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Abstract
A genetic factor model is introduced for decomposition of group differences of the means of
phenotypic behavior as well as individual differences when the research variables under
consideration are ordered categorical. The model employs the general Genetic Factor Model
proposed by Neale and Cardon (Methodology for genetic studies of twins and families, 1992) and,
more specifically, the extension proposed by Dolan et al. (Behav Genet 22: 319–335, 1992) which
enables decomposition of group differences of the means associated with genetic and
environmental factors. Using a Latent Response Variable (LRV) formulation (Muthén and
Asparouhov, Latent variable analysis with categorical outcomes: multiple-group and growth
modeling in Mplus. Mplus web notes: No. 4, Version 5, 2002), proportional differences of
response categories between groups are modeled within the genetic factor model in terms of the
distributional differences of latent response variables assumed to underlie the observed ordered
categorical variables. Use of the proposed model is illustrated using a measure of conservatism in
the data collected from the Australian Twin Registry.
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The genetic factor model is used in behavior genetics to determine the relative contributions
of genetic and environmental components on a phenotypic behavior (Martin and Eaves
1977; Neale and Cardon 1992). In its basic form, the genetic factor model is an application
of multiple-group confirmatory factor analytic models that decomposes variances of
observed phenotypic variables into genetic and environmental factors with genetically
informative data collected from twin pairs. Although the genetic factor model is often used
to explain a phenotypic behavior measured by a single indicator variable, the effect of
genetic and environmental factors on phenotypic behaviors measured by multiple indicators
can be estimated using analogous latent variables in a multivariate genetic factor model
(Heath et al. 1989b; Neale and Cardon 1992).

Although applications of the genetic factor model have primarily been focused on the
decomposition of individual differences in terms of covariance structures, the mean
structures of phenotypic indicators can also be modeled by genetic and environmental
factors. Dolan (1989) proposed a model for the genetic factor analysis with mean structures
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based on the adjoined sum of squares and cross products (SSCP) matrix in which the
intercepts of phenotypic indicators are set to zero and factor means are estimated. Although
this model can estimate the means of genetic and environmental factors, setting intercepts of
all indicator variables to zero ignores intercept differences between variables. The
assumption of identical zero intercepts is not necessarily appropriate in many situations
(Dolan et al. 1992). It is more reasonable to believe that the intercept of each indicator is
different across indicator variables or that measurement artifacts may produce baseline
differences in indicator variables not due to the factors in the model. For this reason, models
which include manifest variables intercepts in addition to factor means have been appealing.

Unfortunately, models with both estimated intercepts and factor means are not
mathematically identified without further restrictions in single-group analyses (Dolan et al.
1992). In multiple-group settings, however, relative differences of factor means and
variances across groups can be estimated. Under multiple-group settings, factor means and
variances in a selected reference group are fixed to zero and one, respectively, and factor
means and variances in non-reference groups can be estimated as departures from those of a
reference group, given that factor loadings and intercepts are assumed invariant across
groups (Sörbom 1974). Dolan et al. (1992) applied this method to a genetic factor model to
decompose factor mean differences between groups into genetic and environmental factors,
in which zygosity groups are further divided by additional grouping variables, such as sex or
ethnicity. In this model, factor means in the non-reference groups are estimated as
differences relative to the factor means in the reference groups in which factor means are set
to zero. Thus, the mean of each factor indicator in non-reference groups is determined by its
intercept and the differences from the reference groups due to each factor, while the mean of
each indicator variable in the reference groups is determined by its intercept alone. This
model enables estimation of the direction and extent of the changes in means of phenotypic
behavior between groups due to genetic and environmental factors without assuming zero
intercepts of phenotypic indicators.

The model proposed by Dolan et al. (1992) has been employed in subsequent studies (Dolan
and Molenaar 1994; Rowe and Cleveland 1996; Rowe and Rodgers 1997; Cleveland et al.
2000; Heiman et al. 2003) to determine the origins of within and between group variations
on phenotypic behaviors due to genetic and environmental components. However, the model
has yet to be applied to phenotypic behaviors measured by ordered categorical indicator
variables. This is surprising, given that many psychological measurements used in behavior
genetics involve categorical variables with relatively few ordered response categories (e.g.,
Likert scales or attitude scales). Direct applications of the traditional genetic factor model to
ordered categorical variables, in which ordered categorical variables are treated as
continuous variables, can often be misleading because the assumptions of factor analytic
models are not met (Bollen 1989). This problem has been dealt with by assuming that the
observed categorical variables are categorizations of normally distributed latent continuous
variables which underlie observed categorical variables.

Applications of genetic factor models based on underlying latent continuous variables have
been attempted using polychoric correlation matrices as input data (Loehlin 1993; Truett et
al. 1992). However, using a polychoric correlation matrix is equivalent to analyzing
standardized variables and the decomposition of latent means is not possible because no
factor means can be estimated. Analyses of ordered categorical variables via underlying
continuous variables were generalized under the framework of the Latent Response Variable
(LRV) formulation (Christoffersson 1975; Muthén 1984; Muthén and Asparouhov 2002;
Skrondal and Rabe-Hesketh 2004). The LRV formulation is an extension of the general idea
of polychoric correlations in that it relates the observed categories of responses to an
underlying continuous variable. The LRV formulation, however, more generally extends
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factor analytic and structural models to ordered categorical variables by relating the latent
response variables to observed categorical variables using thresholds given distributional
assumptions on latent response variables. Prescott (2004) described genetic factor analyses
of ordered categorical variables using LRV formulation in Mplus (Muthén and Muthén
2007). Although Prescott (2004) described several types of possible genetic factor analyses
with continuous and categorical variables in single-and multiple-group settings, the
decomposition of group differences of phenotypic means into genetic and environmental
factors, as in Dolan et al. (1992), has not been applied to the case of ordered categorical
variables.

In this paper, a multiple-group genetic factor model is proposed for decomposition of mean
differences of a phenotypic behavior between groups when the indicator variables under
consideration are ordered categorical. In contrast to limitations inherent in analysis of the
polychoric correlation matrix, the LRV formulation allows estimation of distributional
differences of latent response variables using equality constraints on thresholds across
groups. Analyses of ordered categorical variable in multiple-group settings have been
described elsewhere (Muthén and Christoffersson 1981; Muthén and Lehman 1985; Muthén
1989; Muthén and Asparouhov 2002; Millsap and Yun-Tein 2004). However,
decomposition of phenotypic means within the genetic factor model requires additional
model specification and identification considerations beyond traditional multiple-group
structural models due to the rationale underlying the specification of genetic and
environmental effects in genetic factor models. Specifically, under the genetic factor model,
differential covariance structures due to genetic and environmental factors are identified
across groups defined on the basis of the zygosities of twin pairs. In multiple-group settings
using the genetic factor model, these zygosity groups are often further divided based on
additional grouping variables such as sex or ethnicity. The standard approach in multiple-
group analyses is to select a group as a reference group, in which some parameters are fixed
to constants to determine scale of measurement of the factors with these respective
parameters are freely estimated. Under the multiple-group genetic factor model, by contrast,
reference and non-reference groups are determined based on the additional grouping
variable(s). All zygosity groups within a selected level of additional grouping variables are
set as the reference groups, with relevant parameters fixed to constants and with the
corresponding parameters estimated in the remaining non-reference groups subject to
equality constraints across zygosity groups in the same level of the grouping variable. In
order to avoid confusion in the presentation which follows, “group” refers to the group
divided by additional grouping variables and “zygosity group” refers to grouping of twin
pairs based on zygosity.

In addition, identification of factor analytic models with ordered categorical variables is
more complicated than for factor models with continuous variables, in that latent response
variables are indirectly modeled via distributional assumptions on latent response variables
and thresholds. Thus, identification of means and variances of both factors and latent
response variables should be considered. Millsap and Yun-Tein (2004) derived general
conditions of identification that can be applied to various forms of factor analytic models
but, as they pointed out, the identification conditions of a specific model should be
developed considering its structure and the hypotheses to be tested. Specification of such
models for the multiple-group genetic factor model with factor means based on ordered
categorical manifest variables has not been developed.

This paper begins with a brief presentation of the genetic factor model for phenotypic means
proposed by Dolan et al. (1992) followed by a description of the application of LRV
formulation for decomposing mean differences of latent response variables associated with
phenotypic behaviors measured by ordered categorical variables into genetic and
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environmental factors. Model specification and identification are derived within this context,
along with related discussions of intercept differences of variables, as pointed out by Dolan
et al. (1992), and factorial invariance within the context of the proposed model. As an
example of the approach, the model is used to explore sex differences in genetic and
environmental factors in items taken from the conservatism scale (Wilson and Patterson
1968) in data from the Australian Twin Registry using Mplus (Muthén and Muthén 2007).

The Model
The genetic factor model for phenotypic means

The genetic factor model (Neale and Cardon 1992) is an application of the multiple-group
factor model used to identify the relative contributions of genetic and environmental factors
on individual differences in phenotypic behavior based on covariance matrices of genetically
informative data collected from twin pairs. When multiple phenotypic indicators for a
phenotypic behavior are available, variances of each observed variable are represented as a
linear function of genetic and environmental factors and a residual variance term unique to
each indicator variable. This model is called the Independent Pathway model or Biometric
model, because each indicator variable has a distinct factor loading from each factor (Neale
and Cardon 1992). Another way of modeling phenotypic behaviors measured by multiple
indicators is the Common Pathway model or Psychometric model in which genetic and
environmental factors are assumed to have factor loadings on a single latent variable
extracted from multiple indicators. For reasons described below, the present paper discusses
the LRV formulation for the biometric model rather than the common pathway model due to
identification difficulties associated with the latter.

In multiple-group genetic factor models, in which zygosity groups are further divided based
on additional grouping variables, mean difference of each indicator variable across the
groups due to each genetic and environmental factors can be estimated (Dolan et al. 1992).
This model can be represented in matrix form as:

(1)

where y1j
(g) and y2j

(g) represent the observed variable j from i-th twin (i ={1, 2}) from group
g, which is defined by the levels of additional grouping variables. Ai

(g), Ci
(g), and Ei

(g)

represent the additive genetic factor, the common environmental factor shared by both twins
in the same family, and the unique environmental factor, respectively, for the i-th twin. αj

(g)

is the intercept of variable yij
(g) and εij

(g) is the residual of each variable which is not
explained by the genetic and environmental factors. Differential structures in the correlation
matrix of genetic and environmental factors are assumed across zygosity groups.
Specifically:
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(2)

In Equation 2 the correlation between A1 and A2, r, is set to 1 for monozygotic (MZ) twin
pairs and 0.5 for dizygotic (DZ) twin pairs.

The model in Equation 1 is not identified because factor means and intercepts of indicator
variables cannot be estimated simultaneously without further constraints. However, in
multiple-group settings, as Sörbom (1974) discussed, factor mean differences between
groups can be estimated relative to a selected reference group in which factor means and
variances are set to zero and one, respectively, provided that the intercept and factor loading
of each respective manifest variable are invariant across groups. Dolan et al. (1992) applied
this method to decompose phenotypic mean differences between groups in terms of genetic
and environmental factors. Specifically, zygosity groups are further divided by an additional
grouping variable and all zygosity groups within one level of the grouping variable are set as
the reference groups. Factor means and variances are estimated in the remaining groups
which share the same level of the grouping variable but are constrained to equality within
level of the grouping variable. Given that factor loadings and intercepts are invariant across
the reference and non-reference groups, factor means and variances in the non-reference
groups are interpreted relative to the latent variable metric observed in the reference groups.
Under this model, the mean of variable j is determined as

where δ(n)'s are the factor mean differences from the reference groups. Therefore the mean
of each variable in non-reference groups is determined by the intercept and change in the
mean from reference groups due to each factor, while the mean of each variable in the
reference groups is determined solely by its intercept. The variance/covariance structure
between twins is determined as

where ϕ(n)'s are the variances of factors in the non-reference groups, θ represents the
residual variance of each variable, and r is the correlation between additive genetic factors
for twin 1 and 2, from Equation 2. This model requires multiple indicator variables and, as
mentioned above, the independent pathway model. Because there are three common factors
for each twin at least three phenotypic means are needed to identify factor means. If the
common pathway model is used, the model with factor means estimated in non-reference
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groups cannot be identified because three factor means in non-reference groups cannot be
estimated based on a single latent variable. For this reason, the common pathway model
cannot be employed for the purpose of current study.

Application to Ordered Categorical Variables
As mentioned above, direct application of the factor analytic model to ordered categorical
variables, in which ordered categorical variables are treated as continuous variables, is often
problematic, especially when relatively few response categories are used (Olsson 1979;
Johnson and Creech 1983; Lubke and Muthén 2004), due to violations of assumptions of
factor analytic models of continuous variables (Bollen 1989). In the LRV formulation, a
normally distributed latent response variable, which underlies each observed categorical
variable, is assumed and factor models are applied to latent response variables, instead of the
observed categorical variables (Muthén 1984; Muthén and Asparouhov 2002; Skrondal and
Rabe-Hesketh 2004). Under the LRV formulation, Equation 1 is expressed in terms of the
latent response variables. Denoting yij* as continuous latent response variables that underlie
observed variable yij for i-th twin (i ={1, 2}), with Cj response categories, the Equation 1
then becomes:

(3)

where αj*(g) and εij*(g) are the intercept and residual variance, respectively, of latent
responsevariable yij*. From Equation 3 the mean of the latent response variable yij* is
determined by its intercept and the means of common factors. The variance/covariance
matrix between twins is determined by factor loadings and factor variances/covariances. A
latent response variable yj* maps onto observed categorical variable yj with Cj – 1
thresholds.

(4)

τj1, τj2...,τjcj–1 are the thresholds which segment the latent response variable yj* into Cj
categories. From Equations 3 and 4, the conditional probability that variable yj falls into
category c, given the intercept and genetic and environmental factors, is determined as the
cumulative probability associated with the (c – 1)-th category subtracted from cumulative
probability of the c-th category. Assuming ε*ij is normally distributed with mean of zero and
variance of θij, given factors Ai, Ci, and Ei and intercept αj, the probability that variable yij
falls into category c is,
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(5)

where Φ is the cumulative distribution function of standard normal distribution and κ's are
the factor means.

The LRV formulation introduces additional parameters (i.e., thresholds). Thresholds are
estimated from the marginal distribution of each latent response variable yj*. In single-group
analyses yj* is usually assumed to follow a standard normal distribution and thresholds are
estimated as z-scores corresponding to the cumulative proportion associated with each
response category, which is a consistent estimator of the cumulative probability of the latent
response variable. However, latent response variables assumed to have standard normal
distributions cannot be used for genetic factor models that decompose means of latent
response variables because no information is present regarding mean differences of latent
response variables between groups. In multiple-group settings, the distributions of latent
response variables do not necessarily have means of zero and unit variances across all
groups. By setting the distributions of latent response variables in the reference groups to
have mean of zero and unit variance, means and variances of latent response variables for
the non-reference groups can be estimated relative to the metric of latent response variables
in the reference groups. Minimally, to estimate the mean and variance of each latent
response variable in the non-reference groups, two thresholds per each variable need to be
constrained equal across groups in order to provide the location and scale of the latent
response variable in the non-reference groups. Denoting zj1

(n) and zj2
(n) as the z-scores

corresponding to the cumulative proportions of the first and second categories of variable
yj

(n) in the non-reference groups and τj1 and τj2 as the thresholds estimated from the
reference groups, based on standard normal distribution, μj*(n) and σj*(n), the mean and
variance of yj

(n), can be estimated from following.

(6)

Figures 1 and 2 illustrate estimation of means and variances of a latent response variable
across groups. Assuming three response categories, the upper panel of Figure 1 shows the
thresholds based on a standard normal distribution for the variable with cumulative
proportions of 40% and 90%. Thresholds are estimated as z-scores corresponding to these
cumulative proportions and are –0.2533 and 1.2816, respectively. The lower panel shows
thresholds for the cumulative proportion of 20% and 80%. With the same distributional
assumption on the latent response variable, the first and second thresholds are changed to –
0.8416 and 0.8416, respectively. In Figure 2, using the same cumulative proportions as in
Figure 1, thresholds are fixed at values from the upper panel and the mean and variance of
the latent response variable in the lower panel are estimated by Equation 6. The upper panel
is based on standard normal distribution so that the mean is zero (as indicated by a dashed
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reference line) and the variance is 1. In the lower panel of Figure 2, for the cumulative
proportions of 20% and 80%, mean and variance are estimated based on the fixed thresholds
and the distribution in the lower panel is changed to have the mean of 0.5141 (marked by a
heavy dashed line) and the variance of 0.9119. In short, locational differences of thresholds
provide information on the mean differences and the interval between thresholds provides
information on the variance differences of latent response variables. Obtained means and
variances of the latent response variables can thus be modeled. In general multiple-group
analysis of ordered categorical variables, differences in means and variances of a latent
response variable across the groups are estimated by constraining respective thresholds to be
equal across a selected reference group and remaining non-reference groups (Muthén and
Asparouhov 2002; Millsap and Yun-Tein 2004). In multiple-group genetic factor analyses,
the reference and non-reference groups are defined by the levels of additional grouping
variables. All zygosity groups within the selected level of the grouping variable are set as
the reference groups with appropriate equality constraints applied across the reference and
non-reference groups.

Even though the means and variances of latent response variables can be estimated as
departures relative to the reference groups, this model is still under-identified. The
identification of the model is further complicated because the latent response variables are
indirectly modeled based on distributional assumptions and thresholds. The model in
Equation 3 can be identified, however, by applying constraints on parameters. Millsap and
Yun-Tein (2004) developed the general minimum conditions to identify multiple-group
factor models of ordered categorical manifest variables. Although these minimal
identification conditions cover factor analytic models generally, the unique structure and
requirements of the genetic factor analysis require additional consideration when developing
identification constraints.

It can be shown that the following set of constraints can minimally identify the model in
Equation 3: (a) the mean and variance of each latent response variable, yj*, are set to zero
and one, respectively, in the reference groups, (b) the mean and variance of each factor are
set to zero and one, respectively, in the reference groups, (c) factor loadings are constrained
to be equal across groups, (d) the intercept for each variable is set to zero for both reference
and non-reference groups, and (e) for three selected indicator variables two thresholds are
set to be equal across groups. Constraints (a) and (b) identify all parameters in the reference
groups by providing the scale for latent response variables and factors. Constraint (c)
identifies the factor loadings for the non-reference groups. Constraint (e) identifies the
means and variances of the latent response variables of the three chosen indicator variables
in the non-reference groups, which, in conjunction with the constraints (c) and (d), leads to
the identification of the distributions of the factors in the non-reference groups. The means
and variances of the latent response variables not included in constraint (e) can be estimated
based on the distributions of the factor and factor loadings. Identification of the model is
detailed in Technical supplement A. Thus, the covariance structures are determined as
follows
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where ϕ(n)`s are the variances of factors. Means of each latent response variable are
determined as,

(7)

where δ(n)'s are the differences of factor means from the reference groups.

Several related issues of the proposed model require further elaboration. First, intercept
differences between variables are not included in the current model. As noted by Dolan et al.
(1992), setting intercepts of the variables to zero is equivalent to assuming that all indicator
variables have same intercepts, which ignores possible location differences among the
variables. However, in the LRV formulation, intercepts and thresholds are not entirely
distinct from each other and intercept differences between the latent response variables are
absorbed into the differently estimated thresholds across variables (Muthén and Asparouhov
2002; Millsap and Yun-Tein 2004). To show this point, Equation 5 is revisited.

(8)

Differences of intercepts and thresholds cannot be simultaneously estimated. It requires
either intercepts of variables fixed to a constant or one of the thresholds set equal across
variables to estimate thresholds or intercept differences. Assuming that the variables have
the same number of categories, estimating the intercept difference between variables
requires that at least one threshold is set equal across the variables, to provide a reference
point from which intercept differences can be estimated, and one intercept of a selected
variable is fixed to a constant, usually zero. With the intercept differencesin the model and a
constrained c-th threshold, the conditional probability that the response yj is less than or
equal to c-th category, given intercept and factors, is,

(9)

The subscript j is omitted from τc because c-th threshold of each variable has been set equal
across variables. From Equation 9 the threshold for the c-th category of variable j is adjusted
from τc by αj, which is (τc – αj). Thus, if any intercept difference exists between variables,
it is captured by differentially estimated thresholds across variables. A common threshold
adjusted for variable j, (τc – αj), from Equation 9, and the threshold estimated for variable j,
τcj, from Equation 8 should be equivalent. Also, the numbers of estimated intercept and
threshold parameters are the same in Equations 8 and 9. Supposing p variables with C
categories each, Equation 8 contains p(C – 1) estimated thresholds. In Equation 9,
parameters to be estimated are a threshold, τc; constrained across variables; p(C – 2)
remaining thresholds; and (p – 1) intercepts making a total of p(C – 1) estimated parameters.
Thus, Equations 8 and 9 are re-parameterizations of each other and, given that the different
intercept is not a main substantive question, estimating the differential intercept across the
variables is unnecessary. Differences of intercepts across variables are therefore absorbed
into different estimates of thresholds across the variables. Likewise, intercept differences of
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a subset of variables across groups are also captured by differently estimated thresholds. In
the identification constraints described above, two thresholds per each of three selected
indicator variables are constrained to be equal across groups. Thus the rest of the thresholds
can be differently estimated across groups and the intercept differences of those variables
across groups are absorbed into group specific thresholds for each indicator variable.

Second, although, in the minimal constraints described above, differences of factor means
and variances across groups can be estimated based on the invariance of factor loadings and
thresholds of a subset of parameters, the invariance of the remaining parameters not
constrained can further be investigated as part of a larger examination of factorial invariance
across groups. Testing invariance hypotheses in factor models using ordered categorical
variables is more complicated than in the cases of continuous variables because the latent
response variables are indirectly modeled using distributional assumptions and thresholds.
As such, factorial invariance involves interrelated equalities of factor loadings, intercepts,
residual variances, and thresholds of latent response variables across groups. Testing
invariance hypotheses using LRV's within the proposed model is more complicated because
constraints in the minimally identified model require factor loadings to be constrained to
equality in order to estimate the means and variances of the latent response variables and the
genetic and environmental factors. Further, the location of the LRV must be determined as a
function of factor means in those variables chosen for the minimal identification constraints.

Nevertheless, there is some flexibility when investigating invariance hypotheses relative to a
base model with minimal identification constraints. This model can then be compared to a
model in which these thresholds are set equal across groups. Under the LRV approach, as
seen above (see Equation 6 and Figures 1 and 2), thresholds play important roles because
they contain information about means and variances of latent response variables. By
comparing the fit of a model with fully invariant thresholds and loadings to the fit of the
minimally constrained model, one can at least test whether a model with fully invariant
thresholds and loadings is a parsimonious, well-fitting alternative. If it fits appreciably
worse than the minimally constrained model, either factor loadings or thresholds may not be
invariant. Although the specific source of misfit of the model may be difficult to pinpoint,
general strategies for probing the possible sources of model misfit in the discussion section
below.

Finally, factorial invariance of ordered categorical variables also involves the invariance of
the residual variance of the latent response variable associated with each indicator variable.
The invariance of residual variances can also be tested by fitting the model with equality
constraints on residual variances. However, it should be noted that, depending on the
parameterization method used, residual variances of latent response variables may not be
independent parameters to be estimated (Muthén and Asparouhov 2002) and, thus, applying
constraints on residual variances may not be possible. Note also that no genetic factor
structure is specified at the level of each indicator variable in Equation 3. It is possible to
incorporate additional genetic and environmental factor structures specific for each variable
(as was done for the original genetic factor model described by Heath et al. 1989a for
continuous variables) without modifying current identification constraints. However, given
the computational burden introduced by including genetic and environmental components
unique to each variable, sample size considerations, and the fact that such effects are often
not of substantive interest, allowing residual covariance between twins which vary across
zygosity groups appears a reasonable accommodation of the unique genetic and
environmental factors associated with individual indicator variables.
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Illustrative Example
Data collected from the Australian Twin Registry on Wilson-Patterson conservatism scale
(Wilson and Patterson 1968) were used as an example application of the proposed model
(see Martin et al. 1986 for more information on data collection and summary statistics).
Based on zygosity and sex, 3,808 pairs of twins were divided into five groups. There are
1202 pairs of monozygotic female (MZF) twins, 567 pairs of monozygotic male (MZM)
twins, 747 pairs of dizygotic female (DZF) twins, 350 pairs of dizygotic male twins (DZM),
and 912 pairs of opposite sex (DZO) twins. The Wilson-Patterson conservatism scale
consists of 50 items with three response categories per each item that indicate the degree of
assent: “Yes”, “?”, and “No”. Response categories are assumed to be ordered because they
reflect the degree of a respondent's supportive attitude on each item. As originally
developed, odd-numbered items were worded to have positive relationships with
conservative attitude (e.g. Apartheid, Church Authority, etc.) and even-numbered items were
worded to have negative relationships (e.g. Colored Immigration, Evolution Theory, etc.)
(Wilson and Patterson 1968).

Because analyzing all 50 items in one model poses great computational burdens on
parameter estimation of the model being considered, items were first factor analyzed to
determine general sub-dimensions of conservative attitude and each subset of items was
separately analyzed. This practice is also in keeping with the original design of the scale,
which assumes that an individual can have different attitudes on different sub-dimensions of
conservatism (Wilson and Patterson 1968). An exploratory factor analysis performed in
Mplus version 5 (Muthén and Muthén 2007) using promax rotation produced four oblique
sub-dimensions. Each sub-dimension was named according to the items included: the
political, religious, racial, and social dimensions. Within each factor, items with factor
loadings with an absolute value greater than 0.4 were retained, and are shown in Table 1.
The pattern of items included in each dimension is roughly consistent with earlier
exploratory factor analyses of the data (Truett et al. 1992; Eaves et al. 1999).

Age was included in the model as a covariate because of the age-cohort effect on
conservatism (Truett 1993; Eaves et al. 1999). Truett (1993) found strong evidence that
conservatism scores on this scale are greater in older respondents than in younger
respondents after adjusting for a variety of other covariates and found that this change is
more rapid after the fifth decade of life. In this sample, such a rapid change after the fifth
decade of life was not found and, thus, the linear effect of the deviation score from the mean
of age was used as a covariate. The regression coefficient of age on each variable was
constrained to be equal across groups.

Model Specification
In matrix form, for the variable j, the model is expressed as

where βj is the regression slope for variable j on age. Since all observed variables have three
ordered categories, the latent response variable yj*(g) in group g is mapped onto the
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observed variable yj
(g) with two thresholds, τj1

(g) and τj2
(g). In order to set female groups as

reference groups, the MZF, DZF and female twins of DZO group were set as the reference
groups, and MZM, DZM, and the male twins of DZO group were set as the non-reference
groups. The path diagram in Figure 3 illustrates this model with four indicator variables. To
present the models for both female and male groups in one diagram, the left side of diagram
is the model for female groups and the right side is the model for male groups. The triangle
in the diagram denotes a column vector of ones and, as such, the loadings originating from
this variable to factors represent factor means. Note that factor means in the female part are
set to zero, but are estimated in the male part of the diagram. Latent response variables are
represented as circles linked to observed categorical variables via filled circles to represent
the transformation from latent response variables to observed categorical variables.

Mplus version 5 (Muthén and Muthén 2007) was used to estimate the model parameters.
The default estimation method for ordered categorical variables in Mplus, weighted least
squares (WLSMV), was used (Muthén and Muthén 2007). The variance of each variable in
non-reference groups was estimated via scale parameters using the Delta Parameterization
method (Muthén and Asparouhov 2002). The scale parameter is the inverse of the standard
deviation of the marginal distribution of the latent response variable for each categorical
indicator variable. Thus, the scale parameter for each variable was estimated in the non-
reference groups and fixed to one in the reference groups. Although the delta
parameterization has computational advantages over the theta parameterization (Muthén and
Asparouhov 2002), which is an alternative parameterization in Mplus, each residual variance
is not a free parameter to be estimated and no equality constraints across the groups on
residual variances are permitted withthe delta parameterization. The residual variances are

computed as  in reference groups and as 
in non-reference groups. Inability of imposing equality constraints on residual variances
with the delta parameterization prevents the assessment of the invariance of residual
variances. Equality constraints on residual variances can be applied with the theta
parameterization, but the models using the theta parameterization for these data did not
converge in any sub-dimensions.

The model was specified in accordance with the minimal identification constraints described
in previous sections. Variances of latent response variables in MZF, DZF, and the female
part of DZO groups were set to one by setting the scale parameters for each variable to one.
The scale parameters in MZM, DZM, and male part of DZO groups were estimated. Factor
means and variances were set to zero and one, respectively, in female groups, and were
estimated in male groups. Setting factor means to zero in female groups sets the means of
latent response variables to zero because Mplus does not allow intercepts for ordered
categorical variables and the intercepts are set to zero by default. Factor loadings were set to
be equal across groups. The thresholds of the first three indicator variables were set to be
equal across female and male groups. As in other genetic factor analyses, the model is
symmetric and respective parameters are constrained to be equal across twins in the same
pair. The covariance structure between twins was specified by With statements in Mplus, but
With statements does not permit direct specification of correlations between non-
standardized variables. Instead, to apply the correlation structure in Equation 2, nonlinear
constraints were applied to covariances between factors using Model constraint statements.
Covariances between common environmental factors (factor C) were constrained to be equal
to the variance of factor C in MZM and DZM groups and the square root of the variance of
factor C estimated for male part in DZO group. Covariances between additive genetic
factors (factor A) were constrained equal to the variance of additive genetic factor in MZM
group; as half of the variance of factor A in DZM group; and as half of the square root of the
variance of factor A estimated for the male part in DZO group. Instead of modeling genetic
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factor structure for each variable, the covariance between twins for each variable was
estimated. The residual covariances between twins were allowed to vary across zygosity
groups (MZF and MZM for monozygotic twins and DZF, DZM, and DZO groups for
dizygotic twins) to accommodate different correlation structures between monozygotic and
dizygotic twins. An example Mplus program is in Table 7 with detailed description in
Technical supplement B.

Analysis
Models with minimal identification constraints were fit first for all sub-dimensions. Even
though χ2 values were significant, which might be due to the large sample size, other fit
indices indicated acceptable fit for all sub-dimensions (χ2 (218) = 258.709, CFI = 0.989,
TLI = 0.987, RMSEA = 0.016 for the political dimension; χ2 (190) = 274.355, CFI = 0.993,
TLI = 0.993, RMSEA = 0.024 for the religious dimension; χ2 (201) = 294.627, CFI = 0.981,
TLI = 0.977, RMSEA = 0.025 for the racial dimension; χ2 (241) = 411.206, CFI = 0.982,
TLI = 0.980, RMSEA = 0.030 for the social dimension). Models with fully invariant
thresholds were then fit and compared with the minimally constrained models. Since χ2

values from weighted least square estimation (WLSMV) are not valid for χ2 difference
testing (Muthén and Muthén 2007), the difftest option in Mplus was used. For the political
dimension and religious dimension, χ2 differences between the models with fully invariant
thresholds and minimally constrained models were not significant (χ2 diff (5) = 1.166, P =
0.948 for the political dimension and χ2 diff (6) = 7.628, P = 0.267 for the religious
dimension), while χ2 differences were significant for the racial dimension and social
dimension (χ2 diff (5)= 17.714, P = 0.003 and χ2 diff (5)= 19.813, P = 0.002, respectively).
As discussed above, worse fit of models with fully invariant thresholds than the minimally
constrained model may indicate lack of factorial invariance between groups for those sub-
dimensions and further investigations to locate the origin of factorial invariance is
appropriate. However, because assessing the factorial invariance is not a major purpose of
this illustration, it is not described here.

Tables 2, 3, 4, 5 show the parameters estimated from the model for each sub-dimension.
Models with fully invariant thresholds for the political dimension (Table 2) and the religious
dimension (Table 3) are shown in accordance with the results of χ2 difference tests of the
model with fully invariant thresholds. The models for the racial dimension (Table 4) and the
social dimension (Table 5) are the models with minimal identification constraints. The
square of the factor loading associated with each factor represents the proportion of the
variance in each latent response variable explained by each factor in female groups, but
same interpretation is not valid for male groups because variances of factors and latent
response variables are not set to one in male groups. Thus, the R2's for each item due to each
factor for female and male groups are shown to the right of the factor loadings to show the
relative contribution of each factor to the variance of each latent response variable. Signs of
factor loadings inform the direction of the factors on the each item. As mentioned in the
previous section, odd-numbered items were positively worded and even-numbered items
were negatively worded for conservative attitudes. Therefore factor loadings on positively
worded item and negatively worded item are expected to have opposite signs, but, for some
factors, this pattern was not clearly presented. Factor means are estimated means for the
male groups relative to the factor means of female groups in which factor means were set to
zero. Estimated means quantify the magnitude and direction of differences in factor means
of male groups relative to females. A factor mean multiplied by its factor loading on each
item represents the mean difference of the latent response variable between female and male
groups due to each factor (see Equation 7). Estimated means of each item for the male
groups are shown in Table 6. Item means are computed as linear combinations of factor
means as in Equation 7. For ease of presentation, the signs of mean scores of the negatively
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worded items are reversed in Table 6, so that higher scores represent more conservative
attitudes for all items. Factor variances in Tables 2, 3, 4, 5 represent the variances of factors
in male groups relative to the factor variances of female groups, in which factor variances
were set to one.

For the political dimension, in Table 2, R2's indicate that the additive genetic factor was an
important factor that determined the variance of most items included in this dimension,
while environmental factors were only important for some items (“Strict Rules” and
“Licensing Laws”). The R2's were not noticeably different between female and male groups
with a few exceptions (the common environmental factor on “Strict Rules” and the unique
environmental factor on “Licensing Law”). The factor mean of the unique environmental
factor was negative and the largest in absolute value while factor means of the additive
genetic factor and common environmental factor were not significantly different from zero.
The patterns of factor means and loadings resulted in the negative net effect on each item for
males (the first column of Table 6). Relative to women, men showed more variance in the
unique environmental factor but less variance in the additive genetic and common
environmental factors.

For the religious dimension, as shown in Table 3, variances of items related to marriage and
procreation were determined relatively more by the additive genetic factor, whereas the
variances of items related to religious claims were largely determined by environmental
factors. R2's indicate that the contributions of each factor on each latent response variable
were not noticeably different between female and male groups. The mean of the common
environmental factor for men was positive and the largest in absolute value and the
corresponding mean of the additive genetic factor was negative. The mean of the unique
environmental factor was negligible. Thus, mean differences between men and women were
mainly determined by the common environmental and additive genetic factors, which
resulted in the negative net effect on the items related to religious claims and positive net
effect on the items related with procreation in men (second column of Table 6). Higher
factor variances on the bottom of Table 3 indicate that the factor variances were larger in
men.

For the racial dimension, factor loadings and R2's in Table 4 show no dominant factor
affecting all items in this dimension. The additive genetic factor was relatively more
important in determining the items “Death Penalty” and “Caning”. The relative
contributions of factors varied between female and male groups in some items. Factor means
were not significant for all three factors, and thus further interpretation of factor means is
not necessary. Men appeared much more variable in terms of their environmental factors, as
evidenced by the larger factor variances associated with the environmental factors.

For the social dimension, in Table 5, the additive genetic factor was an important factor for
explaining the variance of most items while unique environmental factors were important
for items “Modern Art” and “Jazz.” No noticeable differences between male and female
groups were found for R2 due to each factor. The factor mean was negative and largest in
absolute value for the unique environmental factor. The factor mean for the additive genetic
factor was positive and the factor mean for unique environmental factor was negative. Thus,
the mean differences between men and women were mainly determined by the additive
genetic factor and unique environmental factor, which results in the pattern of net effect in
Table 6. Factor variances associated with environmental factors were larger in men (shown
on the bottom of Table 5).
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Discussion
The model proposed in this study incorporates latent mean structures for ordered categorical
variables in a genetic factor model using the LRV formulation. Between group differences
of means in estimated latent response variables associated with the ordered categorical
variables are decomposed into differences due to genetic and environmental factors. A main
advantage of the proposed model is its ability to test hypotheses regarding the origins of
within and between group variations in phenotypic behaviors due to environmental and
genetic factors in ordered categorical variables and to make statements as to whether these
effects suppress or elevate levels of a phenotypic behavior. In the case of continuous
phenotypic indicators, the genetic factor model with mean structure proposed by Dolan et al.
(1992) provides a method in this regard, and the model proposed here extends it to the case
of ordered categorical variables. The minimal constraints needed to identify the model with
latent mean structures were derived and the models with further constraints on the subset of
parameters of interest can fit and compared to the model with minimal constraints to test
related hypotheses.

The framework of the proposed model can also be applied to the case of longitudinal panel
studies. Analogous to multiple-group settings, one of the occasions of repeated
measurements can be set as a reference point. If the same variable is measured repeatedly
for the same respondent, one can justifiably assume invariant thresholds across repeated
measurements. Proportional differences across repeated measurements can then be
converted into distributional differences of the latent response variables based on equally
constrained thresholds across repeated measurements (Bollen and Curran 2006; Mehta et al.
2004). If the distributional differences of latent response variables over time are estimated,
then the autoregressive effects of genetic and environmental factors on mean differences
over time can be estimated (Dolan et al. 1991) or genetic and environmental effects on the
latent growth factors, intercept and slope, can be analyzed (McArdle 1986).

Although the model as proposed offers a useful method for decomposing latent differences
of ordered categorical variables across groups via genetic and environmental factors, several
limitations of the model must be kept in mind when applying and interpreting such model.
Most of these limitations derive from the fact that distributional differences of latent
response variables are estimated by means of proportional differences of observed
categorical variables, and the constraints required to identify the model. First, although the
minimum identification constraints derived can provide some flexibility for further
constraints on parameters, invariance constraints on required parameters are not avoidable. It
is possible to constrain alternative sets of parameter constraints and use of a different set of
minimal parameter constraints would result in different estimated parameters. This is a
common issue associated with factor models with ordered categorical variables because
latent response variables are indirectly modeled by distributional assumption and thresholds
and not all parameters can be estimated (Millsap and Yun-Tein 2004). Thus, the purpose and
structure of specific models should be considered when identification constraints are chosen.
Although the identification constraints derived are appropriate for the purpose and structure
of the proposed model, some examination of these assumptions should be explored.

Recall that three variables are required to have two invariant thresholds across groups.
Selected three variables function as anchoring variables across groups in order to provide the
scales of three factors – additive genetic, common environmental, unique environmental
factors. Although, in the example, the first three variables were chosen for the threshold
constraints, any set of three variables could have been selected and could lead to different
results. Moreover, if the variables have more than three response categories, so that there are
more than two thresholds per variable, any of two thresholds can be constrained equal across
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groups. If the thresholds of one subset of indicator variables are more invariant than of other
variables, it is more reasonable to apply the equality constraints on those variables. These
questions are not confined to genetic factor analyses and Mehta et al. (2004) suggested a
mathematical formulation on the threshold invariance in the context of repeatedly measured
ordered categorical variables which can also be applied to multiple-group contexts. However
this method only applies to the case of more than two thresholds per variable. Determining
which set of variables has invariant thresholds may be analogous to finding anchoring items
with invariant item characteristics as described in studies of differential item functioning
(DIF) analyses within item response theory (IRT). As such, iterative processes that have
been proposed to find such anchoring items (e.g. Candell and Drasgow 1988; Drasgow
1987), and can be utilized in the context of genetic factor analyses to find appropriate
combination of the variables to apply equality constraints on thresholds.

As noted earlier, assessment of invariance of factor loadings in the proposed model is
somewhat complicated. Factor loadings are set equal across groups in the minimal
identification constraints and freeing them across groups to test factor loading invariance
would under-identify the model. Thus, testing factor loading invariance therefore requires
the use of alternative approaches. One possible solution is to constrain thresholds fully
invariant and to free any factor loadings not required to identify the model. This model
could be compared to the proposed model, although these models are not nested within each
other and such comparison would have to be based on information criteria. Alternatively,
group specific factor loadings could be estimated if means and variances of both factors and
latent response variables are set to zero and one in all groups. Group specific thresholds can
then be estimated. This method may provide an alternative for assessing factor loading
invariance because different factor loadings between groups can be estimated across groups
while the group differences of means and variances of latent response variables are captured
by differently estimated thresholds across groups. Factor loadings can be constrained equal
across groups from this model and those two models can be compared to obtain the evidence
of factor loading invariance. However, with this setting, mean of each latent response
variable is not decomposed into genetic and environmental factors, and adding factor means
may produce different patterns of factor loadings. This strategies while heuristic and labor
intensive may prove quite useful in future applications.

Additionally, the delta parameterization method of Mplus has been used in example
analysis. Under the delta parameterization, the latent variance of each ordered categorical
indicators is modeled in terms of a scale parameter which is the inverse of the standard
deviation of a latent response variable. Scale parameters are allowed to vary across groups to
estimate the across group differences of the variance of each latent response variable.
Although the delta parameterization method has computational advantage in model
estimation (Muthén and Asparouhov 2002), it has other disadvantages in addition to the
inability of applying constraints on residual variances: Three different sources – differences
in factor loadings, factor variances, and residual variances –can contribute to the differences
of scale parameters across groups and these sources cannot be distinguished using delta
parameterization (Muthén and Asparouhov 2002). With the theta parameterization method,
this disadvantage can be circumvented. However, in the example analyses, corresponding
models using the theta parametrization did not converge, even after repeated attempts. Even
though the R2's associated with the genetic and environmental factors in Tables 2, 3, 4, 5 did
not show appreciable differences across groups, it is still possible that the differences in
scale parameters are an artifact of differences in other parameters across groups. In spite of
the limitations of the delta parameterization, given the computational burdens of estimating
the proposed model with ordered categorical variables, the delta parameterization appears to
be an attractive alternative of specifying the model.
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Finally, the model specification with identification constraints outlined for the general
ordered categorical case cannot be applied when indicator variables are dichotomous, in
which only a single threshold can be estimated for each indicator variable. Differences of
means and variances of latent response variables in the non-reference groups are estimated
based on two equally constrained thresholds across groups (Equation 6). Because a
dichotomous variable has only one threshold, it provides only a reference point to estimate
mean differences across groups Multiple-group factor models with dichotomous variables
can be identified by setting the variances of the latent response variables to fixed uniform
reference values (usually one) (Millsap and Yun-Tein 2004) permitting mean differences to
be estimated. Although it may be argued that this is a fundamental limitation of the data and
not the proposed statistical model, it should be noted that many psychological measures used
in behavior genetics studies are dichotomous in nature (e.g., diagnosis classifications or
symptom observations). Although it is possible to specify the proposed model for such
cases, researchers must keep in mind that entirely plausible alternative models based on
group variability, and not group mean differences, may explain the data equally well.

While limitations of implementation and some arbitrariness of model specification exist, the
model proposed in this study provides a method to identify group differences of ordered
categorical variables due to genetic and environmental factors via genetic factor model of
ordered categorical variables that can estimate the differences of factor means and variances
across groups. Given that many variables used in behavior genetic studies are assessed using
ordered categorical variables, the proposed model represents a reasonable extension of
conventional genetic factor models to categorical data.
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Technical Supplement A: Mathematical Details of Model Identification
Minimal constraints needed to identify the proposed model are:

a. The mean and variance of each latent response variable, yj*, are set to zero and
one, respectively, in the reference groups.

b. The mean and variance of each factor are set to zero and one, respectively, in the
reference groups.

c. Factor loadings are constrained to be equal across groups.

d. Intercept of each variable are set to zero in both reference and non-reference
groups.

e. For three selected indicator variables, two thresholds are set to be equal across
groups respectively.

This section outlines how factor means and distributions of latent response variables can be
identified under minimal identification constraints. Denote observed variable j for twin i
(i={1, 2}) in group g as yij

(g) and its corresponding continuous latent response variable as
yij*(g). Constraints (a) and (b) identify all the parameters in reference groups by providing
the scale of latent response variables and factors, from which factor loadings and thresholds
are estimated. Thresholds are estimated as z-scores which correspond to the cumulative
proportions of each response category. Factor loadings in non-reference groups are
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identified by constraint (c). By constraint (e) the means and variances of selected three
variables in non-reference groups are identified. Those three latent response variables in
non-reference groups are denoted as y1*(n), y2*(n), and y3*(n). Subscripts identifying the first
and second twin in the same pair are omitted because the order of twin is assumed to be
randomly selected and the means and variances from each twin in the same pair are assumed
to be the same (Neale and Cardon 1992). For the first latent response variable, y1*(n), in
non-reference groups, denoting two thresholds constrained to be equal as τ11 and τ12, the
mean and variance, μ1*(n) and σ1

2*(n), respectively, can be identified from the following.

(10)

z11
(n) and z12

(n) are z-scores correspond to the cumulative proportions for the first and
second response categories, respectively, of y1*(n) in non-reference groups. The superscripts
of group membership on τ11 and τ12 are omitted because they are set to be equal across
groups. Because τ11 and τ12 are given from constraint (e), and z11

(n) and z12
(n) are given

from data, the Equation 10 contain two unknowns, μ1*(n) and σ1*(n), with two equations.
Therefore μ1*(n) and σ1*(n) can be identified as following.

If there are more than three response categories in y1*(n), the remaining thresholds can be
identified from the mean and variance identified in Equations 10. Denoting the third
threshold of y1*(n), as τ13

(n) τ13
(n) is identified from z-score corresponding third category.

Means, variances, and the rest of thresholds not included in constraints (e) for y2*(n) and
y3*(n) can be identified in the same way.

Constraint (e), combined with constraints (c) and (d), identifies the means and variances of
factors in the non-reference groups. The means of latent response variables in the non-
reference groups selected in constraint (e) – μ1*(n), μ2*(n), and μ3*(n)– can be expressed as
linear combinations of factor means differences from reference groups and factor loadings.

(11)

δ(n) is the factor mean difference from reference groups for each factor. There are three
equations with three unknowns because factor loadings are identified by constraint (c), so
δ(n) for each factor can be identified. Factor variances can be identified from polychoric
correlations among y1*(n), y2*(n), and y3*(n).
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(12)

ϕ(n) is the variance of each factor in non-reference groups and ρhk
(n) is the polychoric

correlation between variable h and k in non-reference groups. Because polychoric
correlations are given from the data, factor loadings are given from constraints (c), and the
variances of each latent response variables are given from Equations 10, Equation 12
consists of three equations with three unknowns. Thus, factor variances can be identified
from Equation 12. The means and variances of latent response variables not included in
constraint (e) can be identified from factor loadings constrained from constraint (c) and
factor means identified from Equation 11. Denoting one of the latent response variable not
included in constraint (e) as y4*(n) and its mean and variance as μ4*(n) and σ4

2*(n),
respectively, μ4*(n) and σ4

2*(n) are identified from following.

(13)

(14)

Because the mean and variance of y4*(n) are identified the thresholds of y4*(n) can be
identified from z-scores correspond to the cumulative proportions of each response
categories. Denotingthe first threshold of y4*(n) as τ41

(n),

(15)

and the rest of the thresholds of y4*(n) are identified likewise. Means, variances, and
thresholds for the rest of the variables in the non-reference groups can be identified in the
same way as in Equations 13-15. Thus, all parameters are identified.

Technical Supplement B: Description of sample Mplus Program
An excerpt of an Mplus program used for the racial sub-dimension is presented in Table 7 as
a sample program code. Rather than going over general Mplus programming, the description
of program is focused on the specification of the proposed model with Mplus. The details of
Mplus programming are described in the Mplus User's Guide (Muthén and Muthén 2007).
The Mplus program starts with Data statement which specifies the location of the data file.
The Variable statement specifies the variables to be used and missing values and grouping
variables. The Categorical statement specifies categorical variables. In the Grouping
statement five groups are specified by the variable zygw1t1. Because the grouping variables
cannot be used in combination, when more than one variable define groups, such as zygosity
and gender in this case, grouping variable should be defined as a single variable beforehand.
The Model statement specifies the overall model and model specific for each group should
be specified after defining overall model. The model specific for each group is specified by
Model statement followed by a group name. Latent factors are defined by By statement
followed by indicator variables. The latent variables F1 through F3 are the additive genetic
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factor, common environmental factor, and unique environmental factor, respectively, for the
first twin in the same family. Factors F4 through F6 are the same factors, respectively, for
the second twin. The variable names without any parameter or bracket represent the variance
of independent variables or residual variances of dependent variables. The variable names in
the bracket [ ] represent the mean or intercept of the variable. The parameters can be labeled
by the number in the parenthesis. The equality constraints can be applied by assigning the
same label. Parameters for the twins in the same family are constrained to be equal. Labels
of parameters are also used in the Model constraint option to apply non-linear constraints.
Asterisks after the parameter indicate free parameters, and are often used to override Mplus
to estimate the parameters fixed to constants by default. Asterisks are needed for the factor
loadings because Mplus constrains the factor loading for the first indicator of each factor to
one by default. The Symbol “@”fixes the parameter to a following value. The With
statement specifies the covariance between variables. Regression on a covariate variable is
specified via the On statement. Each phenotype indicator variables is regressed on the
variable aget1. Regression coefficients for the same variable are constrained to be equal
across groups by assigning the same label across groups. Because, unless specified, Mplus
estimates the covariances between exogenous variables, covariances among factors should
be explicitly set to zero. Thresholds are specified by the variable name with “$” sign in the
bracket [ ]. The numbers following the “$”sign indicate the order of threshold. There are two
thresholds ($1 and $2) because each item has three response categories. To estimate the
thresholds in male groups which are not constrained to be equal to those in female groups,
the labels different than in the overall model are used. Factor means and variances are also
estimated in male groups by using labels different than labels in overall model statement.
Scale parameter for each variable is specified by the variable name in the bracket { }. Scale
parameters are estimated for male groups, while they are set to one in overall model
statement. In the Model constraint option, non-linear constraints for covariance structure in
male groups are specified to impose correct correlation structure in Equation 2.

Excerpt of Mplus program

Table 7

Title: Genetic Factor Model with the Means of Genetic and Environmental Factors Data:

    File is ‘ c: \ data\ozpairw.txt’; ! the location of the data

Variable:

    Names are xfam xid sexw1t1 zygw1t1 w1t1a1 w1t1a2...;

    Usevariables are w1t1a1 ... w1t2A48 aget1; ! list of variables to be used;

    Categorical are w1t1a1 ... w1t2A48; ! list of categorical variables;

    Gouping is

        zygw1t1 (1=mzf, 2=mzm, 3=dzf, 4=dzm, 5=dzo); ! specifying grouping variable;

    Analysis:

        Type=general meanstructure H1; ! specifying analysis options;

        Param=delta;

    output: ! Requesting the outputs to display;

        standardized samp res;

Model: ! Overall model specification;

    F1 by ! F1 is additive genetic factor;
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    w1t1a1* (1) ! for the first twin;

    w1t1A17* (2)

    w1t1A30* (3)

    w1t1A33* (4)

    w1t1A39* (5)

    w1t1A48* (6);

    F2 by ! F2 is common environmental factor;

    w1t1a1* (11) ! for the first twin;

    w1t1A17* (12)

    w1t1A30* (13)

    w1t1A33* (14)

    w1t1A39* (15)

    w1t1A48* (16);

    F3 by ! F3 is the unique environmental factor;

    w1t1a1* (21) ! for the first twin;

    w1t1A17* (22)

    w1t1A30* (23)

    w1t1A33* (24)

    w1t1A39* (25)

    w1t1A48* (26);

    F4 by ! F4 is the additive genetic factor;

    w1t2A1* (1) ! for the second twin;

    w1t2A17* (2)

    w1t2A30* (3)

    w1t2A33* (4)

    w1t2A39* (5)

    w1t2A48* (6);

    F5 by ! F5 is the common environmental factor;

    w1t2A1* (11) ! for the second twin;

    w1t2A17* (12)

    w1t2A30* (13)

    w1t2A33* (14)

    w1t2A39* (15)

    w1t2A48* (16);

    F6 by ! F6 is the unique common environmental;

    w1t2A1* (21) ! factor for the second twin;

    w1t2A17* (22)

    w1t2A30* (23)

    w1t2A33* (24)

    w1t2A39* (25)

    w1t2A48* (26);
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w1t1a1 w1t2a1 on aget1 (co1); ! Covariating out the age variable;

w1t1A17 w1t2A17 on aget1 (co17);

    .

    .

    [F1-F6@0]; ! Factor mean and variances are set to;

    F1-F6@1; ! zero and one;

    F1 with F2@0 F3@0 F5@0 F6@0; ! Constraints of correlations which are;

    F2 with F3@0 F4@0 F6@0; ! supposed to be zeroes;

    F3 with F4@0 F5@0 F6@0;

    F4 with F5@0 F6@0;

    F5 with F6@0;

    [w1t1a1$1] (t11); ! Constraints of the first thresholds;

    [w1t1A17$1] (t171);

    [w1t1A30$1] (t301);

    [w1t1A33$1] (t331);

    [w1t1A39$1] (t391);

    [w1t1A48$1] (t481);

    [w1t2a1$1] (t11);

    [w1t2A17$1] (t171);

    [w1t2A30$1] (t301);

    [w1t2A33$1] (t331);

    [w1t2A39$1] (t391);

    [w1t2A48$1] (t481);

    [w1t1a1$2] (t12); ! Constraints of the second thresholds;

    [w1t1A17$2] (t172);

    [w1t1A30$2] (t302);

    [w1t1A33$2] (t332);

    [w1t1A39$2] (t392);

    [w1t1A48$2] (t482);

    [w1t2a1$2] (t12);

    [w1t2A17$2] (t172);

    [w1t2A30$2] (t302);

    [w1t2A33$2] (t332);

    [w1t2A39$2] (t392);

    [w1t2A48$2] (t482);

    {w1t1a1@1} (s1); ! Constraints on scale parameters

    {w1t1A23@1} (s23);

    {w1t1A30@1} (s30);

    {w1t1A33@1} (s33);

    {w1t1A39@1} (s39);

    {w1t1A48@1} (s48);
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    {w1t2a1@1} (s1);

    {w1t2A23@1} (s23);

    {w1t2A30@1} (s30);

    {w1t2A33@1} (s33);

    {w1t2A39@1} (s39);

    {w1t2A48@1} (s48);

Model dzm: ! Model specific the model for dizygotic
male twins;

    f1* f4* (f1); ! The var/cov of factors are estimated in
male groups;

    f3* f6* (f3);

    f2* f5* (f2);

    f2 with f5 (f25); ! The variances and covariances are
labeled;

    f1 with f4 (fm14); ! to apply non-linear constraints

    [w1t1A33$1*] (tm331); ! Two thresholds of first three variables
are;

    [w1t1A39$1*] (tm391); ! constrained to be the same and the rest
of;

    [w1t1A48$1*] (tm481); ! the thresholds are freed to be estimated;

    [w1t2A33$1*] (tm331);

    [w1t2A39$1*] (tm391);

    [w1t2A48$1*] (tm481);

    [w1t1A33$2*] (tm332);

    [w1t1A39$2*] (tm392);

    [w1t1A48$2*] (tm482);

    [w1t2A33$2*] (tm332);

    [w1t2A39$2*] (tm392);

    [w1t2A48$2*] (tm482);

    {w1t1a1*} (sm1); ! Scale parameters for male groups;

    {w1t1A17*} (sm17);

    {w1t1A30*} (sm30);

    {w1t1A33*} (sm33);

    {w1t1A39*} (sm39);

    {w1t1A48*} (sm48);

    {w1t2a1*} (sm1);

    {w1t2A17*} (sm17);

    {w1t2A30*} (sm30);

    {w1t2A33*} (sm33);

    {w1t2A39*} (sm39);

    {w1t2A48*} (sm48);

.

.

.
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Model dzo: ! Model specific for opposite sex twins;

    f1@1;

    f2@1;

    f3@1;

    f4* (f1); ! Parameters of male side of the model
are;

    f5* (f2); ! constrained to have same value as in
male groups;

    f6* (f3);

    f2 with f5* (fo25);

    f1 with f4* (fo14);

    [f1-f3@0];

    [f4] (m1);

    [f5] (m2);

    [f6] (m3);

    [w1t2A33$1] (tm331);

    [w1t2A39$1] (tm391);

    [w1t2A48$1] (tm481);

    [w1t2A33$2] (tm332);

    [w1t2A39$2] (tm392);

    [w1t2A48$2] (tm482);

    {w1t2a1*} (sm1);

    {w1t2A23*} (sm23);

    {w1t2A30*} (sm30);

    {w1t2A33*} (sm33);

    {w1t2A39*} (sm39);

    {w1t2A48*} (sm48);

Model constraint: ! Non linear constraints for the
covariances between;

f25=f2;

fm14=f1; ! twins on additive genetic factors and
common;

fd14=.5*f1; ! environmental factors.;

fo25=sqrt (f2);

fo14=.5*sqrt (f1);
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Figure 1.
Different thresholds estimated for different response proportions based on the standard
normal distributions. In the upper panel, thresholds estimated for the cumulative proportions
of 40% and 90% are -0.2533 and 1.2816 (vertical lines in the upper panel), respectively. In
the lower panel, thresholds estimated for the cumulative proportions of 20% and 80% are
-0.8416 and 0.8416 (vertical lines in the lower panel), respectively.
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Figure 2.
Different means and variances estimated based on the fixed thresholds. In the upper panel,
thresholds estimated for the cumulative proportions of 40% and 90% are -0.2533 and 1.2816
(vertical lines in the upper panel), respectively. In the upper panel, mean and variance are
zero (dashed line in the upper panel) and one, respectively. In the lower panel, for the
cumulative proportions of 20% and 80%, thresholds are fixed to the same values from the
first panel (vertical lines in the lower panel) and mean and variance are estimated as in
Equation 5 based on the fixed thresholds, which are 0.5141 (heavy dashed line in the lower
panel) and 0.9119, respectively.
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Figure 3.
The path-diagram of the proposed model. The left side of diagram is the model for females
and the right side is the model for males. The loadings originating from the triangle to
factors represent the factor means. Latent response variables are represented as circles linked
to observed categorical variables via filled circles.
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Table 1

Items Included in Each Dimension

Political Patriotism, Licensing Law, Royalty, Censorship, Strict Rules, Inborn Conscience

Religious Evolution Theory, Sabbath Observance, Birth Control, Divine Law, Legalized Abortion, Church Authority, Divorce

Racial Death Penalty, Empire Building, Women Judges, Apartheid, Caning, Colored Immigration

Social Hippies, Modern Art, Student Pranks, Nudist Camps, Jazz, Casual Living, Pyjama Party
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