six hours later, cotransfected with 25 ng of the wild-type E12 or mutant E12 (K/R) expression plasmid, and 150 ng of the
reporter construct. Luciferase activities in lysates prepared 36 hours post-transfection were measured. The activity of the reporter plasmid alone was
arbitrary given a value of 1, and the activities of the other transfections were adjusted relative to this assay. Means of three independent experiments
in triplicate are shown.
doi:10.1371/journal.pone.0041186.g003
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was shown to catalyze sumoylation of p53, LEF-1, Smad3, C/

EBPd, E1AF, Ets-1 and Tcf-4 [14], [20], [21,22,23,24,25].

Intriguingly, we found that PIASy acts as E3 ligases for E12

sumoylation by in vivo sumoylation assays. Moreover, we found

that PIASy preferably mediates SUMO-1 modification of E12

over SUMO-3 modification (Figure S2). SUMO-1 modification

and SUMO-2/3 modification can result in distinct consequences

in alteration of target protein’s function. Further study is required

to address the role of SUMO modification in the function of E12

and its modification by PIASy.

Sumoylation has been shown to affect the activity of many

transcription factors. We found that mutant E12 (K/R), E12

sumoylation defective mutants, showed significantly higher a-

SMA promoter activity compared to that of the wild-type,

suggesting that the sumoylation of E12 antagonizes its transcrip-

tional activation potential. Next, we examined whether overex-

pressing PIASy has a different effect on E12 (either wild-type or

K/R)–mediated transactivation. As shown in Figure S3, the

percentage of decrease in mutant E12 (K/R)-mediated transacti-

vation by overexpressing PIASy was significantly lower than that

of the wild-type, suggesting that mutant E12 is more resistant to

the effect of PIASy overexpression.

Due to the significant sequence homology within the PIAS

family and their redundant interactions, it is likely that other post-

transcriptional modifications and/or their local concentrations

largely govern their specificity in vivo. As shown in Figure S1B, in

vivo sumoylation assay revealed that PIAS1 also acts as E3 ligases

for E12 sumoylation in 293T cells, but the minor slowly migrating

bands were weaker than in the case of PIASy. On the other hand,

we examined the expression level of PIAS family members in

mouse MCs. As shown in Figure S1A, RT-PCR revealed that

PIASy is most predominantly among PIAS family members

expressed in mouse MCs. These results suggest that PIASy

predominantly acts as E3 ligases for E12 in MCs among PIAS

family members.

In this study, we showed that TGF-b transcriptionally increased

the expression of PIASy and E12 along with a-SMA expression in

MCs. Moreover, reduced expression of PIASy protein by siRNA

specific for PIASy resulted in increased TGF-b-mediated a-SMA

expression. These results suggest that PIASy negatively regulates

Figure 4. Effect of siRNA specific for PIASy and E12 in a-SMA regulation in MCs. (A) PIASy mRNA and protein were reduced by transfection
of siRNA against PIASy in mouse MCs. Gene expression of PIASy was examined by quantitative RT-PCR using mRNA of MCs transfected with siRNA
against PIASy or control siRNA (20 nM). (B) a-SMA mRNA expression was increased by transfection of siRNA against PIASy. (C) Western blots of MCs
transfected with siRNA against PIASy or control siRNA. (D and E) Optical densitometry of PIASy and a-SMA in immunoblotting. (F) E12 mRNA and
protein were reduced by transfection of siRNA against E12 in mouse MCs. Gene expression of E12 was examined by quantitative RT-PCR using mRNA
of MCs transfected with siRNA against E12 or control siRNA (10 nM). (G) a-SMA mRNA expression was suppressed by transfection of siRNA against
E12. (H) Western blot analysis of MCs transfected with siRNA against E12 or control siRNA. (I and J) Optical densitometry of E12 and a-SMA in
immunoblotting. Means of four independent experiments are shown. The results were presented as the fold-increase or decrease compared with the
values of cells transfected with control siRNA. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. *P,0.05, v.s. control.
doi:10.1371/journal.pone.0041186.g004

PIASy Regulates a-Smooth Muscle Actin Expression
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TGF-b signaling by associating with E12 to prevent uncontrolled

cell proliferation and dedifferentiation, although this is not the

only mechanism involved in the control of this signal transduction.

Figure 5. TGF-b increased PIASy, E12, and a-SMA mRNA and
proteins in MCs. (A) Mouse MCs were cultured in the presence or
absence of 1 ng/ml TGF-b for the indicated times. Gene expression of
PIASy, E12 and a-SMA was examined by quantitative RT-PCR using
mRNA of MCs treated or untreated with TGF-b. Means of four
independent experiments are shown. The results are presented as the
fold-increase or decrease compared with the values of 0 hours. Open
bars denote no treatment, closed bars TGF-b treatment. (C) Mouse MCs
were cultured in the presence or absence of 1 ng/ml TGF-b for the
indicated times. Total cell lysates were examined by Western blot
analysis using anti-PIASy, anti-E12, and anti-a-SMA antibodies. Repre-
sentative data from four independent experiments is shown. (B) Optical
densitometry of PIASy, E12 and a-SMA in Western blotting. The values
of PIASy, E12 and a-SMA were normalized for that of GAPDH and
compared with the values of 0 hours. Means of four independent
experiments are shown. Open bars denote no treatment, closed bars
TGF-b treatment. (D) TGF-b increased PIASy proteins in MCs in a dose-
dependent manner. Mouse MCs were cultured with the indicated doses

of TGF-b for 24 hours. (E) TGF-b increased E12 proteins in mesangial
cells in a dose-dependent manner. Mouse MCs were cultured with the
indicated doses of TGF-b for 24 hours. The values of PIASy and E12 were
normalized for that of GAPDH and compared with the values of control
vehicle. Means of four independent experiments are shown. *P,0.05,
v.s. control.
doi:10.1371/journal.pone.0041186.g005

Figure 6. Effect of siRNA specific for PIASy on TGF-b mediated
a-SMA expression in mesangial cells. (A) Mouse MCs were
transfected with siRNA against PIASy or control siRNA. 12 hours after
the transfection, MCs were serum-starved in starving medium (0.5%
bovine serum albumin/DMEM) for 36 h. MCs were then stimulated with
TGF-b (1 ng/ml) for 24 hours. Total cell lysates were examined by
Western blot analysis using anti-PIASy and anti-a-SMA antibodies.
Representative data from three independent experiments is shown. (B
and C) Optical densitometry of PIASy and a-SMA in Western blotting.
The values of PIASy, E12 and a-SMA were normalized for that of GAPDH
and compared with the values of cells transfected with control siRNA.
GAPDH, glyceraldehyde-3-phosphate dehydrogenase. *P,0.05, v.s.
control.
doi:10.1371/journal.pone.0041186.g006
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Imoto et al demonstrated that PIASy associates with Smad3 and

inhibits TGF-b/Smad transcriptional responses such as PAI-1

using the negative feedback loop [20]. Thus it is also possible that

the effect of PIASy on TGF-b signaling is mediated through

multiple cascades.

In Thy1 GN, PIASy and E12 were upregulated and distributed

similarly in the nucleus of the glomerulus in the proliferative

Figure 7. Glomerular expression of E12, a-SMA, and TGF-b in Thy1 GN. (A) Representative light microscopic pictures of glomeruli (periodic
acid-Schiff staining) and expression of a-SMA and E12 at day 0, 3, 6 and 12 in Thy1 GN. Significant proliferation of MCs was observed at day 6. (B, C
and D) Gene expression of E12, a-SMA, and TGF-b was examined by quantitative RT-PCR using glomerular mRNA. The results were presented as the
fold increase compared with the values obtained before the induction of Thy1 GN (day 0). GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
*P,0.05, v.s. control. White scale bar = 100 mm. Original magnifications, 6400.
doi:10.1371/journal.pone.0041186.g007
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phase, along with increased a-SMA and TGF-b expression,

suggesting that these genes were involved in the regulation of a-

SMA under pathophysiological conditions in vivo, and that tight

control of HLH levels and activity by PIASy is necessary to

prevent uncontrolled cell proliferation and dedifferentiation.

Interestingly, an association between PIASy and E12 proteins

was observed at day 6 by IP-western blotting, but not at day 0,

suggesting that the interaction of PIASy and E12 could be

dependent on mesangial activation. Taken together, we speculated

that TGF-b up-regulates PIASy expression in MCs at day 6 to

regulate a-SMA gene transcription by the interaction with E12. In

this model, however, we could not conclude whether PIASy down-

regulates a-SMA expression as demonstrated in in vitro knockdown

assays. Future studies using PIASy-deficient mice are needed.

In this study, we focused on E-box dependent a-SMA

transactivation. On the other hand, several key transcription

factors have been identified and shown to be important in

regulation of TGF-b-induced SMC-specific gene expression,

including SRF [26] and Smad family [27]. This may be one

reason why PIASy was increased in accordance with a-SMA

expression at day 6 in Thy1 GN. However, in view of the

homeostatic importance of TGF-b, the targeting modalities would

not need to interfere with physiological activity. Partial attenuation

of overactivity appears to be sufficient to limit the consequences on

tissues. Prevention of diabetic retinal microangiopathy did not

require complete normalization of gene expression changes in the

TGF-b pathway [28]. Interestingly, siRNA specific for PIASy

significantly increased endogenous type 1 collagen (1.2460.2 fold)

and PAI-1 (1.3160.32 fold) mRNA expression, suggesting that

PIASy may be involved not only in a-SMA expression but also in

phenotypic changes of MCs. Moreover, we found that PIASy plays

an important role in mesangial cell proliferation through the

interaction with E12 (Figure 9). These results suggest that PIASy

may be a therapeutic target in glomerulonephritis.

In summary, we show that PIASy is a novel E12-binding

partner, and enhances its sumoylation as a specific SUMO-E3

ligase. Our study indicates that TGF-b up-regulates PIASy

expression in MCs to down-regulate a-SMA gene transcription

by the interaction with E12. Further analysis of the modulation of

E12-induced a-SMA expression by PIASy is likely to provide us

new insights into molecular pathophysiology of progressive renal

Figure 8. Up-regulation of PIASy and SUMO-1 in Thy1
glomerulonephritis. (A) Expression of PIASy protein in glomeruli
from Thy1 GN. Glomerular lysates were subjected to Western blot
analyses with an anti-PIASy antibody. Representative picture is shown.
PIASy was significantly upregulated at day3 and 6 in the course of Thy1
GN (n = 4; P,0.05) (B) Optical densitometry of PIASy in Western
blotting. The data are expressed as mean 6 SD (n = 4 in each group). (C,
D, E and F) Immunohistological analysis of PIASy in Thy1 glomerulo-
nephritis at day 0 (C), day 3 (D), day 6 (E) and day 12 (F). Note that
nuclear staining of PIASy was seen in the glomeruli at day 3 and 6. (G
and H) Immunohistological analysis of SUMO-1 in Thy1 glomerulone-
phritis at day 0 (G), and day 6 (H). Sections were counterstained with
hematoxylin solution. White scale bar = 100 mm. Original magnifications,
6400.
doi:10.1371/journal.pone.0041186.g008

Figure 9. Effect of siRNA specific for PIASy and E12 in cell
proliferation in MCs. siRNA specific for E12 did not affect the BrdU
incorporation, but siRNA specific for PIASy obviously enhanced the cell
proliferation 48 hours later after the transfection. The enhancing effect
was significantly attenuated in combination with the knockdown of E12
by the RNA interference. Values were expressed as means 6 SD (n = 3).
doi:10.1371/journal.pone.0041186.g009
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disease and helps establish new therapeutic approaches to

glomerulosclerosis.

Materials and Methods

Reagents and Antibodies
Human recombinant TGF-b1 was purchased from R&D

Systems (Minneapolis, MN). Rabbit anti-rat PIAS4, anti-E12

(Santa Cruz Biotechnology, Santa Cruz, CA), Rabbit anti-mouse

PIAS4 (Proteintech Group, Chicago, IL), anti-a-SMA (1A4),

Rabbit anti-flag, mouse anti-flag M2 (Sigma-Aldrich,St Louis,

MO), anti-GAPDH (6C5; Millipore, Billerica, MA), rat anti-HA

(3F10; Roche), and mouse anti-a-tubulin (Ab-1; Oncogene) were

purchased commercially.

Yeast two-hybrid Screening
Yeast two-hybrid screening was performed with a Matchmaker

GAL4 two-hybrid system (Clontech, Mountain View, CA) using

the reporter Saccharomyces cerevisiae strain AH109 as described

by the manufacturer. To generate a bait construct with the bHLH

domain of E12 (505–651 aa), the cDNA was amplified by PCR

from the full-length cDNA mouse E12 (RIKEN), and inserted into

the NcoI-PstI site of the pGBKT7 vector. We prepared cDNA

library from mouse mesangial cells and inserted it into the

pGADT7-Rec vector. Primary screening was based on activation

of the histidine selection marker by an interaction between bait

and library proteins and was performed using histidine-negative

plates. Secondary screening was based on further activation of a b-

galactosidase reporter gene and was determined using blue/white

colony screening. Library-derived plasmids from the candidate

clones were rescued into the E. coli DH-5a and studied further.

Cell Cultures
Human embryonic kidney carcinoma cell line, 293T, and

COS7 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum and

glutamine as previously described [29,30]. Mouse kidney mesan-

gial cells (MCs) were characterized and maintained in DMEM

supplemented with 20% fetal bovine serum and glutamine as

previously described [31]. The cultured cells fulfilled the criteria

generally accepted as glomerular MCs [32].

Expression Plasmid Construction
pcDNA3-HA-SUMO-1 were kindly provided by Dr. K.

Shimotohno [33]. pCAG-HA-SUMO-1, HA-SUMO-3 [34],

pEGFP-PIAS1, pEGFP-PIASXa, pEGFP-PIASXb, pEGFP-

PIAS3 [35] and pEGFP-PIASy [36] were kindly provided by

T. Ohshima. The fragment of mouse a-SMA (21074 to +43) were

subcloned into a pGL3-basic vector (Promega, Madison, WI) [37].

Full-length of mouse PIASy was amplified by PCR from the

cDNA in mouse testis and cloned into the EcoR I/Xba I sites of

pcDEF3-flag vector. Full-length of mouse E12 was amplified by

PCR from the full-length cDNA mouse E12 (RIKEN) and cloned

into the Sal I/Bgl II sites of PCMV-myc vector (Clontech). The

cDNAs for mutant E12 with substitution of Lys-456 to Arg, E12

(K/R), and PIASy RING mutant with substitution of Cys-335 and

Cys-340 to Ala, PIASyCA, were created using site-directed

mutagenesis and subcloned into expression vectors to obtain

pCMV-myc-E12 (K/R) and pcDEF3-flag-PIASyCA. All constructs

were confirmed by DNA sequencing.

Immunoprecipitation Experiments (IP-Western Blotting)
For the co-immunoprecipitation experiments, COS-7 cells were

transfected with plasmid DNA using Fugene6 (Roche), according

to the manufacturer’s instructions. Cells were harvested 48 hours

after transfection, and lysed on ice in 20 mmol/L Tris-HCl

(pH7.4), 150 mmol/L NaCl, 0.5% NP-40, supplemented with a

protease inhibitor cocktail (Roche) for 20 minutes. The lysates

were then precleared with protein agarose G (Roche) and

incubated overnight at 4uC with anti-myc antibody (9E10,

Upstate) followed by 3-hour incubation with protein agarose G.

For immunoprecipitation with anti-flag antibody, the lysates were

incubated overnight at 4uC with anti-flag M2 affinity gel (Sigma).

Samples were washed four times with phosphate-buffered saline

buffer, and immunoprecipitates were eluted and analyzed by

Western blot.

For the endogenous proteins, mouse MCs lysates or rat

glomerular lysates were lysed on ice in 20 mmol/L Tris-HCl

(pH7.4), 150 mmol/L NaCl, 0.5% NP-40, supplemented with a

protease inhibitor cocktail (Roche) for 20 minutes. The lysates

were then precleared with protein agarose A (Roche) and

incubated overnight at 4uC with anti-PIAS4 antibody (Cell

Signaling Technology, Beverly, MA) followed by 3-hour incuba-

tion with protein agarose A. Samples were washed four times with

phosphate-buffered saline buffer, and immunoprecipitates were

eluted and analyzed by Western blot.

Western Blot Analysis
MCs or glomerular lysates were lysed in RIPA buffer as

described in previous reports [38]. Twenty mg of each sample was

fractionated on SDS-PAGE gels and electroblotted onto Protran

nitrocellulose membrane (Whatmann, UK), subjected to Western

blot using each antibody. Immunoreactive bands were visualized

and quantificated by imaging densitometer, Image J (http://rsb.

info.nih.gov/ij/index.html).

Reporter Assay
Transfections were perfomed using Fugene6. Luciferase activ-

ities were normalized to Renilla luciferase activities derived from

cotransfected pRL-SV40-Luc (Promega). All reporter assays were

performed in triplicate, and standard deviations (S.D.) are denoted

by the bars in figures.

In vivo Sumoylation Assays
HEK293T cells were transfected using Lipofectamine2000

(Invitrogen) according to the manufacturer’s instructions. In vivo

sumoylation assays was performed as described previously [33].

Preparation of Total RNA and Quantitative Reverse
Transcription-PCR

Total RNA was isolated by TRIzol reagent (Invitrogen,

Carlsbad, CA). The quantitative RT-PCR was performed as in

previous reports [38]. The oligonucleotide primers are listed in

Table 1.

RNA Interference
Stealth small interference RNA (siRNA) against E2A (59-

AAUACUGGGAGCUGCUCUUGAUGCC-39), PIASy (59-

AAAGCUCUGGGCUACAGUCGAACUG-39) and Stealth

RNA Interference (siRNA) negative control duplex were provided

by Invitrogen. Transient transfection of the siRNA oligonucleo-

tides was carried out using Lipofectamine RNAi MAX (Invitrogen)

according to the manufacturer’s instructions.

Animals and Induction of Thy1 Glomerulonephritis
Male Wistar Kyoto rats (Shimizu Laboratory Animal Center,

Hamamatsu, Japan) weighing 180–200 g were used in this study.
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Rats were housed under specific pathogen-free conditions. All

animal experiments were performed in accordance with institu-

tional guidelines, and the Review Board of Kyoto University

granted ethical permission for this study (Permit Number: Med

Kyo 09270). Thy1 GN was induced by a single intravenous

injection of anti-rat Thy-1 monoclonal antibody (1 mg/kg)

(Cedarlane Laboratories, Ontario, Canada) as described elsewhere

[3]. These rats were sacrificed to obtain renal specimens, total

glomerular RNA, and protein at days 3, 6 and 12 (n = 4 per

group). Four rats were injected with vehicle only and sacrificed as

controls. Rat glomeruli were isolated from renal cortex of rats

using the differential sieving method [39,40]. The purity of the

glomeruli was .90%.

Immunohistochemistry
Kidney halves were fixed in methyl Carnoy’s solution and

embedded in paraffin. Sections (2 mm) were stained with periodic

acid-Schiff for routine histology. For the immunohistochemistry,

cryopreserved kidney tissues were cut in 4-mm-thick sections, fixed

in acetone for 20 min, and treated with 0.3% H2O2 in methanol

for 15 minutes. Sections were blocked with the appropriate

preimmune serum for 60 min at room temperature, followed with

primary antibodies anti-PIASy antibody (clone PIA4, Sigma-

Aldrich), anti-E12 antibody (Santa Cruz), anti-a-SMA antibody

(clone 1A4, Sigma-Aldrich), and anti-SUMO1 antibody (Zymed

Laboratories, CA, USA).

Reverse Transcription-Polymerase Chain Reaction
1 mg of total RNA was used to prepare complementary DNA

(cDNA) with Superscript III reverse transcriptase (Invitrogen). 5 ml

of cDNA was used as a template in the PCR reaction. PCR

amplification was performed using Taq polymerase with primers.

The oligonucleotide primers are listed in Table 2.

PCR was performed under the following conditions: 94uC for

2 minutes followed by 25 cycles at 94uC for 30 seconds, 50uC for

30 seconds, and 72uC for 1 minute, ending with a final extension

at 72uC for10 minutes. The PCR products were run on 1%

agarose gels and visualized by ethidium bromide staining.

Cell Proliferation Assay with Transient Transfections of
siRNA

BrdU ELISA was performed according to the manufacturer’s

instructions. Briefly, 2500 mouse MCs/well were plated out in 96-

well flat-bottomed microtiter plates in B medium/10% FCS. Six

hours later, siRNA for PIASy, E12 and the control (Invitrogen)

were transfected with Lipofectamine RNAi/MAX reagent (In-

vitrogen) according to the manufacturer’s instructions. The

proliferation of MCs was determined at 48 hours after the siRNA

transfections using a colorimetric immunoassay, based on the

measurement of BrdU incorporation during DNA synthesis

(Amersham Biosciences). BrdU was added to the medium for

the final 2 h of treatment. Cells were incubated for 30 min with

diluted, peroxidase-conjugated anti-BrdU antibody. Absorbance

was assessed at 370 nm with 492 nm as the reference wavelength

utilizing a microplate ELISA reader. Appropriate control wells

were used in each experiment.

Statistical Analysis
The data are expressed as the means 6 SD. Comparison among

more than two groups was performed by one-way analysis of

variance followed by the post hoc analysis (Bonferroni/Dunn test)

to evaluate statistical significance. All analyses were performed

using StatView (SAS Institute, Cary, NC). Statistical significance

was defined as P,0.05.

Table 1. Primer sequences used in real time quantitative RT-PCR.

Gene Forward Reverse GenBank Entry

Mouse and rat E12 ATACAGCGAAGGTGCCCACTT AAAGGTGGCATAGGCATTCCG AK017617

Mouse PIASy CCACCAACCGCATTACTGTCA TCACCCCAATCGTCTTCAACC NM_021501

Mouse a-SMA GCGTGAGATTGTCCGTGACAT GCGTTCGTTTCCAATGGTGAT NM_007392

Rat a-SMA GGCATCCACGAAACCACCTAT CCTTCTGCATCCTGTCAGCAA NM_031004

Rat TGF-b GCTGAACCAAGGAGACGGAAT CGGTTCATGTCATGGATGGTG NM_021578

Mouse and rat GAPDH GCCTCACCCCATTTGATGTTA GGCAAATTCAACGGCACAG BC083149

Mouse Ubc9 GATGACTATCCGTCCTCACCACC GGTGATAGCTGGCCTCCAGTCC NM_011665.4

Rat Ubc9 AACCCTGATGGCACGATGA CCCCTTCTTTCCAGGGATAGC NM_013050.1

doi:10.1371/journal.pone.0041186.t001

Table 2. Primer sequences used in RT-PCR.

Gene Forward Reverse GenBank Entry
Product
size (bp)

Mouse PIAS1 TCCTGCTGTAGATACAAGCTAC TGCCAAAGATGGACGCTGTGTC NM_019663 394

Mouse PIASX GACTTTGCTTGGCAGAGACC AAAGGGCACATCAAGGACAC NM_008602 409

Mouse PIAS3 GTGGACATGCATCCTCCTCT GCGTTCGTTTCCAATGGTGAT NM_146135 405

Mouse PIASy AGACCCTTAAGCCGGAGGTA GTGGCCGAGGACAGATACAT NM_021501 391

doi:10.1371/journal.pone.0041186.t002

PIASy Regulates a-Smooth Muscle Actin Expression

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e41186



Supporting Information

Figure S1 Sumoylation of E12 is predominantly en-
hanced by PIASy among PIAS family members. (A) 1 mg of

total RNA from cultured mouse MCs or mouse testis was used to

prepare complementary DNA (cDNA). PCR was done with

oligonucleotide pairs for PIAS family members using 5 ml of

cDNA. bp, base pairs. (B) 293T cells were cotransfected with 2 mg

of plasmid expressing myc-E12 together with (+) or without (2),

2 mg of plasmid expressing HA-SUMO-1, and 2 mg of plasmid

expressing GFP-PIAS1 (1), -PIAS3 (3), -PIASXa (Xa), -PIASXb
(Xb) and -PIASy (y). Upper panel, Cell lysates were subjected to

immunoblotting with anti-myc antibody. Middle and Lower panel,

Cell lysates were immunoprecipitated (IP) with anti-myc antibody.

The immunoprecipitates were subjected to SDS-PAGE and

analyzed by Western blotting (WB) with anti-myc antibody. After

ECL development, the filter shown in the middle panel was

stripped and reproved with anti-HA antibody (lower panel).

(TIF)

Figure S2 PIASy promotes SUMO-1 and SUMO-3 mod-
ification of E12 in vivo. 293T cells were cotransfected with (+)

or without (2) 2 mg of plasmid expressing myc-E12, 2 mg of

plasmid expressing HA-SUMO-1 or HA-SUMO-3, and 2 mg of

plasmid expressing flag-PIASy. Upper panel, Cell lysates were

subjected to immunoblotting with anti-myc antibody. Middle and

Lower panel, Cell lysates were immunoprecipitated (IP) with anti-

myc antibody. The immunoprecipitates were subjected to SDS-

PAGE and analyzed by Western blotting (WB) with anti-myc

antibody. After ECL development, the filter shown in the middle

panel was stripped and reproved with anti-HA antibody (lower

panel).

(TIF)

Figure S3 Effect of PIASy on mutant E12 (K/R)-induced
a-SMA gene expression. Mouse MCs (0.156105) were plated

in 24-well plates, and six hours later, cotransfected with 50 ng of

the PIASy expression plasmid, 25 ng of the wild- type E12 (WT)

or mutant E12 (K/R) expression plasmid, and 150 ng of the

reporter construct. Luciferase activities in lysates prepared 36

hours post-transfection were measured. Luciferase activities were

normalized to Renilla luciferase activities derived from cotrans-

fected pRL-SV40-Luc. The relative activities with wild-type E12

or mutant E12 (K/R) alone were designated as 100% (lanes 1 and

2). The percentage of decrease by overexpressing PIASy was

compared between wild-type E12 and mutant E12. Results are the

mean 6 SD of data by taking the average of triplicates.

(TIF)

Acknowledgments

We are grateful to Professor Shimotohno for help in sumoylation assay. We

thank Ayumi Hosotani (Kyoto Universtity) for excellent technical

assistance.

Author Contributions

Conceived and designed the experiments: TD H. Arai. Performed the

experiments: KT H. Abe T. Matsubara TH TO. Analyzed the data: T.

Matsubara MA AM AF TK NI. Contributed reagents/materials/analysis

tools: KT H. Abe T. Matsubara TH TO T. Murakami. Wrote the paper:

KT H. Abe T. Matsubara H. Arai TD.

References

1. Mene P, Simonson MS, Dunn MJ (1989) Physiology of the mesangial cell.

Physiol Rev 69: 1347–1424.

2. Schlondorff D (1987) The glomerular mesangial cell: an expanding role for a

specialized pericyte. FASEB J 1: 272–281.

3. Striker LJ, Doi T, Elliot S, Striker GE (1989) The contribution of glomerular

mesangial cells to progressive glomerulosclerosis. Semin Nephrol 9: 318–328.

4. Johnson RJ, Floege J, Yoshimura A, Iida H, Couser WG, et al. (1992) The

activated mesangial cell: a glomerular ‘‘myofibroblast’’? J Am Soc Nephrol 2:

S190–197.

5. Alpers CE, Hudkins KL, Gown AM, Johnson RJ (1992) Enhanced expression of

‘‘muscle-specific’’ actin in glomerulonephritis. Kidney Int 41: 1134–1142.

6. Kumar MS, Hendrix JA, Johnson AD, Owens GK (2003) Smooth muscle alpha-

actin gene requires two E-boxes for proper expression in vivo and is a target of

class I basic helix-loop-helix proteins. Circ Res 92: 840–847.

7. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, et al. (2001) A

new role for E12/E47 in the repression of E-cadherin expression and epithelial-

mesenchymal transitions. J Biol Chem 276: 27424–27431.

8. Slattery C, McMorrow T, Ryan MP (2006) Overexpression of E2A proteins

induces epithelial-mesenchymal transition in human renal proximal tubular

epithelial cells suggesting a potential role in renal fibrosis. FEBS Lett 580: 4021–

4030.

9. Conlon TM, Meyer KB (2004) Cloning and functional characterisation of avian

transcription factor E2A. BMC Immunol 5: 11.

10. Ledent V, Paquet O, Vervoort M (2002) Phylogenetic analysis of the human

basic helix-loop-helix proteins. Genome Biol 3: RESEARCH0030.

11. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of

transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440.

12. Huggins GS, Chin MT, Sibinga NE, Lee SL, Haber E, et al. (1999)

Characterization of the mUBC9-binding sites required for E2A protein

degradation. J Biol Chem 274: 28690–28696.

13. Sloan SR, Shen CP, McCarrick-Walmsley R, Kadesch T (1996) Phosphoryla-

tion of E47 as a potential determinant of B-cell-specific activity. Mol Cell Biol

16: 6900–6908.

14. Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved

in beta-catenin-dependent activation of Tcf-4. EMBO J 22: 2047–2059.

15. Dai C, Liu Y (2004) Hepatocyte growth factor antagonizes the profibrotic action

of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor

TGIF. J Am Soc Nephrol 15: 1402–1412.

16. Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, et al. (1993)

Glomerulosclerosis induced by in vivo transfection of transforming growth

factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin

Invest 92: 2597–2601.

17. Kawai-Kowase K, Kumar MS, Hoofnagle MH, Yoshida T, Owens GK (2005)

PIAS1 activates the expression of smooth muscle cell differentiation marker

genes by interacting with serum response factor and class I basic helix-loop-helix

proteins. Mol Cell Biol 25: 8009–8023.

18. Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins.

Oncogene 19: 2638–2644.

19. Jackson PK (2001) A new RING for SUMO: wrestling transcriptional responses

into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev 15: 3053–

3058.

20. Imoto S, Sugiyama K, Muromoto R, Sato N, Yamamoto T, et al. (2003)

Regulation of transforming growth factor-beta signaling by protein inhibitor of

activated STAT, PIASy through Smad3. J Biol Chem 278: 34253–34258.

21. Nelson V, Davis GE, Maxwell SA (2001) A putative protein inhibitor of

activated STAT (PIASy) interacts with p53 and inhibits p53-mediated

transactivation but not apoptosis. Apoptosis 6: 221–234.

22. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, et al. (2001) PIASy, a

nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by

sequestration into nuclear bodies. Genes Dev 15: 3088–3103.

23. Zhou S, Si J, Liu T, DeWille JW (2008) PIASy represses CCAAT/enhancer-

binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/

EBPdelta to the nuclear periphery. J Biol Chem 283: 20137–20148.

24. Nishida T, Terashima M, Fukami K, Yamada Y (2007) Repression of E1AF

transcriptional activity by sumoylation and PIASy. Biochem Biophys Res

Commun 360: 226–232.

25. Nishida T, Terashima M, Fukami K (2006) PIASy-mediated repression of the

Ets-1 is independent of its sumoylation. Biochem Biophys Res Commun 345:

1536–1546.

26. Kawai-Kowase K, Sato H, Oyama Y, Kanai H, Sato M, et al. (2004) Basic

fibroblast growth factor antagonizes transforming growth factor-beta1-induced

smooth muscle gene expression through extracellular signal-regulated kinase 1/2

signaling pathway activation. Arterioscler Thromb Vasc Biol 24: 1384–1390.

27. Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK (2004)

Transforming growth factor-beta1 signaling contributes to development of

smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 287:

C1560–1568.

28. Gerhardinger C, Dagher Z, Sebastiani P, Park YS, Lorenzi M (2009) The

transforming growth factor-beta pathway is a common target of drugs that

prevent experimental diabetic retinopathy. Diabetes 58: 1659–1667.

PIASy Regulates a-Smooth Muscle Actin Expression

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e41186



29. Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of

peroxisome proliferator-activated receptor gamma is modulated by SUMO-1

modification. J Biol Chem 279: 29551–29557.

30. Abe H, Matsubara T, Iehara N, Nagai K, Takahashi T, et al. (2004) Type IV

collagen is transcriptionally regulated by Smad1 under advanced glycation end

product (AGE) stimulation. J Biol Chem 279: 14201–14206.

31. Nagai K, Arai H, Yanagita M, Matsubara T, Kanamori H, et al. (2003) Growth

arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of

diabetic nephropathy. J Biol Chem 278: 18229–18234.

32. Davies M (1994) The mesangial cell: a tissue culture view. Kidney Int 45: 320–

327.

33. Ohshima T, Shimotohno K (2003) Transforming growth factor-beta-mediated

signaling via the p38 MAP kinase pathway activates Smad-dependent

transcription through SUMO-1 modification of Smad4. J Biol Chem 278:

50833–50842.

34. Watanabe M, Itoh K (2011) Characterization of a novel posttranslational

modification in neuronal nitric oxide synthase by small ubiquitin-related

modifier-1. Biochim Biophys Acta 1814: 900–907.

35. Nishida T, Yasuda H (2002) PIAS1 and PIASxalpha function as SUMO-E3

ligases toward androgen receptor and repress androgen receptor-dependent
transcription. J Biol Chem 277: 41311–41317.

36. Nishida T, Terashima M, Fukami K, Yamada Y (2007) PIASy controls

ubiquitination-dependent proteasomal degradation of Ets-1. Biochem J 405:
481–488.

37. Matsubara T, Abe H, Arai H, Nagai K, Mima A, et al. (2006) Expression of
Smad1 is directly associated with mesangial matrix expansion in rat diabetic

nephropathy. Lab Invest 86: 357–368.

38. Sumi E, Iehara N, Akiyama H, Matsubara T, Mima A, et al. (2007) SRY-related
HMG box 9 regulates the expression of Col4a2 through transactivating its

enhancer element in mesangial cells. Am J Pathol 170: 1854–1864.
39. Ziswiler R, Steinmann-Niggli K, Kappeler A, Daniel C, Marti HP (1998)

Mycophenolic acid: a new approach to the therapy of experimental mesangial
proliferative glomerulonephritis. J Am Soc Nephrol 9: 2055–2066.

40. Pippin JW, Qu Q, Meijer L, Shankland SJ (1997) Direct in vivo inhibition of the

nuclear cell cycle cascade in experimental mesangial proliferative glomerulone-
phritis with Roscovitine, a novel cyclin-dependent kinase antagonist. J Clin

Invest 100: 2512–2520.

PIASy Regulates a-Smooth Muscle Actin Expression

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e41186


