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ABSTRACT

Summary: We present an automated web server for partial order
optimum likelihood (POOL), a machine learning application that
combines computed electrostatic and geometric information for
high-performance prediction of catalytic residues from 3D structures.
Input features consist of THEMATICS electrostatics data and pocket
information from ConCavity. THEMATICS measures deviation from
typical, sigmoidal titration behavior to identify functionally important
residues and ConCavity identifies binding pockets by analyzing
the surface geometry of protein structures. Both THEMATICS and
ConCavity (structure only) do not require the query protein to have
any sequence or structure similarity to other proteins. Hence, POOL
is applicable to proteins with novel folds and engineered proteins.
As an additional option for cases where sequence homologues are
available, users can include evolutionary information from INTREPID
for enhanced accuracy in site prediction.
Availability: The web site is free and open to all users with no login
requirements at http://www.pool.neu.edu.
Contact: m.ondrechen@neu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Over the past decade, Structural Genomics (SG) projects have
accumulated structural data for over 11 000 proteins, but most
of them are of unknown or uncertain function. Thus, there
is high demand for computational methods to predict function
from structure. Computational site predictors provide valuable
information for function annotation and they are also useful to guide
and accelerate mechanistic, ligand-binding and protein engineering
studies. A variety of sequence-based methods exist but these often
suffer from poor precision compared with structure-based methods.
Modern methods use both sequence and structural information to
enhance the performance of active site prediction. Recently (Tong
et al., 2009), we have reported a new machine learning method,
partial order optimum likelihood (POOL), which uses input features
from THEMATICS and outperforms many of the best prior methods.
THEMATICS, for Theoretical Microscopic Anomalous Titration
Curve Shapes (Wei et al., 2007), uses computed electrostatic

†Present address: Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, CT 06520, USA.
∗To whom correspondence should be addressed.

properties and identifies functionally important ionizable residues
based on their deviation from Henderson–Hasselbalch (H–H)
titration behavior. In addition, we have also shown that integration
of other structure and sequence features along with THEMATICS
data can further boost the performance of POOL (Somarowthu
et al., 2011b). With the combined input of electrostatic information
from THEMATICS, evolutionary information from INTREPID
(Sankararaman et al., 2009) and pocket information from ConCavity
(Capra et al., 2009), POOL achieves 86.7, 92.5 and 93.8% recall
of annotated functional residues at 5, 8 and 10% false-positive
rates, respectively, on a standard test set of 100 unique, well-
characterized enzymes (Somarowthu et al., 2011b). Using the top
8% of POOL-ranked residues, the functionally important residues
are predicted with 89.8% recall and 92.8% specificity. The top
10% of the POOL-ranked residues yields a prediction with 93.3%
recall and 90.9% specificity. Furthermore, information about the
verification and performance of the POOL method is provided in
the Supplementary Material.

Herein, we describe a web server for POOL. The user
submits a protein structure and the server automatically performs
THEMATICS and ConCavity calculations to obtain the input
features for POOL calculations. INTREPID is a separate web server
and hence cannot be integrated automatically but users are provided
with the option to obtain the results from INTREPID and include
them in the submission to the POOL server. The POOL server returns
a list of all residues, rank ordered according to their probability
of functional importance. The top-ranked residues constitute the
functional site prediction.

2 METHODS

2.1 Overview
The POOL method has been described previously (Tong et al., 2009). The
following input features are implemented in the current version (Somarowthu
et al., 2011b).

2.2 Features
2.2.1 3D Structure-based features THEMATICS electrostatics features:
using only the structure of the query protein as input, THEMATICS (Wei
et al., 2007) identifies residues that deviate from H–H titration behavior as
active site residues. Briefly, the Poisson–Boltzmann equations are solved,
followed by Monte Carlo sampling using HYBRID to compute theoretical
microscopic titration curves for all the ionizable residues. Currently, POOL
uses the fourth central moment and the theoretical buffer range, which
are shown to be good metrics to measure the degree of deviation from
H–H titration behavior (Somarowthu et al., 2011b). POOL also generates
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environment features for all residues, based on the THEMATICS features of
neighboring ionizable residues; thus, POOL predicts all 20 amino acid types.

ConCavity Pocket features: ConCavity (Capra et al., 2009) identifies
binding pockets by analyzing the 3D structure of proteins and the method
scores each residue on its likelihood of ligand binding, using surface
geometric properties. These residue scores are used as one of the input
features for POOL.

2.2.2 Sequence features The INTREPID server (Sankararaman et al.,
2009) uses phylogenetic tree traversal to identify the functional residues
in a protein. Given the sequence, INTREPID assigns a score to all residues
according to functional importance. A residue with a higher score is thus
predicted to be more functionally important than a residue with a lower
score.

3 RESULTS

3.1 Input
The main input for a POOL/THEMATICS calculation is a protein 3D
structure in PDB format. This is an advantage because the method
needs no further information about a protein. The protein does not
have to have any similarity in sequence or in structure to any other
protein. However, one must make sure that the input structure is
complete and of sufficient quality. For cases where a structure is not
available, users can submit a homology model but the accuracy of
the prediction depends on the quality of the model.

3.2 Processing
The input structure is pre-processed using YASARA (Krieger et al.,
2002) to add any missing atoms. THEMATICS calculations are
performed as described before (Wei et al., 2007). The electrical
potential is computed by a Poisson–Boltzmann procedure; this is
based on a set of atomic charges and molecular surface generated
by the atomic radii assigned to the atoms in the input structure. These
values are taken from a standard forcefield (CHARMM19). Thus,
at the present, we are only able to include standard amino acids in
a THEMATICS calculation. The current version of the system will
delete any records from a PDB file marked as HETATM.

3.3 Submitting a job and checking on its progress
Jobs can be submitted either with a PDB ID or an uploaded structure
file in PDB format. The status and results can be accessed in three
ways: (1) at the time of submission, a HTML link is provided;
when the job is finished, results appear on that web page, (2) a
unique Job ID appears on the submission page; this Job ID can
be used to check status or access results using the ‘check status’
window on the home page and (3) if the user wishes to provide an
e-mail address, then results are e-mailed when the job is completed.
The real time required for a POOL analysis depends on the size
of the protein. A small protein of 100 residues takes about 1 min.

A more typical-sized protein of 300 residues takes about 10 min.
A large protein (1000 or more residues) can take hours.

3.4 Output
The output HTML page contains (1) a Jmol java applet with
interactive 3D representation of protein structure and the top 10
residues in the predicted active site and (2) downloadable result file
for offline analysis. Typically, the top 8–10% of the ranked residues
in this result file are taken to be the predicted set of functionally
important residues. The user should download the result file to obtain
these top-ranked residues. Confidence information in the form of
average recall and specificity rates is provided under the web server’s
Help tab and also in the Supplementary Material.

4 APPLICATIONS
Examples of applications of POOL predictions of functionally
important residues are in studies of the role of remote residues in
enzyme function (Brodkin et al., 2011; Somarowthu et al., 2011a)
and in the prediction of the function of SG proteins of unknown
function (Han et al., 2011; Parasuram et al., 2010).
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