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Abstract
Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and
antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are
highly desirable. We explore two machine learning approaches for predicting flexible length linear
B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity
score between any arbitrary pair of variable length sequences. The second approach utilizes four
different methods of mapping a variable length sequence into a fixed length feature vector. Based
on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length
linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred
significantly outperforms all other classifiers evaluated in this study. An implementation of
FBCPred and the datasets used in this study are publicly available through our linear B-cell
epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

1. INTRODUCTION
B-cell epitopes are antigenic determinants that are recognized and bound by receptors
(membrane-bound antibodies) on the surface of B lymphocytes 1. The identification and
characterization of B-cell epitopes play an important role in vaccine design,
immunodiagnostic tests, and antibody production. As identifying B-cell epitopes
experimentally is time-consuming and expensive, computational methods for reliably and
efficiently predicting B-cell epitopes are highly desirable 2.

There are two types of B-cell epitopes: (i) linear (continuous) epitopes which are short
peptides corresponding to a contiguous amino acid sequence fragment of a protein 3, 4; (ii)
conformational (discontinuous) epitopes which are composed of amino acids that are not
contiguous in primary sequence but are brought into close proximity within the folded
protein structure. Although it is believed that a large majority of B-cell epitopes are
discontinuous 5, experimental epitope identification has focused primarily on linear B-cell
epitopes 6. Even in the case of linear B-cell epitopes, however, antibody-antigen interactions
are often conformation-dependent. The conformation-dependent aspect of antibody binding
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complicates the problem of B-cell epitope prediction, making it less tractable than T-cell
epitope prediction. Hence, the development of reliable computational methods for predicting
linear B-cell epitopes is an important challenge in bioinformatics and computational
biology 2.

Previous studies have reported correlations between certain physicochemical properties of
amino acids and the locations of linear B-cell epitopes within protein sequences 7–11. Based
on that observation, several amino acid propensity scale based methods have been proposed.
For example, methods in 8–11 utilized hydrophilicity, flexibility, turns, and solvent
accessibility propensity scales, respectively. PREDITOP 12, PEOPLE 13, BEPITOPE 14, and
BcePred 15 utilized groups of physicochemical properties instead of a single property to
improve the accuracy of the predicted linear B-cell epitopes. Unfortunately, Blythe and
Flower 16 showed that propensity based methods can not be used reliably for predicting B-
cell epitopes. Using a dataset of 50 proteins and an exhaustive assessment of 484 amino acid
propensity scales, Blythe and Flower 16 showed that the best combinations of amino acid
propensities performed only marginally better than random. They concluded that the
reported performance of such methods in the literature is likely to have been overly
optimistic, in part due to the small size of the data sets on which the methods had been
evaluated.

Recently, the increasing availability of experimentally identified linear B-cell epitopes in
addition to Blythe and Flower results 16 motivated several researchers to explore the
application of machine learning approaches for developing linear B-cell epitope prediction
methods. BepiPred 17 combines two amino acid propensity scales and a Hidden Markov
Model (HMM) trained on linear epitopes to yield a slight improvement in prediction
accuracy relative to techniques that rely on analysis of amino acid physicochemical
properties. ABCPred 18 uses artificial neural networks for predicting linear B-cell epitopes.
Both feed-forward and recurrent neural networks were evaluated on a non-redundant data
set of 700 B-cell epitopes and 700 non-epitope peptides, using 5-fold cross validation tests.
Input sequence windows ranging from 10 to 20 amino acids, were tested and the best
performance, 66% accuracy, was obtained using a recurrent neural network trained on
peptides 16 amino acids in length. In the method of Söllner and Mayer 19, each epitope is
represented using a set of 1487 features extracted from a variety of propensity scales,
neighborhood matrices, and respective probability and likelihood values. Of two machine
learning methods tested, decision trees and a nearest-neighbor method combined with
feature selection, the latter was reported to attain an accuracy of 72% on a data set of 1211
B-cell epitopes and 1211 non-epitopes, using a 5-fold cross validation test 19. Chen et al. 20

observed that certain amino acid pairs (AAPs) tend to occur more frequently in B-cell
epitopes than in non-epitope peptides. Using an AAP propensity scale based on this
observation, in combination with a support vector machine (SVM) classifier, they reported
prediction accuracy of 71% on a data set of 872 B-cell epitopes and 872 non-B-cell epitopes,
estimated using 5-fold cross validation. In addition, 20 demonstrated an improvement in the
prediction accuracy, 72.5%, when the APP propensity scale is combined with turns
accessibility, antigenicity, hydrophilicity, and flexibility propensity scales.

Existing linear B-cell epitope prediction tools fall into two broad categories. Tools in the
first category, residue-based predictors, take as input a protein sequence and assign binary
labels to each individual residue in the input sequence. Each group of neighboring residues
with predicted positive labels define a variable length predicted linear B-cell epitope.
Residue-based prediction methods scan the input sequence using a sliding window and
assign a score to the amino acid at the center of the window based on the mean score of a
certain propensity scale (e.g., flexibility or hydrophilicity). The target residue is predicted
positive if its score is greater than a predetermined threshold. Unfortunately, it has been
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shown that the performance of these methods is marginally better than random 16.
PepiPred 17 used the information extracted using the sliding window to train a HMM and
combined it with two propensity scale based methods. BcePred 15 combined several
propensity scales and showed that the performance of the combined scales is better than the
performance of any single scale.

The second category of linear B-cell prediction tools consist of the epitope-based predictors.
An example of such predictors is the ABCPred server 18. For this server, the input is a
protein sequence and an epitope length (should be in {20, 18, .., 10}). The server then
applies a sliding window of the user specified length and passes the extracted peptides to a
neural network classifier trained using epitope dataset in which all the epitope sequences
have been set to the specified epitope length via trimming and extending longer and shorter
epitopes, respectively. A limitation of this approach is that the user is forced to select one of
the available six possible epitope lengths and can not specify a different epitope length.

Because linear B-cell epitopes can vary in length over a broad range (see Figure 1), it is
natural to train classifiers using the experimentally reported epitope sequences without
trimming or extending them. Such an approach will allow us to provide a linear B-cell
epitope prediction tool that allows the user to experiment with virtually any arbitrary epitope
length. In this work, we explore two machine learning approaches for predicting flexible
length linear B-cell epitopes. The first approach utilizes several sequence kernels for
determining a similarity score between any arbitrary pair of variable length sequences. The
second approach utilizes many different methods of mapping a variable length sequence into
a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a
novel method for predicting flexible length linear B-cell epitopes using the subsequence
kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers
evaluated in this study. An implementation of FBCPred and the datasets used in this study
are publicly available through our linear B-cell epitope prediction server, BCPREDS, at:
http://ailab.cs.iastate.edu/bcpreds/.

2. MATERIALS AND METHODS
2.1. Data

We retrieved 1223 unique linear B-cell epitopes of lengths more than 3 amino acids from
Bcipep database 21. To avoid over-optimistic performance of classifiers evaluated on the set
of unique epitopes, we applied a homology reduction procedure proposed by Raghava 22 for
reducing sequence similarity among flexible length major histocompatibility complex class
II (MHC-II) peptides. Briefly, given two peptides p1 and p2 of lengths l1 and l2 such that l1
l2, we compare p1 with each l1-length subpeptide in p2. If the percent identity (PID) between
p1 and any subpeptide in p2 is greater than 80%, then the two peptides are deemed to be
similar. For example, to compute the PID between (ACDEFGHIKLMNPQRST) and
(DEFGGIKLMN), we compare (DEFGGIKLMN) with (ACDEFGHIKL),
(CDEFGHIKLM), …, (IKLMNPQRST). The PID between (DEFGGIKLMN) and
(DEFGHIKLMN) is 90% since nine out of 10 residues are identical.

Applying the above homology reduction procedure to the set of 1223 unique variable length
linear B-cell epitopes yields a homology-reduced set of 934 epitopes. Two datasets of
flexible length linear B-cell epitopes have been constructed. An original dataset constructed
from the set of 1223 unique epitopes as the positive examples and 1223 non-epitopes
randomly extracted from SwissProt 23 and a homology-reduced dataset constructed from
homology-reduced set of 934 epitopes as positive examples and an equal number of negative
examples extracted randomly form SwissProt sequences. In both datasets two selection
criteria have been applied to the randomly extracted non-epitopes: (i) the length distribution
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in the negative data is identical to the length distribution in the positive data; (ii) none of the
non-epitopes appears in the set of epitopes.

2.2. Support vector machines and kernel methods
Support vector machines (SVMs) 24 are a class of supervised machine learning methods
used for classification and regression. Given a set of labeled training data (xi, yi), where xi ∈
Rd and yi ∈ {+1, −1}, training an SVM classifier involves finding a hyperplane that
maximizes the geometric margin between positive and negative training data samples. The
hyperplane is described as f (x) = 〈w, x〉 + b, where w is a normal vector and b is a bias
term. A test instance, x, is assigned a positive label if f (x) > 0, and a negative label
otherwise. When the training data are not linearly separable, a kernel function is used to map
nonlinearly separable data from the input space into a feature space. Given any two data
samples xi and xj in an input space X ∈ Rd, the kernel function K returns K(xi, xj) = 〈(xi),
(xj)〉 where is a nonlinear map from the input space X to the corresponding feature space.
The kernel function K has the property that K(xi, xj) can be computed without explicitly
mapping xi and xj into the feature space, but instead, using their dot product 〈xi, xj〉 in the
input space. Therefore, the kernel trick allows us to train a linear classifier, e.g., SVM, in a
high-dimensional feature space where the data are assumed to be linearly separable without
explicitly mapping each training example from the input space into the feature space. This
approach relies implicitly on the selection of a feature space in which the training data are
likely to be linearly separable (or nearly so) and explicitly on the selection of the kernel
function to achieve such separability. Unfortunately, there is no single kernel that is
guaranteed to perform well on every data set. Consequently, the SVM approach requires
some care in selecting a suitable kernel and tuning the kernel parameters (if any).

2.3. Sequence kernel based methods
String kernels 25–29 are a class of kernel methods that have been successfully used in many
sequence classification tasks 25, 26, 28, 30–32. In these applications, a protein sequence is
viewed as a string defined on a finite alphabet of 20 amino acids. In this work, we explore
four string kernels: spectrum 25, mismatch 26, local alignment 28, and subsequence 27, in
predicting linear B-cell epitopes. A brief description of the four kernels follows.

2.3.1. Spectrum kernel—Let A denote a finite alphabet, e.g., the standard 20 amino
acids. x and y denote two strings defined on the alphabet A. For k ≥ 1, the k-spectrum is
defined as 25:

(1)

where φα is the number of occurrences of the k-length substring α in the sequence x. The k-
spectrum kernel of the two sequences x and y is obtained by taking the dot product of the
corresponding k spectra:

(2)

The k-spectrum kernel captures a simple notion of string similarity: two strings are deemed
similar (i.e., have a high k-spectrum kernel value) if they share many of the same k-length
substrings.

2.3.2. Mismatch kernel—The mismatch kernel 26 is a variant of the spectrum kernel in
which inexact matching is allowed. Specifically, the (k, m)-mismatch kernel allows up to m
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k mismatches to occur when comparing two k-length substrings. Let α be a k-length
substring, the (k, m)-mismatch feature map is defined on α as:

(3)

where φβ (α) = 1 if β ∈ N(k,m)(α), where β is the set of k-mer substrings that differs from α
by at most m mismatches. Then, the feature map of an input sequence x is the sum of the
feature vectors for k-mer substrings in x:

(4)

The (k, m)-mismatch kernel is defined as the dot product of the corresponding feature maps
in the feature space:

(5)

It should be noted that the (k, 0)-mismatch kernel results in a feature space that is identical
to that of the k-spectrum kernel. An efficient data structure for computing the spectrum and
mismatch kernels in O(|x|+ |y|) and O(km+1|A|m(|x|+ |y|)), respectively, is provided in 26.

2.3.3. Local alignment kernel—Local alignment (LA) kernel 28 is a string kernel
adapted for biological sequences. The LA kernel measures the similarity between two
sequences by summing up scores obtained from gapped local alignments of the sequences.
This kernel has several parameters: the gap opening and extension penalty parameters, d and
e, the amino acid mutation matrix s, and the factor β, which controls the influence of
suboptimal alignments on the kernel value. Detailed formulation of the LA kernel and a
dynamic programming implementation of the kernel with running time complexity in O(|x||
y|) are provided in 28.

2.3.4. Subsequence kernel—The subsequence kernel (SSK) 27 generalizes the k-
spectrum kernel by considering a feature space generated by the set of all (contiguous and
non-contiguous) k-mer subsequences. For example, if we consider the two strings “act” and
“acctct”, the value returned by the spectrum kernel with k = 3 is 0. On the other hand, the (3,
1)-mismatch kernel will return 3 because the 3-mer substrings “acc”, “cct”, and “tct” have at
most one mismatch when compared with “act”. The subsequence kernel considers the set
(“ac – t”, “a – ct”, “ac – – – t”, “a – c – –t”, “a – – – ct”) of non-contiguous substrings and
returns a similarity score that is weighted by the length of each non-contiguous substring.
Specifically, it uses a decay factor, λ 1, to penalize non-contiguous substring matches.
Therefore, the subsequence kernel with k = 3 will return 2λ4 + 3λ6 when applied to “act”
and “acctct” strings. More precisely, the feature map (k,λ) of a string x is given by:

(6)

where u = x[i] denotes a substring in x where 1 i1 < … < i|u| |x| such that uj = sij, for j = 1,
…, |u| and l(i) = i|u| − i1 + 1 is the length of the subsequence in x. The subsequence kernel
for two strings x and y is determined as the dot product of the corresponding feature maps:
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(7)

This kernel can be computed using a recursive algorithm based on dynamic programming in
O(k|x||y|) time and space. The running time and memory requirements can be further
reduced using techniques described in 33.

2.4. Sequence-to-features based methods
This approach has been previously used for protein function and structure classification
tasks 34–37 and the classification of flexible length MHC-II peptides. The main idea is to
map each variable length amino acid sequence into a feature vector of fixed length. Once the
variable length sequences are mapped to fixed length feature vectors, we can apply any of
the standard machine learning algorithms to this problem. Here, we considered SVM
classifiers trained on the mapped data using the widely used RBF kernel.

We explored four different methods for mapping a variable length amino acid sequence into
a fixed length feature vector: (i) amino acid composition; (ii) dipeptide composition; (iii)
amino acid pairs propensity scale; (iv) composition-transition-distribution. A brief summary
of each method is given below.

2.4.1. Amino acid and dipeptide composition—Amino acid composition (AAC)
represents a variable length amino acid sequence using a feature vector of 20 dimensions.
Let x be a sequence of |x| amino acids. Let A denote the set of the standard 20 amino acids.
The amino acid composition feature mapping is defined as:

(8)

where .

A limitation of the amino acid composition feature representation of amino acid sequences is
that we lose the sequence order information. Dipeptide composition (DC) encapsulates
information about the fraction of amino acids as well as their local order. In dipeptide
composition each variable length amino acid sequence is represented by a feature vector of
400 dimensions defined as:

(9)

where .

2.4.2. Amino acid pairs propensity scale—Amino acid pairs (AAPs) are obtained by
decomposing a protein/peptide sequence into its 2-mer subsequences. 20 observed that some
specific AAPs tend to occur more frequently in B-cell epitopes than in non-epitope peptides.
Based on this observation, they developed an AAP propensity scale defined by:

(10)
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where  and  are the occurrence frequencies of AAP α in the epitope and non-epitope
peptide sequences, respectively. These frequencies have been derived from Bcipep 21 and
Swissprot 23 databases, respectively. To avoid the dominance of an individual AAP
propensity value, the scale in Eq. (10) has been normalized to a [−1, +1] interval through the
following conversion:

(11)

where max and min are the maximum and minimum values of the propensity scale before
the normalization.

The AAP feature mapping, AAP, maps each amino acid sequence, x, into a 400-dimentional
feature space defined as:

(12)

where φα(x) is the number of occurrences of the 2-mer α in the peptide x.

2.4.3. Composition-Transition-Distribution—The basic idea behind the Composition-
Transition-Distribution (CTD) method 38, 39 is to map each variable length peptide into a
fixed length feature vector such that standard machine learning algorithms are applicable.
From each peptide sequence, 21 features are extracted as follows:

• First, each peptide sequence p is mapped into a string sp defined over an alphabet
of three symbols, {1, 2, 3}. The mapping is performed by grouping amino acids
into three groups using a physicochemical property of amino acids (see Table 3).
For example the peptide (AIRHIPRRIR) is mapped into (2312321131) using the
hydrophobicity division of amino acids into three groups (see Table 3).

• Second, for each peptide string sp, three descriptors are derived as follows:

– Composition (C): three features representing the percent frequency of the
symbols, {1, 2, 3}, in the mapped peptide sequence.

– Transition (T): three features representing the percent frequency of i
followed by j or j followed by i, for i, j ∈ {1, 2, 3}.

– Distribution (D): five features per symbol representing the fractions of the
entire sequence where the first, 25, 50, 75, and 100% of the candidate
symbol are contained in sp. This yields an additional 15 features for each
peptide.

Table 1 shows division of the 20 amino acids, proposed by Chinnasamy et al. 40, into three
groups based on hydrophobicity, polarizability, polarity, and Van der Waal’s volume
properties. Using these four properties, we derived 84 CTD features from each peptide
sequence. In our experiments, we trained SVM classifiers using RBF kernel and peptide
sequences represented using their amino acid sequence composition (20 features) and CTD
descriptors (84 features).

2.5. Performance evaluation
We report the performance of each classifier using the average of 10 runs of 5-fold cross
validation tests. Each classifier performance is assessed by both threshold-dependent and
threshold-independent metrics. For threshold-dependent metrics, we used accuracy (ACC),
sensitivity (Sn), specificity (Sp), and correlation coefficient (CC). The CC measure has a
value in the range from −1 to +1 and the closer the value to +1, the better the predictor. The
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Sn and Sp summarize the accuracies of the positive and negative predictions respectively.
ACC, Sn, Sp, and CC are defined in Eq. (13–15) where TP, FP, TN, FN are the numbers of
true positives, false positives, true negatives, and false negatives respectively.

For threshold-independent metrics, we report the Receiver Operating Characteristic (ROC)
curve. The ROC curve is obtained by plotting the true positive rate as a function of the false
positive rate or, equivalently, sensitivity versus (1-specificity) as the discrimination
threshold of the binary classifier is varied. Each point on the ROC curve describes the
classifier at a certain threshold value and hence a particular choice of tradeoff between true
positive rate and false negative rate. We also report the area under ROC curve (AUC) as a
useful summary statistic for comparing two ROC curves. AUC is defined as the probability
that a randomly chosen positive example will be ranked higher than a randomly chosen
negative example. An ideal classifier will have an AUC = 1, while a classifier performs no
better than random will have an AUC = 0.5, any classifier performing better than random
will have an AUC value that lies between these two extremes.

2.6. Implementation and SVM parameter optimization
We used Weka machine learning workbench 41 for implementing the spectrum, mismatch,
and LA kernels (RBF and SSK kernels are already implemented in Weka). We evaluated the

k-spectrum kernel, , for k = 1, 2, and 3. The (k, m)-mismatch kernel was evaluated at

(k,m) equals (3, 1)and(4, 1). The subsequence kernel, , was evaluated at k = 2, 3, and 4
and the default value for λ, 0.5. The LA kernel was evaluated using the BLOSUM62
substitution matrix, gap opening and extension parameters equal to 10 and 1, respectively,
and β = 0.5. For the SVM classifier, we used the Weka implementation of the SMO 42

algorithm. For the string kernels, the default value of the C parameter, C = 1, was used for
the SMO classifier. For methods that uses the RBF kernel, we found that tuning the SMO
cost parameter C and the RBF kernel parameter γ is necessary to obtain satisfactory
performance. We tuned these parameters using a 2-dimensional grid search over the range C
= 2−5, 2−3, …, 23, γ = 2−15, 2−13, …, 23.

3. RESULTS AND DISCUSSION
Table 2 compares the performance of different SVM based classifiers on the original dataset
of unique flexible length linear B-cell epitopes. The SVM classifier trained using SSK with

k = 4 and λ = 0.5, , significantly (using statistical paired t-test 43 with p-value = 0.05)
outperforms all other classifiers in terms of the AUC. The two classifiers based on the

mismatch kernel have the worst AUC. The classifier trained using  is competitive to

those trained using the LA kernel and . The last four classifiers belong to the sequence-
to-feature approach. Each of these classifiers has been trained using an SVM classifier and
the RBF kernel but on different data representation. The results suggest that representation
of

(13)

(14)
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(15)

the peptides using their dipeptide composition performs better than other feature
representations on the original dataset. Figure 2 shows the ROC curves for different methods

on original dataset of unique flexible length linear B-cell epitopes. The ROC curve of 
based classifier almost dominates all other ROC curves (i.e., for any choice of specificity

value, the  based classifier almost has the best sensitivity).

Table 3 reports the performance of the different SVM based classifiers on the homology-
reduced dataset of flexible length linear B-cell epitopes. We note that the performance of
each classifier is considerably worse than its performance on the original dataset of unique
epitopes. This discrepancy can be explained by the existence of epitopes with significant
pairwise sequence similarity in the original dataset. Interestingly, the SVM classifier based

on the  kernel still significantly outperforms all other classifiers at 0.05 level of
significance. Figure 3 shows the ROC curves for different methods on homology-reduced

dataset of flexible length linear B-cell epitopes. Again, the ROC curve of  based
classifier almost dominates all other ROC curves.

Comparing results on Table 2 and Table 3 reveals two important issues that to the best of
our knowledge have not been addressed before in the literature on B-cell epitope prediction.
First, our results demonstrate that performance estimates reported on the basis of the original
dataset of unique linear B-cell epitopes is overly optimistic compared to the performance
estimates obtained using the homology-reduced dataset. Hence, we suspect that the actual
performance of linear B-cell epitope prediction methods on homology-reduced datasets is
somewhat lower than the reported performance on the original dataset of unique peptides.
Second, our results suggest that conclusions regarding how different prediction methods
compare to each other drawn on the basis of datasets of unique epitopes may be misleading.

For example, from the reported results in Table 2, one may conclude that  outperforms

 and  while results on the homology-reduced dataset (see Table 3) demonstrate that
the three classifiers are competitive with each other. Another example of misleading
conclusions drawn from results in Table 2 is that dipeptide composition features is a better
representation than amino acid composition representation of the data. This conclusion is
contradicted by results in Table 3 which show that the classifier constructed using the amino
acid composition representation of the data slightly outperforms the classifier constructed
using the dipeptide composition of the same data.

The results in Table 2 and Table 3 show that the classifier that used the amino acid
composition features outperforms the classifier that used CTD features. This is interesting
because the set of amino acid composition features is a subset of the CTD features. Recall
that CTD is composed of 20 amino acid composition features plus 84 physicochemical
features, we conclude that the added physicochemical features did not yield additional
information that was relevant for the classification task. In addition, we observed that the
classifier that used the dipeptide composition outperforms the classifier that used the AAP
features. This is interesting because AAP features as defined in Eq. (12) can be viewed as
dipeptide composition features weighted by the amino acid propensity of each dipeptide.
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3.1. Web server
An implementation of FBCPred is available as a part of our B-cell epitope prediction server
(BCPREDS) 44 which is freely accessible at http://ailab.cs.iastate.edu/bcpreds/. Because it is
often valuable to compare predictions of multiple methods, and consensus predictions are
more reliable than individual predictions, the BCPREDS server aims at providing
predictions using several B-cell epitope prediction methods. The current implementation of
BCPREDS allows the user to select among three prediction methods: (i) Our
implementation of AAP method 20; (ii) BCPred 44, a method for predicting linear B-cell
epitope using the subsequence kernel; (iii) FBCPred, the method introduced in this study for
predicting flexible length B-cell epitopes. The major difference between FBCPred and the
other two methods is that FBCPred can predict linear B-cell epitopes of virtually any
arbitrary length while for the other two methods the length has to be one of possible six
values, {12, 14, …, 22}.

Another goal of BCPREDS server is to serve as a repository of benchmark B-cell epitope
datasets. The datasets used for training and evaluating BCPred and the two datasets used in
this study can be freely downloaded from the web server.

4. SUMMARY AND DISCUSSION
We explored two machine learning approaches for predicting flexible length linear B-cell
epitopes. The first approach utilizes sequence kernels for determining a similarity score
between any arbitrary pair of variable length sequences. The second approach utilizes
several methods of mapping a variable length sequence into a fixed length feature vector.
Our results demonstrated a superior performance of the subsequence kernel based SVM
classifier compared to other SVM classifiers examined in our study. Therefore, we proposed
FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the
subsequence kernel. An implementation of FBCPred and the datasets used in this study are
publicly available through our linear B-cell prediction server, BCPREDS, at:
http://ailab.cs.iastate.edu/bcpreds/.

Previous methods for predicting linear B-cell epitopes (e.g., 15, 17, 19, 18, 20) have been
evaluated on datasets of unique epitopes without applying any homology reduction
procedure as a pre-processing step on the data. We showed that performance estimates
reported on the basis of such datasets is considerably over-optimistic compared to
performance estimates obtained using the homology-reduced datasets. Moreover, we
showed that using such non homology-reduced datasets for comparing different prediction
methods may lead to false conclusions regarding how these methods compare to each other.

4.1. Related work
Residue-based prediction methods 7–11, 15, 17 assign labels to each residue in the query
sequence and therefore are capable of predicting linear B-cell epitopes of variable length.
However, most of these methods have been shown to be of low to moderate performance 16.

AAP method 20 maps each peptide sequence into a set of fixed length numeric features and
therefore it can be trained using datasets of flexible length sequences. However, the
performance of this method had been reported using a dataset of 20-mer peptides.

Söllner and Mayer 19 introduced a method for mapping flexible length epitope sequences
into feature vectors of 1478 attributes. This method has been evaluated on a dataset of
flexible length linear B-cell epitopes. However, no homology reduction procedure was
applied to remove highly similar sequences from the data. In addition, the implementation of
this method is not publicly available.
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Recently, two methods 45, 39 have been successfully applied to the problem of predicting
flexible length MHC-II binding peptides. The first method 45 utilized the LA kernel 28 for
developing efficient SVM based classifiers. The second method 39 mapped each flexible
length peptide into the set of CTD features employed in our study in addition to some extra
features extracted using two secondary structure and solvent accessibility prediction
classifiers. In our study we could not use these extra features due to the unavailability of
these two programs.
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Fig. 1.
Length distribution of unique linear B-cell epitopes in Bcipep database.
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Fig. 2.
ROC curves for different methods on original dataset of unique flexible length linear B-cell

epitopes. The ROC curve of  based classifier almost dominates all other ROC curves.
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Fig. 3.
ROC curves for different methods on homology-reduced dataset of flexible length linear B-

cell epitopes. The ROC curve of  based classifier almost dominates all other ROC
curves.
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Table 1

Categorization of amino acids into three groups for a number of physicochemical properties.

Proporty Group 1 Group 2 Group 3

Hydrophobicity RKEDQN GASTPHY CVLIMFW

Polarizability GASCTPD NVEQIL MHKFRYW

Polarity LIFWCMVY PATGS HQRKNED

Van der Waala volume GASDT CPNVEQIL KMHFRYW
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