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Abstract
Over the past several decades, recombinant human bone morphogenetic proteins (rhBMPs) have
been the most extensively studied and widely used osteoinductive agents for clinical bone repair.
Since rhBMP-2 and rhBMP-7 were approved by the U.S. Food and Drug Administration for
certain clinical uses, millions of patients worldwide have been treated with rhBMPs for various
musculoskeletal disorders. Current clinical applications include treatment of long bone fracture
non-unions, spinal surgeries, and oral maxillofacial surgeries. Considering the growing number of
recent publications related to clincal research of rhBMPs, there exists enormous promise for these
proteins to be used in bone regenerative medicine. The authors take this opportunity to review the
rhBMP literature paying specific attention to the current applications of rhBMPs in bone repair
and spine surgery. The prospective future of rhBMPs delivered in combination with tissue
engineered scaffolds is also reviewed.
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2. Introduction
The repair and replacement of bone is a major clinical problem. The need for functional
treatments of fracture non-unions, spinal injuries, and bone loss associated with trauma and
cancer has become increasingly common and remains a significant challenge in the field of
orthopaedic surgery. In the United States alone, it is estimated that over 10 million fracture-
related physician or emergency visits occur every year [1]. These numbers will only
continue to grow as human life expentancies increase due to better medical care.
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Bone fractures can be treated with a cast because the broken bone needs to be set to improve
the healing. Sometimes, surgery is required for bone fractures associated with small bone
voids that can be filled with an appropriate bone void filler. For large bone defects,
biological grafts such as autologous bone grafts, allografts and demineralized bone matrix
can be used, but each having their own advantages and disadvantages. Autografts have been
recognized as the gold standard bone grafts because of their high success rate (as high as
~80–90%) and unlikelihood of being rejected [2]. However, these grafts are often associated
with several shortcomings including donor-site morbidity, limited tissue for harvesting, and
increased surgical time [3–6]. Allografts and demineralized bone matrix have been
introduced into clinical practice to overcome the drawbacks of autografts. Allografts are
tissues harvested from one individual and implanted into another. Demineralized bone
matrix is allograft bone tissue in which the inorganic mineral has been removed by exposure
to acid, leaving behind organic collagenous matrix and non-collagenous proteins including
growth factors [7,8] [9]. The advantages of allografts and demineralized bone matrix are that
they are readily available in nearly unlimited supply and can be easily processed into a
variety of forms for specific applications [9,10]. However, disease transmission, host
immune reaction and implant rejection remain significant disadvantages of these grafts [11].
As a result of these limitations, there has been significant recent interest in the development
of biomaterials that can augment bone healing to preclude the needs for autografts and
allografts [12]. For instance, researchers have actively investigated biodegradable polymeric
scaffolds combined with growth factors and/or osteoprogenitor cells as a viable alternative
to traditional grafts. [13–17].

Tissue engineering can be described as the combination of biological, chemical and
engineering principles toward the repair, restoration and replacement of tissues using cells,
scaffolds and biologic factors alone or in combination [18]. An important element of
successful bone tissue engineering constructs is osteoinduction, stimulation of
osteoprogenitor cells to differentiate into osteoblasts, which is often accomplished through
the use of growth factors [19]. Bone growth factors are usually proteins secreted by cells
which provide the necessary driving force for osteoblast functions including proliferation
and differentiation. Generally, the mechanism of action of bone growth factors is to interact
with membrane receptors on target cells. This interaction triggers an intracellular signaling
cascade that ultimately induces the expression of bone associated genes in the nucleus and
protein production in the cytoplasm [20,21]. Over the past several decades, scientists have
actively investigated growth factors for use in bone repair and regeneration preclinically. For
instance, bone morphogenetic proteins (BMPs), insulin-like growth factors (IGFs),
granulocyte-macrophage colony stimulating factor (GM-CSF), basic fibroblast growth factor
(bFGF), and platelet-derived growth factor (PDGF) have all demonstrated significant bone
formation and potential for use in bone reparative therapies [21,22]. A review of the
literature has shown that BMPs are the most effective growth factors in improving healing
of non-unions, fractures, spinal fusions, and dental implants [23–33]. Although PDGF is
currently used in clinical practices, the only osteoinductive material commercially available
today is BMPs. BMP was discovered by Dr. Marshall Urist when he observed de novo bone
formation in rats after the implanation of decalcified bone into soft tissue pouches which he
later named the proteins responsible for the bone formation-BMPs [34]. To date, more than
20 BMPs have been identified, of which 7 appear capable of initiating bone growth [35,36].
Thanks to notable advances in molecular biology and genomics, human BMP genes have
been identified and cloned. rhBMPs can now be produced and purified from E.coli and
mammailian cell lines for biochemical analysis and clincial trails [37–41]. Different animal
models have been used to demonstrate the therapeutic potential of rhBMPs in bone repair
and regeneration [22,42,43]. Presently, rhBMPs remain the most important growth factors in
bone formation and repair [44,45]. Two rhBMP-based commercial products: INFUSE®
(rhBMP-2, Medtronic, Minneapolis, MN) and OP-1™ (rhBMP-7, Stryker Biotech,
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Hopkinton, MA) have received Food and Drug Administration (FDA) approval for several
surgical applications (see Table 1). Since the half-life of rhBMP-2 is about 6.7 min in
nonhuman primates due to enzymatic degradation and rapid rate of clearance [46–48], to
increase its effectiveness of healing nonunion fractures, rhBMPs are combined with
biocompatible carriers such as aborbable collagen sponges. Loading rhBMP into an
absorbable collagen sponge allows for the gradual rhBMP release over time, which
stimulates new bone formation in the implant site. Current clinical applications of rhBMP-
based products include long bone non-unions, spinal fusion, and oral surgeries [49–51]. In
certain open tibial fractures and non-unions, rhBMPs play an active role to heal broken
bones [52]. In spinal surgery, the rhBMP induces new bone formation in the disc space to
fuse the vertebrae to reduce back pain, restore function, and strengthen the spine [53]. In
oral surgery, rhBMP plays a role in the induction of new bone formation in the edentulous
area of a missing tooth in order to support a dental implant [54,55]. Considering the growing
number of publications related to the clinical applications of rhBMPs, the purpose of this
review is to cover the latest clinical development of rhBMPs including the use of BMP
delivery carriers and approved BMP products for surgical repairs.

3. Clinical applications of BMPs
3.1 Long Bone Fractures

Long bone fractures make up a large portion of clinically reported fractures[1]. While many
long bone fractures can be repaired without surgery, a significant portion of fractures are
considered critical-size defects meaning they commonly form non-unions without surgical
intervention. It should be noted the term critical-size is contraversial since a recent study
found that the excepted critical-size for human long bones (fracture gap greater than 1 cm
and affect at least 50% of the cortical diameter) showed only a 53% non-union rate [56].
Also, the definition is highly dependent on the species and location of the fracture.
Regardless, many long bone fractures require surgical intervention with a bone graft to assist
repair and regeneration. Autografts or allografts are often used, but recently BMP-loaded
tissue engineering constructs has become more frequently utilized. In 2002, the BMP-2
Evaluation in Surgery for Tibial Trauma Study Group (BESTT) published the results from a
450 patient global clinical study showing that rhBMP-2 loaded collagen sponges greatly
benefited patients undergoing severe, open tibial fracture repair surgeries with
intramedullary nail fixation [57]. This study showed that not only were the rhBMP-2 loaded
sponges safe to use clinically, but that they reduced the risk of failure, lowered the need for
invasive interventions, and accelerated fracture healing with statistical significance over
fracture repairs conducted with nail fixation alone. A 60 patient study in the United States
was conducted concurrently with the same treatment groups and yielded similar positive
results [58]. These results lead to the FDA approval of Medtronic's INFUSE® (rhBMP-2/
collagen implant) for the treatment of acute, open tibial fractures in April 2004 [59]
Interestingly, a follow-up economical analysis on the BESTT study in the United Kingdom,
Germany, and France found that the medical cost-savings of the BMP-2 loaded sponges
(€7,911 – €9,291) greatly outweighed their product cost (€2,260 – €2,970) [60]. A recent
clinical study found that the advantages of INFUSE® reported in the BESTT study were
confined to repairs using unreamed nails whereas repairs using reamed nails saw no
statistically significant differences between patients receiving no scaffold and those
receiving INFUSE® [61]. INFUSE® is currently being investigated by the Capital District
Health Authority, Canada in a Phase IV clinical trial for its capacity to expedite healing of
fractures in the clavicle, tibia, femur, humerus, radius, and ulna [62]. Medtronic has recently
started a Phase III clinical trial investigating the potential for INFUSE® to be coupled with
MASTERGRAFT®, a biphasic calcium phosphate composite, as a regenerative device for
tibial delayed healing defects [63]. Collagen sponges loaded with rhBMP-2 placed in
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allografts are currently being investigated by the Major Extremity Trauma Research
Consortia for their capacity to enhance open tibial fracture healing in Phase IV trials [64].

Pfizer has investigated the potential for rhBMP-2/calcium phosphate matrix (rhBMP-2/
CPM) for a variety of long bone defect applications. rhBMP-2/CPM has been studied in a
Phase I trial for radial fractures [65], a Phase II trial for humeral fractures [66], a Phase II
trial for femoral fractures [67], and Phase II/III trials for tibial fractures [68]. While
promising, the published results from the Phase II studies for humeral and femoral fractures
showed little enhancement over traditional treatments [69,70]. A positive risk/benefit ratio
for these treatments was not demonstrated leading to Pfizer no longer pursuing the clinical
development of rhBMP-2/CPM for these applications.

Like rhBMP-2, rhBMP-7 has shown tremendous clinical promise in promoting long bone
fracture healing. In fact, clinical trials using rhBMP-7 for fracture repair started nearly 20
years ago [71]. In 2001, rhBMP-7 was approved by the FDA under the Humanitarian Device
Exemption (HDE) for the use in long bone non-unions. The first study showed that collagen
sponges with rhBMP-7 have the same effectiveness in healing tibial fracture non-unions as
autografts. Another early study showed rhBMP-7 loaded collagen sponges were able to
induce bone healing in critical-size fibular defects similar to demineralized bone matrix as
determined by bone mineral density measurements [72]. These promising initial results have
been supported by the more recent use of rhBMP-7 in the enhancement of treatments for
diaphyseal humeral non-unions [73] and externally fixated distal tibial fractures [74]. From
2005 to 2007, a 120 patient study was conducted to investigate the potential for rhBMP-7/
collagen constructs to guide repair of a wide-range of non-unions (tibial, femoral, humeral,
ulnar, and radial) [75]. Clinical and radiological union was found in 86.7% of all cases.
Follow-up long-term, multi-center, observational analyses have shown overwhelming
clinical safety and success with the use of rhBMP-7 to treat tibial and femoral non-union
[28,76]. Non-union fracture healing was found to occur in 89.7% and 86.7% of patients
undergoing fixation revision surgery for tibial and femoral non-unions, respectively.
Radiographic evidence of the enhanced healing effects of rhBMP-7 is provided in Figure 1.
After unsuccessful repair of a femoral fracture by intramedullary nail alone, revision surgery
with nail repositioning and the use of Osigraft® (Stryker Biotech), a rhBMP-7/collagen
mixture, lead to complete fusion and healing of the defect. A Phase II clinical trial [77] and a
Phase IV clinical trial [78] for the use of rhBMP-7 based devices to treat tibial fracture are
currently underway.

3.2 Spinal Fusion
BMP-based therapies have also greatly enhanced the outcomes of spinal fusion surgery. This
procedure is typically conducted in order to reduce pain associated with abnormal vertebrae
motion or to treat spinal deformities. The gold standard graft for spinal fusion surgery has
been harvested tissue from the iliac crest of the pelvis which unfortunately can often lead to
significant pain and morbidity at the donor site [79]. Synthetic grafts coupled with BMPs
have been shown to be clinically viable alternatives. Originally, INFUSE® was added to
cortical allografts and shown to induce similar interior lumbar interbody fusion results when
compared to ileac crest autografts leading to its FDA approval for this application in 2002
[80–82]. More recently utilizing INFUSE® without an allograft has shown promise in “off-
label” use for posterolateral spinal fusion [83]. Specifically, two follow-up studies have
shown that patients over 60 years of age that received INFUSE® for posterolateral fusion
had less complications, decreased need for additional treatment or revision surgery and cost
less to treat ($2,316 – $2,443 on average) than patients who received an ileac crest bone
graft [84,85]. A Phase II clinical trial is currently being conducted by the Capital District
Health Authority, Canada to determine the capacity for INFUSE® to promote spinal fusion
[86]. In addition to collagen-based scaffolds, calcium phosphate scaffolds have shown
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promise for use in spinal fusion surgery [87]. Since calcium phosphates can provide
structural support and osteoinductivity, composite scaffolds composed of BMP-2 loaded
collagen and calcium phosphate have been studied and shown tremendous potential [88–91].
All of these studies showed similar or enhanced clinical outcomes for patients receiving
composite scaffolds compared to patients receiving ileac crest autografts. Figure 2 provides
radiographic evidence of the osteoinductive promise of rhBMP-2/collagen/ceramic
composite materials. Ceramic granules in synergy with rhBMP-2 induced considerable new
bone formation between vertebrae 24 month postoperatively. rhBMP-2 delivery and
subsequent spinal fusion has also been mediated by biocompatible polymers like
poly(lactide-co-glycolide) (PLGA) [92,93] and poly(ether ether ketone) (PEEK) [94,95].
Specfically, CD-Horizon®, a PEEK-based material made by Medtronic, has been
supplemented with rhBMP-2 and a compression resistant matrix composed of calcium
phosphate and collagen and shown to enhance spinal fusion in a Phase III clinical trial [96].

Similar to rhBMP-2, significant research has shown rhBMP-7 has the capacity to mediate
enhanced spinal fusion. To date, research evaluating rhBMP-7 as an osteoinductive protein
for spinal applications focuses on the use of OP-1®, a collagen/rhBMP-7 putty, which is
produced by Olympus Biotech. This product has been shown to be relatively safe and
effective for the treatment of posterolateral lumbar fusion [97,98] [99–101] and cervical
non-unions [102,103]. In 2004, the FDA gave HDE approval for the use of OP-1® as an
alternative to autografts in patients requiring posterolateral spinal fusion. Phase I/II/II
clinical trials investigating OP-1® have shown promise for spinal fusion in patients
suffering from vertebra displacement [104–106]. A new Phase II clinical trial is
investigating the potential for OP-1® to be combined with a PEEK crush-resistant spacer to
better facilitate fusion while limiting pain [107]. Unfortunately, some research has shown
issues with the use of BMP-7 for spinal fusion. In one study, only 57.1% of patients treated
with OP-1® to assist posterolateral lumbar fusion actually had complete spinal fusion one
year after surgery [23]. Similarly to rhBMP-2 loaded devices, OP-1® also caused increased
soft tissue swelling that was linked to some patients experiencing transient pain at the fusion
site [103]. Further research must be conducted before OP-1® or other rhBMP-7 products
become commonly used in spinal fusion surgeries.

3.3 Oral and maxillofacial surgeries
Bone grafts are also performed to repair mandibular defects [112]. These defects usually
arise as a result of traumatic injuries, congenital defects, or surgeries for tumor removal.
Bone grafts are also sometimes required to create a base for dental implant so they can
strengthen and thicken dental sites [113]. Nowadays, bone grafts harvested from other parts
of the patient such as the tibia, ilium or chin, are the gold standard for oral surgical
procedures [114]. However, if large amounts of bone are required, rhBMP products are
usually recommended by surgeons as an alternative to autogenous bone grafts [115].
INFUSE® was approved by the FDA in 2009 for certain oral and maxillofacial surgical
procedures. It is used when more bone is needed in the sinus region, i.e. sinus lift to place
endosseous dental implants in the upper mandible [116,117]. It is also used to increase bone
formation in extraction sites prior to dental implant placement [33].

The first clinical studies were conducted by the Nummikoski group on 12 patients who
underwent maxillary sinus augmentation. These patients received rhBMP-2 delivered on an
absorbable collagen sponge, where the total delivered dose of rhBMP-2 implanted varied
from 1.77 to 3.40 mg per patient [116]. Significant bone growth was evidenced in all
evaluable patients (11/12) using computerized tomographic scans and the overall mean
height response for the maxillary sinus floor augmentation was 8.51 mm [116]. Triplett and
colleagues reported a prospective study of the safety and effectiveness of rhBMP-2 on an
absorbable collagen sponge [118]. In this study, a total of 160 patients with maxillary sinus
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floor augmentation were randomized into either a control group (autograft) or a rhBMP-2
treatment group (1.5 mg/ml). The outcomes were measured based on the bone height and
density using computed tomography scans in the 5-year study period. The data demonstrate
the effectiveness and safety of rhBMP-2 compared with autograft for sinus floor
augmentation. No adverse events were found related to the rhBMP-2 treatment and there
was no statistically significant difference in outcome between the 2 groups. The authors
concluded that rhBMP-2 and autograft groups performed similarly [118]. Cochran and
colleagues evaluated the use of rhBMP-2 loaded in an absorbable collagen sponge in human
extraction sites or in sites that required alveolar ridge augmentation in 12 patients followed
for up to 3 years [119]. During the study period, no serious adverse effects occurred. Human
bone biopsies were used to confirm bone formation in areas treated with rhBMP-2.
Endosseous implants (4 augmentations and 6 extraction sockets) placed in these areas were
all clinically stable and all sites were functionally restored [119]. Compared to spinal fusion
and non-union fractures, there are limited cases of clinical studies involving oral and
maxillofacial surgeries using BMPs. Nevertheless, it is reasonable for us to anticipate that
the uses of BMP for oral and maxillofacial surgeries will continue to expand.

4. Design Metrics for BMP Delivery Devices
While current clinical treatments have been shown to be effective in treating bone and spinal
defects or injuries, the research community is actively seeking alternative drug delivery
vehicles in order to improve current therapies. The overall aim is to develop an
osteoinductive, osteogenic, and osteoconductive scaffold that accelerates bone formation at
a similar rate to autologous treatment. To reach this aim, significant research has focused on
the local, controlled delivery of rhBMPs because such controlled spatiotemporal release can
stimulate endogenous repair mechanisms by recruiting and programming the patient's own
progenitor cells. However, the controlled delivery of rhBMPs to sites of damaged, injured,
or otherwise impaired bone tissue continues to be a challenging task due to the variable
release profiles of rhBMPs from carriers [120]. For instance, rhBMPs are well documented
for exhibiting a burst release pharmokinectic profile from their most typical carrier, the
absorbable collagen sponge (ACS) [121]. This rapid release requires supraphysiological
protein loading of carrier devices to maintain local rhBMP biological activity. As a result,
concentrations of rhBMPs required for acceleration of fracture healing range from 0.01 mg/
ml in rodents to 1.5 mg/ml in non-human primate models, and even higher concentrations
have been used for spine fusion applications in human clinical trials. Using dosages
approximately 1 million times concentrations found endogenously have made clinically used
rhBMP therapies very expensive at a cost of $5,000 or more [72,76,116,122]. Furthermore,
while rhBMPs generally act only on nearby cells to promote bone formation and are
confined to the geometry of their polymeric, ceramic, or composite carrier, at high doses
rhBMPs can increase diffusion to nearby tissues such that bone formation extends beyond
the carrier material [123]. The diffusion of this pleiotropic protein can result in unwanted
ectopic bone formation, native bone resorption, soft tissue swelling, and osteolysis [124].
The pleiotropic nature of BMPs is evidenced by their role in developmental biology as well
as their ability to trans-differentiate already committed cells like mesothelial and
tenosynovial cells [125,126]. Thus, it is important to note that one of the most critical
characteristics of a delivery system is its ability to maintain physiologic levels of rhBMP
within a confined space for a sufficient time to stimulate bone formation [48]. Additionally,
an ideal delivery system should:

• Protect the rhBMPs from degradation and maintain its bioactivity

• Be biodegradable to allow for the formation of an interface with the surrounding
biological tissue or complete biodegradability for complete invasion of healed
tissues
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• Present adequate porosity to allow the infiltration of cells and formation of blood
vessels

• Be conveniently sterilizable, easy to handle, stable over time with well-defined
storage procedures

• Be suitable for commercial manufacturing, allowing for scale-up production and
approval by regulatory agencies[127]

Growth factors are typically adsorbed to, immobilized onto, entrapped, or encapsulated
within delivery vehicles to accomplish spatiotemporal delivery at the implantation site.
While adsorbing rhBMPs to the surface of the implant is the easiest way to deliver the
growth factor, the protein may undergo conformational changes once adsorbed and is
typically released rapidly and in an uncontrolled manner when exposed to a physiological
environment. Immobilization of rhBMPs to implant surfaces typically results in a more
sustained presence; however, due to covalent bonds the protein cannot freely diffuse within
the microenvironment to interact with its receptor. Entrapment and encapsulation of rhBMPs
circumvents the issues of rapid release and immobilization, and are the most popular way to
deliver rhBMPs. However, it is important to note that many of these methods involve
exposing rhBMPs to harsh solvents and acidic environments that may disrupt the
conformational structure and thus bioactivity of the protein. Methods such as binding
proteins to charged polymers such as chitosan, alginate, hyaluronans also have shown great
efficacy in sustained protein delivery.

There are several types of carriers that have been investigated for rhBMP delivery [128]. In
general, the five groups are: natural (Table 2a) and synthetic polymers (Table 2b), natural
and synthetic ceramics (Table 2c), and composites of these four groups (Table 2d). This
section will cover in detail the documented uses of these carriers in conjuction with
rhBMP-2 and rhBMP-7 in pre-clinical cases for fracture non-unions, spinal fusion, and
fracture repair.

4.1 Natural Polymers
Collagen—As a natural polymer, collagen is a popular choice for bone tissue regeneration
applications due to its biocompatibility, ease of degradation, and interaction with other
bioactive molecules. As previously reviewed [129], ACS have been used extensively for
bone regeneration. In fact, the only rhBMP-2 containing FDA-approved product for clinical
use in spinal fusions, tibial shaft fractures, and oral surgeries is comprised of an ACS. In the
rhBMP-2 INFUSE® products, aqueous rhBMP-2 is physically adsorbed to an ACS prior to
implantation and placed into a titanium fusion device to aid in spinal fusion [83,89] in
several animal [130–132] and human cases [51,82] with the overall outcome of high fusion
rates without significant side effects. However, when delivered on the ACS the FDA-
approved concentration of rhBMP-2 for interbody spinal fusion (1.5 mg/mL) has failed to
induce clinically relevant amounts of bone formation in a posterolateral spine fusion model
in animals [131,133] and humans [83], warranting further investigation into this area. In
osteogenic protein [OP]-1TM products, rhBMP-7 is contained within a putty of bovine
collagen matrix and carboxymethylcellulose sodium [134] and used for long bone non-union
and revision posterolateral lumbar fusion [50,99,101].

Despite the proven clinical efficacy of collagen carriers, it is known that delivery of rhBMPs
from these matrices have a number of disadvantages. Of the existing problems, the most
prominent include the lack of mechanical strength and unpredictable biodegradability of the
collagen matrix. Specifically, since the collagen sponge lacks mechanical integrity, the local
concentration of rhBMPs can increase to undesirably high levels as the sponge is
compressed by overlying muscles and other tissue. Furthermore, since rhBMPs are
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physically entrapped in the collagen matrices and depend on matrix degradation for release,
their release kinetics are unpredictable and difficult to control [134]. In fact, reports indicate
that due to initial burst release, less than 5% of rhBMP remains within the collagen sponge
at 2 weeks in vivo [135].

4.2 Other natural polymers
As summarized in Table 2a, in addition to collagen there are a number of other natural
polymers such as gelatin, hyaluronans, alginate, chitosan, silk, and fibrin that have been
combined with ceramics and/or synthetic polymers (Table 2d) to increase osteoconductivity
and mechanical strength. Although these potential therapies have not been approved for
clinical use, pre-clinical results indicate promising future applications.

Gelatin is a commercially available denatured collagen that has been used extensively for
medical purposes. The controlled release of growth factors from biodegradable gelatin
hydrogels can be modulated by gelatin percentage since gelatin-immobilized growth factors
are released when water-soluble hydrogels undergo degradation. It has been shown that
gelatin hydrogels containing rhBMP-2 releases the osteogenic agent in a controlled manner
such that the osteoinductive activity of the bioactive hydrogel is significantly enhanced in a
rabbit ulnar segmental defect (20mm) in comparison to rhBMP-2-free hydrogels [136].

Hyaluronic acid (HA) is a naturally occurring hydrophilic, non-immunogenic
glycosaminoglycan that has been shown to support bone growth in combination with
rhBMP-2 in dog alveolar ridge defects [137], rabbit mid-tibial non-unions [138], and rat
calvarial defects when mesenchymal stem cells (MSCs) are added [139]. The degradation of
HA hydrogels can be modified via crosslinking strategies and additional incorporation of
degradable sites. Since cationic rhBMP-2 interacts with HA hydrogels based on electrostatic
interactions, the rate of hydrogel degradation is directly proportional to growth factor
release. When crosslinked rhBMP-2/HA hydrogels degraded at fast, intermediate, and slow
rates, it was shown that in a rat calvarial bone critical size defect model, the fastest and
slowest degrading scaffolds induced the most organized bone formation [140]. In addition,
studies have recently demonstrated that an injectable HA/rhBMP-2 hydrogel stimulates bone
formation, as indicated by a high expression of osteocalcin and osteopontin [141], as well as
x-ray, microcomputed tomographical, and histological analysis [142].

Alginate is a polysaccharide that is generally used in cartilage tissue engineering [143].
However, Simmons and colleagues demonstrated that in mice, RGD-functionalized alginate
hydrogels co-delivered with rhBMP-2, transforming growth factor (TGF)-β3 and bone
marrow stromal cells (BMSCs) successfully enhance bone formation [144,145]. Also, in
combination with alginate loaded MSCs, a low dose of rhBMP-2 (2.5 μg) enhanced bone
formation and spinal fusion in a rabbit posterolateral intertransverse fusion model. In more
recent reports, Kolambkar showed that the injection of a RGD-functionalized alginate
hydrogel containing a low dose of rhBMP-2 into a nanofiber mesh tube allows for the
sustained spatiotemporal release of the growth factor for effective bone regeneration [146].
Furthermore, the addition of nanohydroxyapatite/collagen (nHAp/C) particles into an
alginate hydrogel rhBMP-2 carrier results in the successful bone formation in a critical size
rat calvarial defect [147].

Chitosan, a biocompatible and bioresorbable polymer of N-acetylglucosamine and
glucosamine, is obtained from chitin through deacetylation. This natural polymer is
biocompatible, bioresorbable, and bioactive and thus extremely attractive for tissue
engineering applications. Abarrategi et al. first investigated the delivery properties of
chitosan films in vivo and found that rhBMP-2 not only diffused slowly from the film, but
also remained active as the film itself degraded at a slow kinetic rate [148]. Further reports
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indicated that porous ceramic scaffolds coated with rhBMP-2 carrier chitosan films
stimulate bone formation at an earlier timepoint in comparison to ceramics without the
coating [149], and promote the most extensive bone formation in a rat calvarial defect model
[150]. Injectable forms of chitosan with rhBMP-2 and MSCs enhanced rat calvarial critical
sized defects [151], but failed to regenerate bone in a rabbit 15mm critical sized radius
defect, even with the addition of β-TCP [152]. However, chitosan combined with heparin
enhanced rhBMP-2 induced bone formation and showed superior osteoinductive effects as
compared to rhBMP-2/collagen implants [153].

The use of natural silkworm cocoon silk, or silk fibroin (SF), in bone regenerative
applications has increased in recent years due to their excellent biocompatibility,
degradability, and mechanical properties. After rhBMP-2 immobilization on SF films first
resulted in increased osteogenesis of hBMSCs [154], investigators have since adsorbed the
osteogenic protein to electrospun SF scaffolds [155], encapsulated it within microparticles
[156], and injected protein-loaded silk hydrogels [157] into various critical defect and
ectopic animal models. These studies overall resulted in increased bone infiltration and
formation, indicating the potential use of SF as a biodegradable carrier vehicle for rhBMP-2.

Fibrin is a material that can be rapidly invaded, remodeled, and replaced by cell-associated
proteolytic activity [158]. Although there are conflicting results concerning the use of fibrin
gel for in vivo bone regeneration applications [159], it has been shown that in combination
with heparin-functionalized nanoparticles and rhBMP-2, fibrin gel promotes significant
improvement and effective bone regeneration in a rat calvarial critical size defect [160].
Further, covalently conjugating heparin to fibrin has been shown to significantly enhance
bone formation in comparison to rhBMP-2 and free heparin loaded in fibrin matrices [161].
With the addition of adipose stem cells (ASCs), rhBMP-2 in a fibrin matrix was able to
significantly reduce callus size in a non-critically sized femur transcortical drill hole within
2 weeks, as compared to rhBMP-2 alone [162].

4.3 Calcium Phosphate
Calcium phosphates have been extensively reviewed for their osteoconductive properties
[163–165] due to their marked similarity in mineral composition, properties, and
microarchitecture to human cancellous bone. Thus it is no surprise that in recent years
significant research has focused on the development of calcium phosphates for bone repair
and regeneration. Calcium phosphate materials have been grouped into three main
categories based on their chemical composition: hydroxyapatite (HAp), β-tricalcium
phosphate (β-TCP), and biphasic calcium phosphate (combination of β-TCP and HAp).
While these various ceramics differ in mechanical strength, bioresorbabilty, and
osteoconductivity, all of these compositions have a high affinity for binding proteins, and
thus serve as potential candidates for rhBMP delivery in pre-clinical animal spinal fusion
and bone repair models (Table 2c).

HAp is a commercially available biomaterial for bone replacement that is derived from coral
exoskeletons. While this porous scaffold is similar to the inorganic phase of bone and
exhibits osteoconductive properties, it is brittle, not readily resorbable, and carries minimal
mechanical strength until bone ingrowth. Due to these characteristics, HAp is typically
incorporated into other protein carriers to enhance bone-forming properties. However, there
are a few instances when HAp has been exclusively used as a rhBMP delivery vehicle for
bone formation [166]. For instance, Morisue et al. fabricated HAp into a fibrous rhBMP-2
loaded mesh to enhance bone union in a rat posterolateral fusion model. The resulting 80%
fusion rate of the loaded mesh, as compared to the 20% fusion rate of the control, suggested
that the HAp mesh is an efficient rhBMP-2 carrier [167]. In a weight-bearing model, the
implantation of nHAp/rhBMP-2 composites to a bone defect on the unilateral radii of rabbits
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stimulated significantly more bone formation than a similar nHAp artificial bone without the
growth factor [168]. HAp/rhBMP-7 composites have also demonstrated success in solid
spinal fusion as compared to HAp without rhBMP-7 and autograft in a sheep model [169],
as well as success in baboon orthotopic calvarial defects in relatively low dosages [170].
However, as recently revealed by Tazaki et al., β-TCP may make a more effective rhBMP
carrier due to its slower release rate as compared to HAp [171].

β-TCP is one of the most common used synthetic bone graft substitute due to its chemical
similarily with normal bone [165]. Furthermore, TCP does not evoke immunological or
toxic reactions, has good biocompatibiltity, and degrades as it is replaced by bone [172].
Given the osteogenic nature of rhBMP-2, the addition of the growth factor may enable β-
TCP to act as an osteoconductive and osteoinductive bone graft substitute in future clinical
spine surgeries. In fact, Ohyama et al. demonstrated that β-TCP combined with rhBMP-2
(200 μg) could serve as a substitute for autografts in the packing of interbody fusion cages
in the canine lumbar spine model. In comparison to autograft cages and β-TCP without
rhBMP-2, the β-TCP/rhBMP-2 substitute induces more fusion and produces a greater mean
percentage of trabecular bone formation and mechanical stiffness [173]. Later studies
confirmed this occurrence in bovine trepanation defects filled with a β-TCP/rhBMP-2
composite. Results indicated that β-TCP/rhBMP-2 composites induce a similar amount of
calcified structures as compared to an autologous graft [174]. In contrast, recent reports
indicate that in 5 mm calvarial critical size defects, the osteoconductive properties of β-TCP
are not only superior to those of autografts, but that rhBMP-2 (5 μg) supplementation may
not be necessary [175].

The differing restorability characteristics of HAp and β-TCP have led to the investigation of
biphasic ceramics - scaffolds made from mixtures of the two ceramics. These composites
provide osteoconduction for bone production as well as long-term stability since the stable
tertiary structure of the HAp does not resorb quickly, thus providing structural rigidity to the
implant as β-TCP degrades at the rate of bone formation [176]. Clearly, the ratio of HAp to
β-TCP is an important parameter when designing osteoinductive rhBMP delivery vehicles
for the modulation of bone formation. Previous reports suggest that a high concentration of
HAp is necessary to observe bone formation [177], but such concentrations lead to slow
biphasic graft resorption. To overcome this issue, Boden and colleagues demonstrated that
in a non-human primate lumbar intertransverse process, increasing the dosage of rhBMP-2
in a 60:40 HAp/β-TCP carrier could enhance the amount and quality of bone through the
ceramic block [178]. Even at lower HAp concentrations (20:80 HAp:β-TCP), rhBMP-2
incorporation enhanced bone formation in a rat calvarial defect model, although the ideal
protein dosage was not clearly determined [179].

4.4 Natural Polymers and Ceramics
To account for the distinct disadvantages of polymeric carriers alone, as well as to replicate
the chemical structure of bone to an even greater degree, natural polymers, namely collagen,
have been combined with ceramic constructs to enhance mechanical properties of
implantable scaffolds and establish more controlled release kinetics in animal models (Table
2d). Recently, Majid and colleagues incorporated rhBMP-2 within a calcium phosphate
coating on a type I bovine collagen sponge to evaluate the orthotopic application of
localized protein delivery in a rabbit posterolateral spinal fusion model. Their findings
suggest that the biomimetic calcium phosphate coatings are effective as rhBMP-2 delivery
systems as indicated by radiograph, manual palpation, computed tomography, and
histological analysis [180]. In the same rabbit spinal fusion model, previous studies have
also indicated that rhBMPs are retained [181] and can be successfully delivered from a
compression-resistant 5:95 biphasic calcium phosphate/collagen sponge matrix resulting in
bone that is biomechanically stiffer than the autograft control [182]. The use of a biphasic
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osteoinductive bulking agent not only induces bone formation [183], but also has been
shown to reduce the required rhBMP-2 dose for posterolateral spinal fusions in rhesus
monkeys to the FDA-approved 1.5 mg/mL concentration for interbody spinal fusions [133].
Porous hydroxyapatite and collagen scaffolds have likewise shown to induce bone formation
ectopically [184] and in bone defects. For instance, Itoh et al. demonstrated that
hydroxyapatite/type I collagen composites are efficient rhBMP-2 carriers and induce new
bone formation for dog radius, ulna [185] and tibia [186] repair in these weight-bearing
sites. In a rabbit lumber intertransverse fusion model, nHAp/collagen combined with
rhBMP-2 showed similar fusion ratio and mechanical strength as the autogenous bone alone
[187].

In addition to collagen, other natural polymers have been combined with ceramics to
increase scaffold osteoconductivity. For example, Matsumoto et al. combined rhBMP-2
gelatin hydrogels with bioactive β-TCP and observed the enhanced regeneration of critical-
sized (5mm) bone defects in rats [188]. However, the incorporation of β-TCP did not
improve the biomechanical properties of the regenerated bone resulting from these
composite gels, as determined by the three-point bending test [123]. In another study, a
gelatin/nHAp scaffold was fabricated and combined with a fibrin glue/rhBMP-2 solution to
create a hybrid scaffold with sustained and slow protein release kinetics, which resulted in
the repair of a critical-size rabbit segmental bone defect after 12 weeks [189]. Furthermore,
in a sheep anterior lumbar interbody fusion model, an injectable calcium phosphate cement/
SF/rhBMP-2 scaffold resulted in comparable stiffness and bone formation to autografts at 12
months [190].

4.5 Biodegradable synthetic polymers
Biodegradable synthetic polymers are used extensively in bone tissue engineering due to
their biocompatibility, hydrolytic biodegradability, formability, and ease of use [191,192].
For these reasons, these polymers are often considered ideal substrates for growth factor
delivery and subsequent tissue formation. There are a number of ways to deliver growth
factors from biodegradable polymers, but proteins are generally either physically
encapsulated within the polymeric matrix or immobilized to the surface. Proteins also may
experience ionic, hydrophobic, and/or hydrogen bonding interactions with the polymer.
These mechanisms of encapsulation, chemical conjugation, and bonding can be greatly
advantageous over purely physical methods of entrapment, as demonstrated by many natural
polymers, due to the ability to control release rates for prolonged presence of rhBMPs
locally. Of the several types of biodegradable polymers available, poly-α-hydroxy acids,
such as polylactic acid (PLA), polyglycolic acid (PGA), and their copolymer poly(DL-
lactide-co-glycolide) (PLGA), have emerged as popular choices. Synthetic grafting materials
are now routinely combined with various active biologic substances to enhance their
osteogenic potential. Poly-α-hydroxy acid polymers have been formed into microspheres,
nanospheres, nanofibers, and coated on titanium surfaces alone and in combination with the
aforementioned biomaterials—natural polymers and calcium phosphates. In particular, much
research has focused on polymeric and ceramic composites since bone is a combination of
organic and inorganic elements. Given the reviews previously published [127,191],
described below are more recent advancements in rhBMP delivery in pre-clinical
biodegradable synthetic polymer systems used for spinal and bone repair (Table 2b).

PLA was first investigated as a rhBMP-2 carrier nearly 20 years ago [193]. It has since
undergone modifications such as the addition of polyethylene glycol (PEG) [194], the
formation of plastic PEG [195,196], and the synthesis of PLA-p-dioxanone-PEG (PLA-DX-
PEG) [197] to decrease the degradation rate, acid byproducts and increase the bone forming
capabilities of pristine PLA/rhBMP-2 in ectopic mouse models [193,195,197], rat cranial
defects [198], canine [192,199,200] and sheep [201] spinal fusion models, and long bone
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defects in rabbits [202] and dogs [203]. Furthermore, PLA incorporated with nHAp,
collagen, and rhBMP-2 increased the lumbar spinal fusion ratio in a rabbit model compared
to autografts [204], which is similar to rabbit posterolateral spine fusion results with PLA-
DX-PEG/β-TCP/rhBMP-2 scaffolds [205]. More recently, Eguchi et al. incorporated an
optimal dose of etanercept (ETN), an antitumor necrotic factor, with PLA-DX-PEG discs to
enhance rhBMP-2 (5 μg) facilitated bone induction in a mouse ectopic model [206].

To a lesser extent, PGA has also been investigated as an rhBMP-2 carrier. Park and
colleagues applied PGA/rhBMP-2 scaffolds combined with modified platelet rich plasma
(mPRP) to a rat critical-sized calvarial defect model. In comparison with the control group,
the experimental group showed significantly more blood vessels and bone healing at 8
weeks as evaluated with histology, bone mineral density and bone mineral content, and
microCT[207]. In another study, PGA combined with poly-L-lysine (PLL), rhBMP-2 and
transforming growth factor-beta 1 (TGF-β1) in a multilayered film successfully
differentiated embryonic stem cells to osteoblasts in vitro [208].

The most recent and extensive work pertaining to rhBMP delivery centers around
biodegradable and biocompatible PLGA scaffolds. Originally used as growth factor carrier
in the mid-90s [209], the use of PLGA in in vivo models has since grown tremendously.
PLGA is used alone or in combination with several other biomaterials, such as calcium
phosphates, natural polymers, and other synthetic polymers, to release encapsulated rhBMP
and facilitate bone formation. Of the several types of delivery vehicles, microspheres have
been used the most extensively due to ease of fabrication, tunable degradation rates, and
structure versatility [210–212]. However, in recent years the use of nanoparticles has
increased because of the enhanced cell-biomaterial interaction at the nano-scale. For
instance, Fu et al. encapsulated rhBMP-2 in PLGA/HAp composite fibers via
electrospinning to not only observe good morphology and mechanical strength of the
nanofibers, but also in vivo rhBMP-2 release and bioactivity [213]. In another study, PLGA/
HAp/rhBMP-2 scaffolds seeded with human cord blood mesenchymal stem cells and
implanted subcutaneously in mice resulted in increased bone formation, as evidenced by the
presence of osteoblastic markers [214]. rhBMP-7 has also been encapsulated in polymeric
systems. As Wei et al. detailed, rhBMP-7 incorporated in PLGA nanospheres and
immobilized on PLLA nanoscaffolds led to successful bone formation in a rodent dorsal
subcutaneous model as indicated by radiodensity and histological results [215], while
rhBMP-7 loaded PLGA/nHAp composites resulted in long-term release of the osteogenic
protein [216].

Despite the benefits of PLGA/calcium phosphate systems, rhBMPs often releases too
rapidly from implanted scaffolds and exhibits decreased bioactivity. Thus, Ruhé et al.
showed that high molecular weight PLGA/calcium phosphate composites release rhBMP-2
at a slower rate than using composites with low molecular weight PLGA [217]. In a more
recent study, apatite-coated PLGA/nHAp suspended in fibrin gel showed a decrease protein
release rate and an increase in bone formation in a critical-size rat calvarial defect [218].
rhBMP-2/PLGA has also been combined with natural polymers such as alginate hydrogels
to increase osteoblastic gene expression [219] and increase femoral healing in a rat model
[220], as well as collagen and rat autologous bone to preserve the in vivo activity of
rhBMP-2 [221]. The combination of PLGA with synthetic polymers has been shown to
decrease rhBMP-2 release rate in vivo. For instance, Liu et al. used PEG to tether rhBMP-2
to a PLGA scaffold to further delay protein release. After the scaffold was seeded with
MSCs and implanted in a rabbit cranial defect model, PEG-tethered rhBMP-2 de novo bone
formation was enhanced [222]. Furthermore, Kempen et al. encapsulated rhBMP-2 within
PLGA microspheres and embedded the microspheres in a porous poly(propylene fumarate)
(PPF) scaffold. Histology confirmed bone formation after the composite was seeded with
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BMSCs and implanted ectopically in a goat [223]. In a later study, Kempen and colleagues
utilized the same carrier vehicle, but incorporated vascular endothelial growth factor
(VEGF) to observe enhanced bone formation in a dorsal thoracolumbar goal model [224].

In addition to VEGF and TGF-β1 incorporated constructs, rhBMPs have been delivered with
other molecules to enhance in vivo rhBMP-2 release and ectopic bone formation. Yu et al.
detailed a 102% increase in ectopic bone formation upon rhBMP-7/PLGA bioactivity
augmentation with a low dose of an anti-catabolic agent, bisphosphonate pamidronate.
Heparin is another molecule that has been investigated for its bioactivity augmentation
qualities. Jeon and colleagues first demonstrated that rhBMP-2 loaded heparin conjugated
PLGA (HC-PLGA) scaffolds induced a 9-fold increase in bone formation area and 4-fold
increase in calcium content as compared to rhBMP-2 loaded PLGA or unloaded HC-PLGA
scaffolds [225]. In follow-up studies, Kang et al. showed that undifferentiated BMSCs on
rhBMP-2 loaded HC-PLGA scaffolds induce more extensive bone formation than
undifferentiated cells alone or osteogencially differentiated cells on the bioactive scaffold
[226], while Kim et al. demonstrated the feasibility of using rhBMP-2/HC-PLGA
nanoparticles for undifferentiated BMSCs delivery and subsequent bone formation [227].
Further, suspending these rhBMP-2/HC-PLGA nanoparticles in fibrin gel reduced the
concentration of rhBMP-2 necessary to facilitate bone formation in mouse calvarial defects
[228].

Poly(epsilon-capralactone) (PCL) is another popular, commercially available polymer used
in tissue engineering applications because it is soluble in a number of organic solvents, can
form miscible blends with several polymers, and is hydrolytically degradable (2–3 years)
[229]. In combination with collagen, PCL/β-TCP scaffolds loaded with rhBMP-2 (5 μg)
showed complete healing of a rat calvarial critical-sized defect at 15 weeks as determined by
microCT, histology/histomorphometry, and mechanical assessments [230]. Furthermore,
filling rat femoral defects with PCL, collagen matrix and rhBMP-2/heparin complexes
resulted in new bone formation with mechanical properties similar to those of intact bone
[231]. The architecture of the PCL scaffold also plays a significant role in bone formation.
For instance, the bone formation, as assessed by radiography, microCT, and histology, in a
15mm rabbit ulna defect model was enhanced in comparison to experimental controls by a
three-dimensional rhBMP-2/PCL scaffold with honeycomb-like porous structures [232].
PCL has also been applied in pre-clinical spinal surgeries. As shown in a pig anterior lumber
interbody fusion model, bone formation induced by PCL/β-TCP scaffolds with a low dose
of rhBMP-2 (0.6 mg) was comparable to the positive control as determined by histology,
micro-CT and biomechanical evaluation [233]. These results, combined with the
aforementioned, reveal the potential use of natural polymers, ceramics, and synthetic
polymers for bone tissue repair and regeneration.

5. Critical Outlook
Applications of BMPs in long bone repairs, spinal fusions, and oral surgeries are becoming
increasingly common. While current results and outcomes have shown promise, significant
issues with BMP-based therapies remain. One major concern has been the off-label use of
BMPs. Over the past decade, at least 85% of the principal procedures using BMPs were off-
label applications [235]. rhBMP-2 may lead to early bone resorption around PEEK implants,
which can cause loosening and pain [108]. Also, the use of rhBMP-2 in spinal fusion has
been shown to cause increased swelling and significant ectopic bone formation in the spinal
canal which can lead to significant pain and possibly limit limb function [109,110]. In 2008,
the FDA issued a public health notification highlighting at least 38 reports of complications
related to off-label use of BMP products in spinal fusion surgery including compression of
the airway and/or neurological structures of the neck [234]. A recent review of rhBMP-2
used in spinal surgeries shows that the risk of adverse side effects associated with rhBMP-2
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is 10 – 50 times the original estimates reported in peer-review publications [111]. In 2011,
the special issue of the Spine Journal (Volume 11, Issue 6) took the unprecedented step of
devoting an entire special issue to the numerous problems associated with using rhBMP-2 in
spinal surgery applications for which FDA clearance does not exist. Specifically, Medtronic
is alleged to have been illegally promoting off-label uses of their INFUSE graft [236] and
doing so with falsified data [237]. Medtronic is currently being sued by both patients
disabled by the off-label use of INFUSE [238] and by their own share holders [239]. In
response to this and other related cases, a bill has been introduced in the United States
Senate to enhance the FDA's ability to monitor medical devices after they have cleared the
agency [240].

Another significant and related issue is the demonstrated need for supraphysiological BMP
dosages from delivery matrices to achieve clinically desired osteoinductive effects. Many
therapies require the delivery of milligram quantities of BMPs when natural localized
endogenous BMP production is typically at the nanogram level [241]. The reason for this
discrepancy in generating new bone is unknown, but this use of exogenous dosages
exceeding one million times normal levels is believed to be at least partially responsible for
many of the complications currently seen with BMP-based treatments [242]. With these
issues, more research must be conducted in order to understand bone biology with BMPs
and improve site-directed BMP delivery before BMP-loaded constructs might become the
new gold standard replacing ileac crest bone grafts.

Tissue engineered products comprising biodegradable polymeric scaffolds hold tremendous
promise for delivering therapeutic amounts of rhBMPs. Specifically, new systems must
protect rhBMP from degradation while maintaining its bioactivity, contain sufficient
porosity to facilitate cell infiltration and induce angiogenesis, undergo programmed
degradation as new tissue forms, and remain suitable for commercial manufacturing and
sterilization. Selecting one or a combination of degradable polymers outlined above;
engineers, scientists, and clinicians are working together to synthesize new clinically
relevant scaffolds that meet these specifications. In the future, scaffolds possessing
osteoinductive small molecules capable of inducing local endogenous production of BMPs
will be used in concert with exogenous rhBMPs to better induce osteogenesis. For instance,
members of the statin family including cerivastatin, fluvastatin, lovastatin, and simvastatin
induce osteogenesis in vitro and in vivo by increasing the expression of BMP-2 through the
Smad/BMP signaling mechanism [243–251]. Statins are FDA-cleared drugs for the
treatment of cardiovascular disease and have been safely administrated to patients for more
than a decade [252]. Research into other potential uses of statins led to their discovery as
new therapeutics for treating bone disorders [253]. Similar to statins, several other small
molecules have been found to possess osteoinductive activity through the BMP/Smad
signaling mechanism. These small molecules include icariin [254–256], tacrolimus hydrate
(FK506) [257–261], rapamycin [262,263], helioxanthin-derivative (TH) [264], and phenamil
[265]. Lastly, the authors' stimulation of the protein kinase A signaling pathway by a cyclic
AMP analog, N6-benzoyladenosine-3',5'-cyclic monophosphate (6-Bnz-cAMP), caused in
vitro osteogenesis in several cell types such as mouse osteoblast-like MC3T3-E1 cells [266]
and human mesenchymal stem cells (unpublished data). Materials-only approaches also hold
promise to induce endogenous BMP expression. Ceramics like calcium phosphate have long
been found to possess intrinsic osteoinductive properties [267] and these could be further
engineered for certain applications. Specifically, the authors have recently demonstrated that
polymer-ceramic composite sintered microsphere scaffolds can induce osteogenic
differentiation of human adipose-derived stem cells (unpublished data). Taken together,
these novel scaffolds hold promise to facilitate the expansion of BMP-loaded systems
beyond maxillofacial and spinal surgeries to long bone fracture and skeletal repair where
cost and efficacy of current systems have limited their widespread use.
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Figure 1.
A 62-year-old man fell and experienced a subtrochanteric right femur fracture that was
unsuccessfully repaired by intramedullary nail fixation alone. Radiographs show revision
surgery with nail repositioning and application of Osigraft® immediately after surgery (A)
and 6 months later (B). Radiologically and clinically evident healing is present. (Reproduced
from [30] with permission granted by Elsevier.)
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Figure 2.
Radiographs of the fusion mass at 6 weeks (A), 12 months (b), and 24 months after
posterolateral arthrodesis spinal surgery using a ceramic-granule bulking agent with
rhBMP-2 loaded collagen sponge to mediate joint ossification. Radiographs show the initial
presence of ceramic granules (arrows in A) which are later resorbed and replaced with new
bone formation (arrows in B & C). (Reproduced from [91] with permission pending from
Rockwater Inc.)
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Table 1

FDA-approved clinical applications of recombinant BMP-2 and BMP-7.

Recombinant BMP isoforms rhBMP-2 rhBMP-7

FDA approval Spinal fusion (anterior lumbar interbody fusion) *Spinal fusion (posterolateral lumbar fusion)

Open tibial fractures *Long bone nonunion

Sinus lift

Alveolar ridge augmentation

*
Under a humanitarian device exemption (HDE)
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Table 2a

Summary of animal studies involving rhBMP-2 incorporated with natural polymers

Natural Polymers & rhBMP-2

Polymer Carrier Animal Model Defect Model Ref.

Collagen Sponge Nonhuman primate Anterior interbody fusion [130]

Rabbit Posterolateral lumbar spinal fusion [131]

Canine Lumbar spinal fusion [132]

Gelatin Hydrogel Rabbit Ulnar segment defect [136]

Hyaluronic Acid Hydrogel Canine Alveolar ridge defect [137]

Rabbit Mid-tibial non-union [138]

Rat Calvarial bone defect [139–141]

Alginate Hydrogel Mouse Ectopic bone formation [144]

Rabbit Posterolateral intertransverse fusion [145]

Rat Femoral bone defect [146]

Chitosan Hydrogel Rat Calvarial bone defect [150,151]

Rat Ectopic bone formation [153]

Silk Fibroin Electrospun scaffold Mouse Calvarial bone defect [155]

Microparticles Rat Ectopic bone formation [156]

Hydrogel (injectable) Rabbit Maxillary sinus floor augmentation [157]

Fibrin Hydrogel (injectable) Rat Calvarial bone defect [160]
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Table 2b

Summary of animal studies involving rhBMP-2 incorporated with synthetic polymers such as polylactic acid
(PLA), polyglycolic acid (PGA), poly(DL-lactide-co-glycolide) (PLGA), poly(propylene fumarate) (PPF), and
poly(epsilon-capralactone) (PCL) alone, with a natural polymer, or modified with polyethylene glycol (PEG)
and dioxanone (DX).

Synthetic Polymers & rhBMP-2

Polymer Carrier Animal Model Defect Model Ref.

PLA-PEG Pellet Mouse Ectopic bone formation [193,195,197]

Injected; Polymeric Strip Canine Anterior thoracic spinal fusion; Lumbar intertransverse
fusion

[199,200]

PLA-DX-PEG Pellet Rat Cranial bone defect [198]

Implant coating Canine Femoral bone defect [203]

PDLLA Titanium cage coating Sheep Anterior cervical discectomy and fusion [201]

PGA Mesh Rat Calvarial bone defect [207]

PLGA Microsphere Rat Calvarial bone defect [210,211]

PLGA; alginate Cylindrical scaffold Rat Femoral bone defect [220]

PLGA-PEG Disk Rabbit Cranial bone defect [222]

PLGA/PPF Embedded microspheres Goat Ectopic bone formation [223]

PCL; collagen Disk Rat Femoral bone defect [231]

PCL Honeycomb porous scaffold Rabbit Ulna bone defect [232]
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Table 2c

Summary of animal studies involving rhBMP-2 incorporated with ceramics such as hydroxyapatite (HAp), β-
tricalcium phosphate (β-TCP), and bisphasic calcium phosphate (BCP).

Ceramics & rhBMP-2

Ceramic Carrier Animal Model Defect Model Ref.

HAp Disk Rat Ectopic bone formation [166]

Mesh Rat Postereolateral spinal fusion [167]

Block Rabbit Unilaterial radii defect [168]

β-TCP Particulate Canine Postereolateral lumbar interbody fusion [173]

Cement Sheep Trepanation defect [174]

BCP Block Nonhuman primate Posterolateral lumbar intertransverse fusion [178]

Disk Rat Calvarial bone defect [179]
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