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ABSTRACT

Motivation: Protein abundance in quantitative proteomics is
often based on observed spectral features derived from liquid
chromatography mass spectrometry (LC-MS) or LC-MS/MS
experiments. Peak intensities are largely non-normal in distribution.
Furthermore, LC-MS-based proteomics data frequently have large
proportions of missing peak intensities due to censoring mechanisms
on low-abundance spectral features. Recognizing that the observed
peak intensities detected with the LC-MS method are all positive,
skewed and often left-censored, we propose using survival
methodology to carry out differential expression analysis of proteins.
Various standard statistical techniques including non-parametric
tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann—
Whitney rank sum tests, and the parametric survival model and
accelerated failure time-model with log-normal, log-logistic and
Weibull distributions were used to detect any differentially expressed
proteins. The statistical operating characteristics of each method
are explored using both real and simulated datasets.

Results: Survival methods generally have greater statistical power
than standard differential expression methods when the proportion
of missing protein level data is 5% or more. In particular, the AFT
models we consider consistently achieve greater statistical power
than standard testing procedures, with the discrepancy widening
with increasing missingness in the proportions.

Availability: The testing procedures discussed in this article can all
be performed using readily available software such as R. The R codes
are provided as supplemental materials.
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1 INTRODUCTION

Proteomics is a growing field that deals with the determination of
gene and cellular function at the protein level (Aebersold and Mann,
2003). It is often of interest to the protein researcher to identify
as well as quantify the amount of protein in a given biological
sample. Several methods and instruments are available for both the
identification and quantitation of peptides within proteins, including
the bottom-up liquid chromatography mass spectrometry (LC-MS)
and LC-MS/MS or the tandem mass spectrometry approaches. In the
LC-MS approach, proteins are extracted from the biological sample,
digested into peptides and ionized (Karpievitch et al., 2010; Vogel
and Marcotte, 2008). Following the ionization step, the ionized
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sample is introduced to the mass spectrometer for scanning where
the mass to charge (m/z) and observed peak intensities are obtained.
Once the peak intensities are obtained, the observed features of
the peptides are matched to a database for peptide identification.
Following the identification step, the peptide level information is
rolled up to the protein level (Karpievitch et al., 2010). In LC-
MS/MS, a precursor ion is picked after the first MS step for
fragmentation prior to the identification step (Karpievitch et al.,
2010). It is often of interest to measure the abundance of proteins
from the identified peptides in the sample; this is the quantitation
step of the analysis.

In bottom-up MS-based quantitation, the estimation of protein
abundances in a sample is typically carried out on the basis of one
of three quantities (Hendrickson er al., 2006; Karpievitch et al.,
2010; Zhu et al., 2009): (i) spectral counts; (ii) label-free methods
or (iii) isotopic labeling experiments. Spectral counts are simply
the number of peak intensities for a given peptide/protein. Label-
free intensity-based quantitation uses peak intensities (heights or
areas under the peaks) to estimate peptide or protein abundance.
Other label-free methods are based on the unlabeled peak intensities
associated with the mass spectrum of the extracted ions. Label-based
methods of quantitation, which are viewed as the ‘gold-standard’ for
measuring protein abundance, involve the ratio of the observed peak
intensities of two isotopically labeled samples. Once the protein
abundances have been obtained, it is often of interest to assess
differentially expressed proteins across comparison groups. The goal
of differential analysis is to differentiate features across groups
which can be subsequently used for biomarker discovery or for
providing additional clues for studying the causal pathways of
the disease or the biological condition of interest (deVera et al.,
2006).

One of the characteristics of peak intensity data from LC-MS
based proteomics is large quantities of missing data. The missing
data patterns are often not independent of the peak intensities
of the peptides, which is likely due to censoring of the peak
intensities for low-abundance peptides/proteins (Karpievitch et al.,
2009). To assess differentially expressed proteins across treatment
groups, the observed peak intensities are often normalized (Callister
et al., 2006), imputed (Jornsten et al., 2005; Troyanskaya et al.,
2001) and transformed (Cui and Churchill, 2008; Thygeson and
Zwinderman, 2004). Various imputation techniques are available
for the imputation step. These include the row mean imputation,
K nearest neighbor (KNN) (Troyanskaya et al., 2001), singular
value decomposition (Troyanskaya et al., 2001), Bayesian principal
components analysis (Oba et al., 2003), Gaussian mixture clustering
(Ouyang et al., 2004) and a convex combination of these methods
(LinCmb) (Jornsten et al., 2005). Another imputation approach
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is the probabilistic PCA (PPCA) approach which is based on a
combination of the expectation maximization (EM) algorithm with
a probability model (Stacklies et al., 2007). Once the data are
transformed and imputed, standard statistical techniques such as the
two-sample ¢-tests or linear regression methods are often applied
to detect any significant differences in the protein expressions
across the groups under the assumption that the data are normally
distributed. However, the assumption of normality can be violated
even for the transformed data. The protein-specific 7-test may also
have insufficient power in detecting group differences due to the
small sample sizes within each treatment group (Cui and Churchill,
2003).

To deal with missing values in practice, one of two basic strategies
is generally used. The simplest strategy is to work only with
the complete intensities. That is the data used for a particular
peptide/protein would be based on the observed peak intensity; the
missing values are excluded from the analysis. Alternatively, the
missing values are imputed. There are many imputation algorithms
(Jornsten et al., 2005; Oba et al., 2003; Ouyang et al., 2004; Stacklies
et al., 2007; Troyanskaya et al., 2001). However, none of these
approaches is strictly appropriate when the missing values have
been censored, as they can result in biased estimates and statistical
inference (Karpievitch et al., 2009).

Standard alternatives to the parametric 7-test are non-parametric
tests such as the Wilcoxon-Mann—Whitney rank sum or the
Kolmogorov—Smirnov tests. These tests are more desirable than
their parametric counterpart since they do not make any strong
distributional assumptions. As with the z-test, these tests are carried
out by either deleting the missing peak intensities or imputing the
data. Standard statistical techniques such as the f-test or linear
regression methods do not naturally accommodate the positive
nature of the data, nor the presence of widespread censoring.

To address these issues, we propose the use of existing statistical
methodology that is designed specifically for non-negative, censored
data. The field of survival analysis generally deals with such data,
and there is a wide variety of survival methodologies that could
be adapted to the quantitative proteomics setting. In particular,
the accelerated failure time (AFT) model fits the quantitative
proteomics setting well. An AFT model essentially; involves
regression under assumed parametric models, in the presence of
censored observations. Distributions available in AFT modeling
include the log-normal, log-logistic and Weibull.

As discussed above, standard testing procedures in the
quantitative proteomics setting are not ideal, particularly with
regard to the widespread censoring that is typically present. A
simple scenario highlights the value of survival methods in the
presence of censored data. Consider a single protein for which
we have intensity measurements from 10 control samples and 10
treatment samples. Of the 20 attempted measurements, suppose 6
are missing due to censoring: 2 from the control group and 4 from
the treatment group. For these six censored observations, we can
only say that the protein was not present for those samples, or it
peak intensities were too low to be detected by the instrument.
In our data file, the entries for these 6 observations might simply
read ‘NA.” The challenge is dealing with this situation that the
14 observed intensities will tend to the 14 ‘largest’ values out of
the 20. Thus, for example, if we were to base our analysis on just
the 14 observed intensities, we would ‘overestimate’ the means and
‘underestimate’ the standard deviations in each group, resulting in

biased inference. Meanwhile, standard imputation routines assume
that missing values are ‘completely at random’ (Little and Rubin,
2002), which in our context would mean that the fact a particular
intensity is missing is independent of the value of its actual peak
intensity or other peak intensities in the data. With censoring,
observations tend to go missing only when they are really small (in
our left censoring contexts). In other words, the missing completely
at random mechanism does not generally apply to quantitative
proteomics data. As such, standard imputation techniques will suffer
from the same limitations of the complete-data analysis, namely,
biased statistical inference.

Furthermore, most imputation techniques that are applied in
practice to quantitative proteomics data are ‘single imputation’
techniques (Little and Rubin, 2002). It is known that single
imputation can result in biased inference due to overfitting the data.
Survival methodology, of which AFT models are an example, is
specifically designed to handle censored observations. They work
by correctly representing a censored observation as one that in
reality fell at or below a known threshold. As a result, the issues of
overestimated group means and underestimated standard deviations
are avoided, and valid statistical inference is maintained. The main
contribution of this article is to adapt well-known benefits of survival
methodology to the quantiative proteomics setting. Our proposed
approach to detecting differential expressions can be applied to
any proteomics data generated using either the LC-MS or tandem
MS approaches since these data are all non-negative and prone to
missing observations due to censoring regardless of the instrument
technology. The advantage of using the survival approach is that it
allows a likelihood-based inference of the LC-MS or LC-MS/MS
proteomics data in the presence of missingness due to censored
observations.

2 METHODS

2.1 Data preprocessing

One of the challenges in proteomic analysis is determining how the peptide
level information obtained for each peak height can be rolled up to the
protein level. Analysis conducted at the peptide level for each protein is often
desirable; however, such analysis is not always feasible due to the level of
missing data at the peptide-level. In a peptide-level analysis, the protein-
level abundance is expressed in terms of the peptide-level intensities, and
methods such as mixed effects models are used in the analysis (Karpievitch
et al., 2009). Several options are available for the peptide to protein rollup
in LC-MS-based bottom-up proteomics. These options include the RRollup,
ZRollup and QRollup (Polpitiya et al., 2008). In the RRollup method, all
peptides from a given protein are scaled based on a reference peptide and
averaged to obtain a protein abundance for that given protein (Polpitiya et al.,
2008). The ZRollup method involves standardizing at the peptide level using
a method comparable to the z-scores prior to averaging to obtain the protein-
level abundance (Polpitiya et al., 2008). For the QRollup method, a user
specified cutoff value is used to select the peptides for a given protein, and
the selected peptides are averaged across peptide-level peak intensities to
obtain protein-level abundances (Polpitiya et al., 2008). Another approach
to the peptide to protein rollup problem is a principal components based
approach (ProPCA) for label-free LC-MS/MS proteomics data (Dicker et al.,
2010). The ProPCA method combines the spectral counts from the label-free
LC-MS/MS data with the peptide peak attributes to obtain estimates of the
relative protein abundance (Dicker et al., 2010).

For simplicity, we accomplished peptide-to-protein rollup by averaging
peptide peak intensities by protein. In addition to the AFT models, we
considered the following strategies for dealing with missing intensities at
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the protein level: (i) complete data analysis, row-mean imputation, KNN
imputation (Troyanskaya et al., 2001), and PPCA imputation (Stacklies
et al., 2007). As discussed above, these and related techniques, while
simple to implement in practice, have important limitation in the quantitative
proteomics setting that can result in invalid statistical inference.

2.2 Data

2.2.1 Diabetes study For our first application, we apply the various tests
to the diabetes data studied by (Karpievitch et al., 2009). The diabetes dataset
is based on frozen human serum samples from the DASP between 2000 and
2009 (Metz et al., 2008). The data consist of 10 healthy control subjects
and 10 subjects with a recent diagnosis of type I diabetes mellitus. Six high-
abundant plasma proteins that constitute ~85% of the total protein mass of
human plasma were removed prior to extracting the serum. The samples were
analyzed using the accurate mass and tag method (Pasa-Tolic et al., 2004;
Zimmer et al., 2006). The final LC-FTICR MS datasets were processed using
the PRISM Data Analysis system (Kiebel ez al., 2006). For the diabetes data,
any observations within a given sample below the lowest observable peak
intensity within that sample is considered censored. Therefore, we define the
detection limit to be sample specific for the diabetes data.

2.2.2 Simulation study We simulated 100 datasets from the log-normal,
Weibull and log-logistic distributions. Each simulated dataset was composed
of 10 samples in each of two comparison groups with 5000 proteins, 40%
of which were differentially expressed. Differential expression was created
in terms of differences in log means between the two comparison groups;
this difference was allowed to vary from 1.05 to 1.50. We varied the percent
missing (censored) observations over the values 0, 5, 15, 25, 35, and 45%.
Five approaches were used to handle the censored data. The approaches
include no imputation (NI), row mean, KNN and PPCA imputations. We
also considered the missing data as left-censored observations by applying
survival models. The knn.impute function in the impute package in R
(Troyanskaya et al., 2001) with k =3 nearest neighbors was used for the KNN
imputation, while the pca function of the pcaMethods package (Stacklies
et al., 2007) was used to impute the data with the PPCA approach. The
detection limit for our simulation study is defined as the minimum observable
peak intensity within the whole dataset. Therefore, the detection limit is data
specific for the simulation study.

2.3 Statistical methods considered

2.3.1 T-tests and related techniques The standard statistical technique
used for differential expression analysis in a two-class setting is the two-
sample #-test. Under the assumption that the variances are equal for both
treatment groups within a given protein and the sampled from a normal
population, the data are log, transformed and the following test statistic
Tsi= 3= Xie g M (1)
Spy/(2/m)
is calculated where S, is the pooled standard deviation, while C and D index
the first and second comparison groups, respectively; M is the total number
of proteins in the data and » is the total number of samples associated with
each protein. It is assumed that under the null hypothesis, TS; follows a ¢
distribution with 2n — 2 degrees of freedom. When the number of comparison
groups exceeds two, the two-sample #-test can be generalized by the F-test.

2.3.2 Non-parametric alternatives Two non-parametric methods were
considered for testing the null hypothesis that the distributions of the
comparison groups are identical. Non-parametric tests are performed
under mild distributional assumptions regarding the distribution of the
populations from which the data are sampled (Hollander and Wolfe, 1999).
It has been shown that by relaxing the normality assumption when the
normality assumption holds in favor of non-parametric methods, the non-
parametric methods are minimally less efficient than standard methods based

on normality assumptions (Hollander and Wolfe, 1999). Also, the non-
parametric tests are more robust to outlying observations even when the
normality assumption is valid (Hollander and Wolfe, 1999).

The first distribution-free method we considered was the Kolmogorov—
Smirnov test. This tests the null hypothesis that the distributions for the
two comparison groups are equivalent against the alternative hypothesis that
they differ (Hollander and Wolfe, 1999). Let F;(-) and G;(-) be continuous
distributions for the populations being compared for the ith protein, and

i i T )
Ci1,Ci,...,Ciy, llNFI-(-); and D;1,D;3,...,Djy > Gi(-). Our objective is to test if
there are any differences in the protein expressions between the two groups.
The hypotheses under consideration are

Hy:Fi(t) = Gi(1);
H, :Fi(t) # Gi(t),for at least one t,

where ¢ is the observed peak intensity. The first step in obtaining the
Kolmogorov—Smirnov test statistic is to calculate the empirical distributions
of Fiu(t) and Gin(1),

i Gy <t
Fin(t):JT

YDy =t
Gin(t):JT-

The Kolmogorov—Smirnov test statistic J; for the ith protein is defined as

2
li:;ma”Fin_Ginla 2)

—oo<l<oo

where d is the greatest common divisor of n. To test at level «, we compare
Ji to ju, rejecting the null hypothesis if J; >j,. The above test statistic was
calculated under the assumption that there are equal samples in both groups;
however, the test can also be generalized to the unequal sample size case
(Hollander and Wolfe, 1999). The term j, is chosen from a table or computed
through software such that the probability of Type I error is equal to «.
The Wilcoxon—-Mann—Whitney rank-sum test is a distribution-free two-
sample test under the assumption that the populations only differ by location
and are independent (Hollander and Wolfe, 1999). A location-shift model
defined as G;(t)=F;(t— A;) for every ¢ is used to define the null hypothesis.
Under the null, it is assumed that the comparison groups come from identical
populations, for the ith protein. The alternative hypothesis is that the two

distributions differ by A; for the ith protein. More formally, DiiCi-f—A,'
which states that the distribution of D; and C; differ by A;, the location-
shift parameter or treatment effect. Thus, the Wilcoxon—-Mann—Whitney
hypothesis is stated as

Hy:A; = 0;
HltA,' # 0.

The Wilcoxon—-Mann—Whitney rank-sum test statistic, W;, is computed
by first combining the comparison groups (each of size n). The combined
sample of size 2n observations is ranked and the test statistic for the ith
protein is based on the sum of the ranks assigned to the observations from
one of the comparison groups in the ordered combined group. Thus, W; is
calculated as

n
W= Sy, ©)
j=1

where §j; is the rank associated with the jth sample from one selected
comparison group treatment sample for the ith protein. For this two-sided
test, W; is rejected if W; > wq 2 or if W; <n(2n+1) — wy/2 where the nominal
values of wy/2 can be found through software. Ties are treated separately
(Hollander and Wolfe, 1999). Similar to the two-sample z-test, a limitation
of the non-parametric tests considered here is that they are restricted to two
samples and do not allow for the adjustment of covariates.
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2.3.3 AFTmodels Let t;; be the observed peak intensity for the ith protein
in sample j, Z;; is an indicator variable indicating the group membership (1 if
sample j is in the treatment group, 0 if in control) while S;(¢|Z;;) is the survival
function. The survival function is defined as the probability that the ith protein
peak intensity is greater than some value ¢|Z;. Under the assumption that
the missing data are censored, the parametric AFT model can be applied
to compare protein-level expressions across comparisons groups of interest.
The AFT model,

Si(t1Z;p) = Siofexp(6:Zi)t}. @)
defines the relationship between the survival function S;(¢|Z;) and the
acceleration factor exp(;Z;;) for the ith protein. The baseline survival
function, Sjo, is the survival function at the baseline levels of all the covariates
included in the model. In the current application, the baseline survivor
function is the survivor function for the control group. The acceleration
factor indicates how the survivor function for the ith protein changes from
the baseline survival function as the covariate changes, while 6; indicates the
effect of the ith peak intensity on its predicted survival peak, S;(7).

In applying the AFT model to peak intensity data, we assume that the effect
of a covariate is multiplicative on the predicted survival function of the peak
intensity. Therefore, the AFT model can be expressed in terms of a linear
relationship between the log intensities and the group indicator variable:

Yij=log(t;j) = i +viZij+oiWj,for all ¢, )

where p; and o; are the mean and scale parameters associated with the
ith protein, respectively, while Wj; is the error term in the model for the ith
protein. The regression coefficient, y;, is the effect of the treatment compared
to the control group of the log-transformed peak intensity in our current
application.

Several assumptions can be made about the distribution of Yj; including
the Weibull, log-logistic, ¥ and log-normal distributions. The name of a
given AFT model is based on the assumed distribution of T rather than the
assumed distribution for either Wj; or log(T) (Piao et al., 2011). The log-
normal, Weibull and log-logistic distributions are commonly used with AFT
models (Collette, 2003; Klein and Moeschberger, 2003).

2.4 Estimation and inference

In this section, we discuss the maximum-likelihood estimation of the AFT
model with left censoring for the ith protein. We first define an indicator
function §;;=1 if Tj; is observed or 0 if censored. Under the assumption
that the missing protein peak intensity data are due to left censoring where
the mass spectrometer is unable to detect peak intensities below a given
minimum detectable threshold, the likelihood function is defined as

n
L) =] [Fe5.00" " if (1,60, (6)

j=1
where F(l‘[,‘, 0)=1— S(l,_',', 6;) and f([,_'j, 6;)= aF(Z@/,Q;)/BH; (Odell et al.,
1992). The F(t;,6;) is the cumulative density function for #; while f(z;;,6;)
is the density function. In adjusting for the left censoring in the protein peak
intensity data, we assume for each sample there is a minimum detectable
threshold and any observed peak intensity below the given threshold is
assumed to be censored at the given threshold, #;. The value for the
minimum detectable threshold associated with each protein is plugged into
the likelihood. The contribution of the left-censored observation is from
F(t,:i,G;)l"S'J while the contribution of the non-missing peak intensity to the

likelihood is £ (t;j,6;)% .
To maximize the likelihood, we maximize

n
logL(6) =) (1—8;)logF (1;,0) +(8;)logf (1, 6). @)

i=1
The maximum-likelihood estimates can be found using an algorithm such
as the Newton—Raphson procedure or the EM algorithm or with readily
available software such as the survreg function in R. The likelihood ratio test
can be used to test for the differential expressions between the groups under

considerations. Specifically, to test for any differential protein expressions,
the likelihood ratio test can be used to test Hp : ; =0. The number of proteins
determined to be differentially expressed can be based on the proteins for
which FDR <« (Storey, 2002; Benjamini and Hochberg, 1995).

3 RESULTS
3.1 Diabetes data

Table 1 compares the number of proteins called differentially
expressed at an estimated FDR of 5%. Overall, we find that applying
the Kolmogorov—Smirnov test with KNN imputation had the least
power to detect the differential expressions, while the AFT models
had the highest power. From our analysis of the diabetic data, it
appears that treating the missing data as left-censored is beneficial.
We also find that the 7-test applied to the transformed data performed
as equally well as the non-parametric tests. The AFT model with
the Weibull distribution outperformed all the other tests under
consideration.

Our findings from the diabetes data based on the AFT model
with the log-logistic distribution indicated that 131 of the proteins
present in the sample were differentially expressed while about 79
proteins were found to be differentially expressed under the z-test
with row mean imputation. Previous methods that also study the
differential expressions of the proteins in the diabetes data also found
~75 of the proteins to be differentially expressed at an estimated
FDR rate of 0.05% (Karpievitch et al., 2009). Therefore, the AFT
model with log-logistic distribution found ~40% more differential
expressions than previous findings. Based on manually searching
through the list of proteins called differentially expressed by the
AFT log-logistic model but not the #-test with row mean imputation,
we found a few with known relevance to diabetes: IP100291262.3
(Daimon et al., 2011), IP100021842.1 (Bach-Ngohou et al., 2002)
and 1P100298994.3 (Renno et al., 2011). The latter protein, talin-1,
has been linked to diabetes in rats, while the first two have been
noticed in humans. These results indicate that the use of the more
powerful AFT models has the potential to increase our number of
biologically relevant discoveries.

3.2 Simulation study

Table 2 provides the number of differential expressions detected at
a true FDR rate of 5%. We find that when there are no missing
data, and there appears to be no difference between the number
of differential expressions detected by the z-test under all the
imputation methods considered and the z-test performs equally well
as the AFT model under the log-normal distribution. The rank-sum
test also performs well in detecting differential expressions when
none of the data are missing. However, as the proportion of missing
data increases, we find that the AFT models outperforms the standard
tests in detecting differential expressions. Overall, the AFT model
tends to outperform all the tests considered, and the non-parametric
tests had the least power to detect any differentially expressed
proteins. The AFT model had the highest power under all the
levels of missingness considered. The AFT model with the Weibull
distribution had the least power to detect true differential expressions
when compared with the models under either the log-normal or log-
logistic distributions. We therefore recommend the use of either the
log-normal or log-logistic distribution-based AFT model which treat
missing peak intensities as left-censored. Our results also illustrate
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Table 1. Results from the various tests for detecting differentially expressed
proteins for the diabetes data

Interestingly, the ‘NI’ tended to perform well across the board.
This is somewhat surprising since they are not taking advantage
of the censored nature of the data. Still, the proper survival-based

Test Assumptions Sum(DE) techniques clearly outperform all others considered. Furthermore,
the simulation results strongly indicate that classical imputation

T-test (RM) Normality; parametric 7 techniques perform poorly in the context of censored data.

KS (RM) Non-parametric 76

WMW RS (RM) Non-parametric 80

T-test (KNN) Normality; parametric 70 4 DISCUSSION

KS (KNN) Non-parametric 06 In quantitative proteomics, it is often of interest to determine how

WMW RS (KNN) Non-parametric 65 proteins obtained from subjects under various treatment conditions

T-test (PPCA) Normality; parametric 76 differ. In this article, we focused on various techniques for detecting

KS (PPCA) Non-parametric 70 such differential expressions at the protein level. We recognize the

WMW RS (PPCA) Non-parametric 69 nature of peak intensity data as positive data prone to missingness

AFT-LN (LC) log-normal; parametric 126 due mostly to left censoring. We propose using methods from

AFT-W (LC) Weibull; parametric 142 survival analysis to detect any differences at the protein level. Based

AFT-LL (LC) log-logistic; parametric 131

Four approaches were used to handle the missing data, namely, row mean imputation,
KNN imputation, PPCA imputation and left censoring. There are 173 proteins in the
diabetes data with a missing proportion rate of 24%. The WMW RS-test under the KNN
had the least power to detect any differential expressions while the highest number of
differential expressions with FDR <0.05 was detected with the AFT (Weibull) under
left censoring.

KS, Kolmogorov—Smirnov test; WMW RS, Wilcoxon—-Mann—Whitney rank-sum test;
RM, row mean imputation, KNN, K nearest neighbor imputation; PPCA, probabilistic
principal component imputation; LC, left-censored missing (survival method which
accounts for left censoring); AFT, accelerated failure time model; LN, log-normal; W,
Weibull; LL, log-logistic and Sum(DE), sum of differentially expressed proteins based
on the FDR <0.05.

that treating left-censored data as randomly missing data and using
imputation techniques developed for randomly missing data can
lead to a reduction in the power to detect differential expressions.

Table 2. Summary of simulation results

on our application of the various techniques to the diabetes data, we
find that applying the AFT models under with left censoring had the
highest power to detect any group differences. Tests applied under
the assumption of left censoring had the highest ability to detect
differentially expressed proteins when compared with tests based
on the assumption that the missing data are randomly missing.

Our simulation study also confirms the benefit of treating the
missing data as left-censored and applying the AFT models.
Overall, we would recommend treating raw peak intensity data as
positive and left-censored data and apply survival methods such
as the AFT model with the log-logistic distribution to determine
any differentially expressed proteins. Many -omics technologies
will be expected to give rise to censored data to one degree or
another. For example, array-based data are fluorescence intensity
measurements, nuclear magnetic resonance data are spectral
intensity measurements, etc; each of these are strictly positive

0 5 15 25 35 45
LN W LL LN W LL LN W LL LN W LL LN W LL LN W LL
T-test (NI) 1306 1344 1283 1228 1411 1231 1082 1427 1122 922 1403 982 723 1342 801 535 1261 609
T-test (RM) 1306 1344 1283 1150 1358 1148 746 1205 807 273 899 353 56 516 73 21 228 23
T-test (KNN) 1306 1344 1283 1239 1441 1243 1125 1512 1142 977 1485 994 212 882 538 23 324 43
T-test (PPCA) 1306 1344 1283 1229 1433 1223 916 1372 1022 556 1235 698 96 628 163 27 60 37
KS-test (NI) 862 1204 999 1012 1326 1085 902 1312 976 723 1266 820 565 1171 632 402 1055 450
KS-test (RM) 862 1204 999 741 1105 754 345 831 421 100 365 107 45 151 40 53 143 57
KS-test (KNN) 862 1204 999 809 1243 912 713 1256 792 283 946 429 55 104 96 43 146 38
KS-test (PPCA) 862 1204 999 804 1212 880 755 756 624 92 158 242 54 96 98 71 183 45
RS-test (NI) 1197 1337 1252 1173 1370 1205 1027 1347 1069 833 1280 891 639 1191 680 479 1064 516
RS-test (RM) 1197 1337 1252 1072 1308 1067 642 1142 696 180 800 214 32 314 38 9 71 15
RS-test (KNN) 1197 1337 1252 1121 1374 1180 1028 1367 1059 743 1090 865 138 214 331 142 153 93
RS-test (PPCA) 1197 1337 1252 1126 1342 1153 692 978 910 234 280 508 73 107 175 109 185 63
AFT-LN (LC) 1306 1344 1285 1309 1360 1288 1317 1404 1300 1324 1452 1320 1335 1506 1341 1295 1500 1302
AFT-W (LC) 1071 1125 997 1103 1593 1045 1122 1636 1064 1140 1626 1080 1157 1618 1103 1127 1560 1087
AFT-LL (LC) 1265 1404 1310 1268 1399 1309 1276 1393 1315 1298 1414 1338 1331 1466 1373 1288 1468 1341

The table provides the number of differentially expressed proteins based on the true FDR = 0.05. The data were generated from the log-normal Weibull, and log-logistic distributions
with 40% of the 5000 proteins being differentially expressed under various levels of missingness. Five approaches were used to handle the missing data (i) no imputation, (ii) row
mean imputation, (iii) K nearest neighbor imputation, (iv) probabilistic principal components analysis imputation and (v) left censoring approaches with accelerated failure time
models. KS, Kolmogorov—Smirnov test; WMW RS, Wilcoxon—-Mann—Whitney rank sum test; RM, row mean imputation; KNN, K nearest neighbor imputation; PPCA, probabilistic
principal component imputation; LC, left-censored missing (survival method which accounts for left censoring); AFT, accelerated failure time model; LN, log-normal; W, Weibull;
LL, log-logistic and Sum(DE), sum of differentially expressed proteins based on the true FDR = 0.05.
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measurements, susceptible to left censoring. Thus, the proposed use
of survival methods has potential application to a variety of -omics
data types. However, MS-based proteomics data are exceptional in
their extreme proportions of censoring, so it is unclear how large
of an impact the proposed techniques would have outside of the
proteomics context.

Our current analyses were based on detecting differential
expressions at the protein level following a peptide-to-protein rollup.
As a follow-up to the study, we plan to study methods from survival
analysis to detect differential expressions at the peptide level where
the missing data are treated as left-censored observations.

5 CONCLUSION

In this article, we applied methods from survival analysis to detect
differentially expressed proteins based on LC-MS proteomics data.
We find that applying the AFT model with left-censored data leads
to more proteins being considered as differentially expressed when
compared with other standard statistical techniques which assume
that the missing data are randomly missing.
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