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Stereotypic behavior, an easily measured behavior that shows 
great individual variation, may confound some mouse-based 
research,7 and is potentially affected by the early familial envi-
ronment. Stereotypic behaviors have traditionally been defined 
as invariant, repetitive, and apparently functionless26,29 and are 
common in many captive species, including laboratory mice. 
In laboratory mice, activities meeting this description include 
bar-gnawing, back-flipping, and route-tracing.28 More recently 
stereotypic behaviors have been defined as being induced by 
frustration, attempts to cope, or CNS dysfunction27—a definition 
based on biological cause rather than phenotype. The specific 
term ‘stereotypy’ has been suggested to apply to the subset of 
these behaviors that is caused specifically by dorsal striatal dys-
function.27 Bar-mouthing, route-tracing, and similar repetitive 
behaviors in laboratory mice are less severe and prevalent in 
enriched environments21,34 and are more severe in previously 
enriched mice that have enrichments removed, suggesting that 
these behaviors are induced by frustration.21 Preliminary evi-
dence that they may also be true stereotypies comes from their 
link with a form of generalized behavioral inflexibility termed 
‘recurrent perseveration,8 where responses in a learned task are 
more repetitive than the response behavior observed in control 
animals. Such findings speak to both the welfare significance of 
laboratory mouse stereotypies and their potential implications 
for many aspects of mouse behavior during testing.

In many species, early maternal deprivation (such as prema-
ture weaning) increases later risks of stereotypic behaviors.20 In 
laboratory mice, lower offspring weights or ages at weaning in-
crease the likelihood of developing bar-mouthing and similar 
activities in adulthood. In addition, lighter and younger animals 

show an increased number of escape attempts immediately after 
weaning, suggesting that lower weight and age at weaning may 
be associated with a greater need for milk and stronger motiva-
tion to return to the mother.35,36 Differences in resource access 
during development and resulting effects on developmental 
stage at the time of weaning therefore may be one reason why 
individual mice vary in their adult stereotypic behavior.35,36 
Litter size can be one factor that affects the amount of maternal 
care received per offspring: sharing maternal resources among 
multiple siblings can result in slower growth, delayed onset of 
independent feeding, lower dominance status, and even lower 
probabilities of survival for particular progeny.12,18,31 Alloca-
tion of maternal resources may explain why offspring from 
larger litters were slower to develop coordinated movements 
in a swim-task32 and why some studies19,30 (but not all5,9) find 
long-term increases in emotionality in adult rodents from larger 
litters. Together, these findings suggest that individual mice 
from large litters may be at increased risk of later stereotypic 
behavior because they receive less maternal care in infancy and 
because they weigh less at weaning.

We examined both litter size and its potential correlate, 
weight at weaning, as predictors of stereotypic behavior in 
adult laboratory mice. Stereotypic behavior was assessed in 
3 different mouse colonies that were composed of 2 inbred 
strains (C57BL/6N [B6] and C57BL/6J) and an outbred stock 
(CD1[ICR]). In 2 of the colonies, we also tested the effects of 
weaning at standard or delayed ages. The third colony, in which 
mice had previously been used to study pup dispersal behavior2, 
was maintained in enriched or nonenriched housing as adults,3 
and litter-size effects on adult stereotypic behavior were inves-
tigated post hoc. We predicted that due to the expected negative 
influence of litter size on development, mice from larger litters 
would be smaller at weaning and adult stereotypic behavior 
would be greater in mice from larger litters or mice that weighed 
less at weaning. We also predicted that delayed weaning would 
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moved into new housing units for a dispersal experiment;2 
each unit consisted of 2 identical cages connected by a tube, 
which the mother was unable to access. Therefore, one cage 
was a natal cage containing the dam, and the other a ‘dis-
persal cage’ that only the pups could reach. In addition, we 
used 2 cage styles so that there were 2 types of dispersal units, 
which varied slightly in dimension.2 At weaning, mice were 
housed in either enriched (9 litters) or standard (8 litters) 
conditions, counterbalanced by this early cage style. Envi-
ronmental enrichment consisted of larger cages, additional 
nesting materials (tissue or shredded paper towel), and toys 
(sterilized PVC tubes, nylon dog bones, yogurt containers) 
rotated biweekly.3

Stereotypic behavior. Mice (age, 6 to 7 mo) were observed 
in their home cages for stereotypies including bar-gnawing, 
back-flipping, and route-tracing; these actions were recorded 
as stereotypic if repeated 3 times without interruption.33 Be-
ginning 1 h after lights off, individual mice were observed for 
stereotypic behavior and inactivity (mouse remained at rest, 
hunched, and motionless, for more than 8 s) by using a 1-0 
sampling method. Every mouse was observed continuously 
for 20 s once every 45 min across a 3-h session, such that each 
mouse was scored 4 times daily. A stereotypy score of 1 was 
assigned when a mouse performed a stereotypic behavior at 
any time during the 20-s observation time. When a mouse 
was inactive at any point during the 20-s period, an inactiv-
ity score of 1 was assigned. Daily mean levels of stereotypy 
and overall activity were calculated as proportions of total 
observations and averaged by sex and family. Stereotypy also 
was calculated as a proportion of total active time. These data 
were collected for 4 d, which revealed the behavior as being 
consistent across days, and analyses used the final mean score 
of behavior across all 4 d.

Statistical analyses. General linear models were run sepa-
rately for male and female mice by using Minitab 13 (Minitab, 
State College, PA). Litter size was a covariate; weaning age 
(in Colonies 1 and 2) was an independent variable; and all in-
teractions were included. Colony 1 data also were blocked by 
strain. Colony 3 mice were all weaned at the same age (35 d), 
but pre- and postweaning housing conditions varied; therefore, 
early- and late-housing types were included as blocking factors 
in colony 3 analyses. In addition, the interaction of litter size 
with housing type was included.

Whenever significant effects of litter size were found, litter 
size was tested as a predictor of offspring weight at weaning 
by using litter size as a covariate and blocking by weaning age 
or housing and its interactions. To investigate whether weight 
at weaning predicted adult stereotypic behavior as previously 
reported,35,36 we replaced litter size with weight at weaning in 
the models. Models were checked for orthogonality by com-
paring the sequential and adjusted sums of squares in model 
outputs.10 If this analysis indicated nonorthogonality, models 
were analyzed with the main effects in all possible orders, re-
porting only the smallest F ratio and largest P value obtained. In 
addition, data were checked to ensure they met model assump-
tions of homogeneity of variance, and log transformations were 
applied when necessary. Differences were considered significant 
at a P value of less than 0.05, and significant interactions were 
reanalyzed according to the interaction term to investigate their 
causes further. We report stereotypic behaviors as a proportion 
of total active time; reporting the findings as a proportion of total 
observations yielded qualitatively similar results.

reduce stereotypic behavior and that pups from larger litters 
might particularly benefit from this practice.

Materials and Methods
Animals. Procedures for all mice were approved by the Uni-

versity of Guelph’s Animal Care Committee and conducted in 
accordance with CCAC guidelines.4 All colonies were free of 
pathogens. Stereotypic behavior in adulthood was assessed 
similarly across colonies, as described later (see Stereotypic 
Behavior).

Colony 1. Adult virgin male and female mice of the inbred 
C57BL/6N (B6) and outbred CD1(ICR) strains were purchased 
from Charles River Laboratories (Senneville, Quebec, Canada) 
and, on arrival to the Mount Sinai Hospital Animal Facility 
(Toronto, Canada), were housed in standard polycarbonate 
mouse cages (model N10HT, Ancare, Bellmore, NY; 13 cm high 
× 28 cm deep × 19 cm wide). Cages were maintained inside a 
single temperature (20 ± 1 °C)- and humidity (50% to 60%)-
controlled room, under a 12:12-h photocycle. Mice had ample 
corncob bedding (Bed O’Cobs, Andersons, Maumee, OH) and 
ad libitum access to nesting material, dry food pellets (LabDiet 
5053, Aberfoyle, Ontario, Canada), and sterilized water; cage 
cleaning was performed weekly. A week after their arrival, 2 
female and one male (from the same strain) mouse were housed 
together. At the first sign of pregnancy, female mice were housed 
individually. Of the 14 litters born, 2 were excluded from the 
study due to extreme sex biases; the 12 remaining litters, which 
comprised a total of 104 pups (n = 24 same-sex sibling groups) 
from 7 B6 and 5 CD1 dams, were studied. Litters were weaned 
and weighed at either 21 d (7 litters) or 35 d (5 litters), earmarked 
for identification, and housed in same-sex sibling groups (n per 
cage = 2 to 5).

Colony 2. C57BL/6J mice were bred and housed under stand-
ard conditions (22 ± 2 °C; relative humidity, 45% ± 5%) at a large 
commercial mouse facility, in typical joined duplex-style cages 
(model 3, Thoren Caging Systems, Hazelton, PA; 14 cm high × 
30 cm deep × 14 cm wide). All mice had ample bedding of white 
pine shavings (Crobb Box, Ellsworth, ME) and ad libitum access 
to bottled acidified water (pH 2.8 to 3.1) and dry food pellets 
(Purina Mills, Richmond, IN); cage cleaning was performed 
weekly. We weaned and weighed 50 litters (182 pups in total) 
at 21 ± 1 d (n = 16 litters), 28 ± 1 d (n = 15 litters), or 35 ± 1 d (n 
= 19 litters) from dams of standard C57BL/6J breeding stock 
between their second and fifth parity, allowing natural litter size 
variation. Litter size was randomized among treatment groups 
rather than counter-balanced, because of the larger sample 
sizes in colony 2 compared with colony 1. At weaning, 2 male 
and 2 female mice from each litter were chosen at random and 
rehoused by sex (n per cage = 2).

Colony 3. Adult virgin C57BL6/J mice were bred and 
housed at the University of Guelph Central Animal Facility, 
inside a single temperature (20 ± 1 °C) and humidity (50% to 
60%)-controlled room under a 12:12-h photocycle. Mice had 
ample corncob bedding (Teklad 7097, Harlan Laboratories, 
Mississauga, Canada) and nesting material (Ancare, Bell-
more, NY) and unlimited access to dry food pellets (Teklad 
2014, Harlan Laboratories) and water (nonsterilized); cage 
cleaning was performed weekly. A total of 82 pups from 
17 dams were weaned and weighed at 35 d and housed in 
same-sex sibling groups (n = 2 to 3). From birth to day 14, all 
mice were housed in standard polycarbonate mouse cages 
(as described for colony 1 mice), furnished with nesting ma-
terial and a ‘mouse house’ (nontoxic polycarbonate; catalog 
no. K3327, Bio-Serv, Frenchtown, NJ). On day 14, mice were 
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extending the duration of pup access to maternal resources by 
delaying weaning did not reduce stereotypic behavior, even in 
mice from larger litters and despite a subsequent increase in the 
pups’ weights at weaning. This finding was contrary to previous 
findings in laboratory mice35,36 and to studies of weaning age in 
other species including American mink (Neovison vison) and Af-
rican striped mice (Rhabdomys pumilio).14,20 Therefore, although 
litter size seems a useful predictor of adult female stereotypy in 
laboratory mice, the effect did not seem mediated by reduced 
milk intake leading to smaller body weights.

Results
Litter size and stereotypic behavior. In colony 1, CD1 female 

mice showed more stereotypic behavior as adults than did B6 
female mice (P = 0.04, F[1,6] = 6.8), as did female mice from 
larger litters (Figure 1). In contrast, the behavior of male mice 
in colony 1 was not significantly influenced by strain (P > 0.05; 
F[1,4] = 1.0) or litter size (P > 0.05; F[1,4] = 2.1). Delayed wean-
ing age did not significantly affect stereotypic behavior (female 
mice: P > 0.05, F[1,6] = 2.7; male mice: P > 0.05, F[1,4] = 2.1), even 
in mice from larger litters (P > 0.05).

Similar results were found for colony 2: litter size positively 
predicted stereotypic behavior in adult female mice (Figure 2), 
whereas male stereotypic behavior was not significantly af-
fected (P > 0.05, F[1,40] = 0.27). In addition, weaning age did 
not significantly affect stereotypic behavior (female mice: P > 
0.05, F[2,39] = 1.3; male mice: P > 0.05, F[2,40] = 1.4), but again 
even in mice from larger litters (P > 0.05).

In colony 3, female stereotypic behavior was affected by an 
interaction between postweaning enrichment and litter size 
(Figure 3). Litter size significantly predicted stereotypic behavior 
in female mice that were weaned into enriched (P = 0.005, 
F[1,4] = 30.6) but not into standard (P > 0.05, F[1,4] = 0.14) cages. 
In male mice, stereotypies were not significantly influenced by 
litter size (P > 0.05, F[1,10] = 1.0), enrichment (P > 0.05, 
F[1,10] = 0.48), or the interaction between enrichment and litter 
size (P > 0.05, F[1,4] = 0.9).

Litter size, weight at weaning, and stereotypic behavior. Lit-
ter size was not a significant predictor of weight at weaning in 
colony 1 (female mice: P > 0.05, F[1,6] = 0.34; male mice: P > 0.05, 
F[1,4] = 0.41) or colony 2 (female mice: P > 0.05, F[1,33] = 1.7; 
male mice: P > 0.05, F[1,36] = 0.10). Litter size was a significant 
negative predictor of weight at weaning in colony 3 female mice 
(P = 0.002, F[1,10] = 17.4) but not male mice (P > 0.05, F[1,10] = 3.9). 
Furthermore, weight at weaning was not a significant predictor 
of adult stereotypic behavior (colony 1 female mice: P > 0.05, 
F[1,6] = 0.19; colony 1 male mice: P > 0.05, F[1,4] = 1.9; colony 
2 female mice: P > 0.05, F[1,35] = 0.90; colony 2 male mice: P > 
0.05, F[1,36] = 0.49; colony 3 female mice: P > 0.05, F[1,9] = 4.2; 
colony 3 male mice: P > 0.05, F[1,9] = 0.95). Late-weaned litters 
were heavier at weaning than were early-weaned litters (colony 
1 female mice: P = 0.001, F[1,6] = 188.0; colony 1 male mice: P = 
0.001, F[1,4] = 236.2); colony 2 female mice: P = 0.001, F[2,33] = 
112.0; colony 2 male mice: P = 0.001, F[2,36] = 107.7).

Discussion
Stereotypic behavior in adult female mice covaried positively 

with litter size in Colonies 1 and 2, and in the subset of females 
weaned into enriched conditions in colony 3. Therefore, female 
mice from larger litters showed more stereotypy as adults as 
compared with female mice from smaller litters. In contrast, 
male stereotypic behavior in adulthood was not significantly 
related to litter size.

Although this result was partially consistent with our hy-
pothesis that large litters are most likely to develop motor 
stereotypies, the data were inconsistent with our proposed 
mechanism. We had hypothesized that offspring that share early 
resources with many siblings and thus receive less maternal 
investment would develop more slowly,12,18 with this effect 
and their lighter weights at weaning acting to elevate their 
later stereotypic behavior. Except in colony 3’s female mice, 
however, litter size did not significantly predict offspring weight 
at weaning. In addition, weight at weaning did not predict 
later stereotypic behavior, such that the results of the current 
study failed to replicate previous findings.35,36 Furthermore, 

Figure 1. Stereotypic behavior in colony 1 female mice. Those from 
larger litters were more stereotypic as adults (general linear model: 
P = 0.006, F[1,6] = 17.2; analyses were blocked for strain effects). B6, 
C57BL/6N; CD, CD1(ICR).

Figure 2. Stereotypic behavior in colony 2 female mice. Litter size 
positively predicted stereotypic behavior in adults (P = 0.004, F[1,39] 
= 9.4).

Figure 3. Stereotypic behavior in colony 3 female mice. Postwean-
ing enrichment significantly interacted with litter size (general linear 
model: P = 0.042, F[1,10] = 5.4). Litter size significantly predicted stere-
otypic behavior in female mice weaned into enriched (E; P = 0.005, 
F[1,4] = 30.6) but not standard, nonenriched (S; P > 0.05, F[1,4] = 0.14) 
cages.
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in environmental quality can elevate stereotypic behavior,21 and 
such ‘negative contrast’ effects might have masked the litter-size 
effects that were evident in their colony-mates that were weaned 
to large enriched cages instead.

We also assessed another abnormal repetitive behavior: 
barbering (incessant hair-plucking).3 However, due to small 
sample sizes and the qualitative nature of the data, the results 
(all nonsignificant) were inconclusive and so are not presented 
here. Whether litter size similarly affects barbering now needs 
further research, as do the mechanisms underlying the links 
we found between bar-mouthing and similar stereotypies in 
adult female mice and their litter size in infancy. Such research 
should include the assessment of dam stereotypy and the cross-
fostering of litters, to investigate the roles and heritability of 
maternal stereotypy; the experimental manipulation of litter 
size, to investigate whether its effects are actually causal; the 
study of maternal licking and grooming, and of pup–pup inter-
actions, to assess the importance of these aspects of early social 
experience; and the measurement of adult levels of stress, anxi-
ety, and perseveration to investigate whether these measures 
are affected concurrently.

Whatever the mechanisms, however, our current findings 
have immediate implications. Given the links between mouse 
stereotypies and other aspects of functioning, such as recurrent 
perseveration, our work combines with other studies of litter 
size effects to suggest that controlling for litter size could reduce 
variability in behavioral data and reduce the number of mice 
required in some research. Currently, many millions of mice 
are subjects in neurobehavioral research globally each year, 
and millions of mice intended for such research are shipped 
annually from commercial suppliers, but no knowledge about 
a mouse’s litter size is transferred from vendor to researcher. 
This lack makes it impossible to control for natural litter size 
variation in purchased stock. However, statistically controlling 
for litter size could reduce variance in experimental data and 
support the use of fewer animals.

In conclusion, we here report that litter size positively predicts 
adult stereotypic behavior in female laboratory mice. Results 
generated in 3 separate mouse colonies, using 2 inbred strains 
and an outbred stock, demonstrate high external validity. Future 
work should investigate the driving force behind this relation-
ship. The current findings encourage further investigation into 
early social environments as predictors of individual predispo-
sition to stereotypic behavior and as means for improving the 
validity of behavioral research.
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