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ABSTRACT

Cytosines in genomic DNA are sometimes methylated.
This affects many biological processes and diseases.
The standard way of measuring methylation is to use
bisulfite, which converts unmethylated cytosines to
thymines, then sequence the DNA and compare it to
a reference genome sequence. We describe a method
for the critical step of aligning the DNA reads to the
correct genomic locations. Our method builds on
classic alignment techniques, including likelihood-
ratio scores and spaced seeds. In a realistic
benchmark, our method has a better combination of
sensitivity, specificity and speed than nine other
high-throughput bisulfite aligners. This study enables
more accurate and rational analysis of DNA methyla-
tion. It also illustrates how to adapt general-purpose
alignment methods to a special case with distorted
base patterns: this should be informative for other
special cases such as ancient DNA and AT-rich
genomes.

INTRODUCTION

Methylation of cytosine at position 5 (5meC) regu-
lates many aspects of human biology, including embryonic
development, transcription, chromatin structure,
X-chromosome inactivation, genomic imprinting and
chromosome stability (1). It is no less important in
plants, where it affects transcription, replication, DNA
repair, gene transposition and cell differentiation (2).
Fascinatingly, DNA methylation is involved in plasticity
and memory in nervous systems (3). Abnormal DNA
methylation is characteristic of many diseases, including
Alzheimer’s (4) and cancer (1). Epigenetic cancer treat-
ments are being explored, which aim to restore normal
methylation patterns (5). In short, cytosine methylation
has broad and deep biomedical importance.

Improvements in high-throughput DNA sequencing
have recently enabled the measurement of methylation
rates at cytosines throughout a genome. As sequencing
technology continues to develop, it will likely be applied
to methylome analysis in hundreds of cell types, thousands
of organisms and many thousands of people in case–
control studies of diseases. Thus, establishment of
accurate analysis methods is timely.
The standard way of measuring 5meC is to treat the

DNA sample with bisulfite, which converts unmethylated
cytosines to uracils (and ultimately thymines after poly-
merase amplification). The DNA is then sequenced and
compared with a reference genome, so that c:c matches
and t:c mismatches indicate methylated and
unmethylated cytosines, respectively.
There are actually two variants of bisulfite sequencing:

the first produces sequences with c!t conversions only,
and the second also produces reverse-complements ex-
hibiting g!a conversions. This study considers the first
variant only. (The second is discussed in the
Supplementary Text).
The two critical analysis steps are as follows: aligning

the DNA reads to the genome and then inferring methy-
lation rates. Both steps are non-trivial, because sequencers
produce short reads with errors, genomes are rife with
similar repeats and duplications, and because the
sampled DNA may differ from the reference genome
due to polymorphisms. This study considers only the
alignment step, because the two steps are largely inde-
pendent and best optimized separately.
Sequence alignment has been studied for several

decades, and hundreds of aligners have been published.
Classic ‘medium-throughput’ methods such as Blast use
statistical model likelihood ratios to score alignments,
and a sensitive seed-and-extend approach to find them
(6). More recently, high-throughput sequencing has
spurred a new class of aligners, which are typically
based on finding matches with low edit distance (i.e. few
differences) very quickly. On the other hand, we have de-
veloped an aligner called Last, which is similar to Blast
except that it achieves high speed by using adaptive
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seeds (7). By building on the classic techniques, Last can
find alignments with high sensitivity as well as speed (8).
In this study, we first describe how to use Last for

aligning bisulfite-converted DNA reads to a genome. We
then set up a benchmark to test the accuracy and speed of
alignment. This benchmark models polymorphisms and
sequencing errors in a more realistic way than many
previous tests of high-throughput aligners. Finally, we
test Last alongside all other high-throughput bisulfite
alignment methods that we could find.

MATERIALS AND METHODS

Score matrix

Traditional alignment methods use a score matrix, which
assigns a positive or negative score for aligning any pair of
bases (9). An example is shown in Table 1. The scores are
actually log likelihood ratios:

Sxy ¼ T ln
Mxy

AxBy

� �

Here, Ax is the probability (abundance) of base x in the
reference sequence, and By is the probability of y in the
query sequence. Mxy is the probability of x aligned to y in
a true alignment, and T is an arbitrary scale factor.
Bisulfite converts a fraction F of cytosines to thymines.

This alters By and Mxy, as follows:

B0c ¼ ð1� FÞBc M0xc ¼ ð1� FÞMxc

B0t ¼ Bt þ FBc M0xt ¼Mxt þ FMxc

Thus, we ought to use a suitably adjusted score matrix.
In this study, we assume that Ax&By& 1/4, and that:

Mxy �
0:99=4 if x ¼ y;
0:01=12 if x 6¼ y:

�

This is suitable for alignments with 99% identity. (We also
tried settings suited to �99.9% identity: Supplementary
Figure S1.)
We assume that F& 1, because typically most cytosines

are unmethylated and thus converted. Finally, we set
T& 10/ln(10), which is the same scale as ‘phred’ scores
(10). We used the score matrix in Table 1, which approxi-
mately fits these settings.

Using sequence quality data

Current sequencing technologies have significant error
rates, and they often provide an error probability for
each base. We previously showed how to combine these
error estimates with the score matrix, to obtain
generalized likelihood ratio scores (11). Since then, we
have improved that method so as to allow for unequal
base frequencies (Supplementary Text).

Seeding

Last starts by finding seeds (crude initial matches). It uses
subset seeds, which are exact matches using reduced al-
phabets (7,12). It is possible to use a different reduced
alphabet at each position of the match. The choice of
which alphabet to use at each position is called the ‘seed
pattern’.

In this study, we used the following seed pattern:
111111110. This means that, in the first 8 positions we
used a three-letter alphabet where c and t are considered
equivalent, whereas in Position 9 we used a one-letter
alphabet where all four bases are considered equivalent.
(The seed length is not fixed: if it is shorter than 9 then a
prefix of the pattern is used, if it longer than 9 the pattern
repeats.) The purpose of the ‘0’ is to increase sensitivity
(13). We did not systematically optimize the seed pattern,
but we tried a few other patterns (Supplementary Figure
S3 and S4).

Last details

Last has three parts. First, lastdb constructs an index of
the genome. Then, lastal finds alignments, possibly
more than one alignment per DNA read. Finally,
last–map–probs resolves multi-mapping reads, by
estimating the probability that each alignment is the
correct one (11). Only alignments with low mismap prob-
ability (e.g. �0.01) are retained.

Benchmark data

The test data consist of computer-simulated DNA reads
from chromosomes 1–22 and X of the human genome
(hg19).

First, we randomly assigned a methylation rate to every
cytosine in both strands of each chromosome. Each
cytosine received one of five possible methylation rates
(Table 2). A methylation rate of (say) 0.2 means that
this cytosine is methylated in 20% of the genomes from
which the DNA sample was obtained. In our simulation,
the probability of assigning each methylation rate
depended whether or not the c was followed by a g
(Table 2).

Second, we randomly simulated polymorphisms in the
genome, by picking real alleles based on their frequencies,
obtained from snp132Common.txt from the UCSC
Genome Database (14,15). These include not only substi-
tutions, but also insertions and deletions. Some of the in-
sertions are large enough that it is possible for a DNA
read to come entirely from sequence that is absent in the
original genome.

Table 1. Score matrix for aligning bisulfite-converted DNA reads to

a reference genome sequence

a c g t

a 6 �18 �18 �18
c �18 6 �18 3
g �18 �18 6 �18
t �18 �18 �18 3

Columns refer to bases in the read, and rows refer to bases in the
genome.
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Third, we extracted 1 million random fragments, of
length 87 (Dataset A) or 85 (Dataset B), from the poly-
morphed genome. We used these lengths in order to match
two real datasets (SRR019072 and SRR094461).

Next, we simulated bisulfite conversion, by changing
each cytosine to thymine with probability: 0.99� (1–
methylation rate). This simulates the typical conversion
efficiency of �0.99.

Finally, we simulated sequencer errors, according to the
per-base error probabilities of the first 1 million reads in
SRR019072 (Dataset A) or SRR094461 (Dataset B). The
error distributions are shown in Figure 1.

Some aspects of this simulation are more intricate than
necessary for testing alignment, but would be useful for
testing methylation rate inference. The test data and simu-
lation programs are available at: http://www.cbrc.jp/
dnemulator/.

Benchmark measurements

Each aligner produces at most one alignment per DNA
read. We define an alignment as ‘correct’ if at least one of

its columns is exactly correct. (For gapped alignments, it is
possible that some columns are correct and others are
not).
As far as possible, we measured the CPU time of the

alignment step only, excluding index-building, etc. For the
methods that wrap Bowtie and Gsnap, we just recorded
the time for the aligner itself.

Other alignment methods tested

We tested Bismark (16) and BS_Seeker (17), which both
use Bowtie (18) as the alignment engine. We also tested the
Bowtie recipe of Lister et al. (19). In addition, we tested
MethylCoder (20), using Gsnap (21) as the alignment
engine. (MethylCoder can also use Bowtie, but we did
not test that.) We also tested Brat (22), Bsmap (23),
Novoalign (www.novocraft.com), Pash (24) and Rmap
(25). Versions and settings are detailed in the
Supplementary Text.

Repeat data

Repeat annotations were obtained from the files
rmsk.txt and genomicSuperDups.txt from UCSC
(version hg19) (15).

RESULTS

Performance of alignment methods on the benchmark

The sensitivity, error rate and CPU time of each method is
shown in Figures 2 and 3.
For Last, we tried varying two parameters: max seed

frequency (m) and max mismap probability. As expected
(7), m smoothly trades accuracy for speed. (Higher m in-
creases accuracy but decreases speed). Also as expected,
the mismap parameter smoothly trades sensitivity for
error rate. (If we accept alignments with higher mismap
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Figure 1. Distribution of sequence quality (phred) scores for the two datasets. (Phred score = �10log10 error probability.) Each dataset contains 1
million DNA reads of length 87 (A) or 85 (B).

Table 2. Simulated cytosine methylation rates, and their probabilities

Methylation
rate

Probability
in cg context

Probability in
non-cg context

Bisulfite
conversion rate

�0 0.1 0.96 0.99
�0.1 0.1 0.01 0.9
�0.2 0.1 0.01 0.8
�0.5 0.1 0.01 0.5
�1 0.6 0.01 0

Each cytosine was randomly assigned one of five possible methylation
rates. The probability of choosing each rate depended on whether the c
was followed by a g. [Strictly speaking, the simulation assigned bisulfite
conversion rates, not methylation rates. Conversion rate = 0.99 � (1–
methylation rate).]
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probability, we get higher sensitivity and also more
errors.)
Novoalign also estimates a mismap probability, which

trades sensitivity for error rate in a similar fashion to Last.
In addition it has a t parameter, which trades sensitivity
for speed. For a given speed, Last is much more sensitive
than Novoalign. On the other hand, Novoalign consist-
ently enables very low error rates.
Bismark exhibits high sensitivity, and for Dataset B it

achieves the same accuracy for a given run time as Last.
On the other hand, we could not discern a way to trade
Bismark’s sensitivity for lower error rate.
BS_Seeker was the fastest method, and it achieved mod-

erately good accuracy.

Memory usage

The methods vary several-fold in memory usage, and Last
uses more than most (Table 3). (It has parameters that
trade memory for speed or accuracy, which we did not
test.) A few dozen gigabytes is increasingly affordable,
so this is not a severe limitation for any method.

Parameter optimization

For most of the methods, we tried multiple parameter
settings (Supplementary Datasets 1 and 2), but only the
best results are shown here. This possibly overstates the
performance of some methods. For example, Bismark
works much better after trimming bases with phred
score <3 than trimming bases <10 or not trimming, but
we discovered this only empirically. In other words, the
performance of some methods is sensitive to non-obvious

parameter changes. Furthermore, it is not clear that the
same parameters would be optimal for different data (e.g.
different read lengths and error patterns).

On the other hand, we did not consciously optimize
Last on the test data. In fact, we discovered some
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Figure 2. Accuracy of various methods for aligning bisulfite-converted DNA reads to the reference genome, for datasets (A) and (B). The sensitivity
is the percentage of total reads that were correctly aligned. The error rate is the percentage of aligned reads that were wrongly aligned. For Last and
Novoalign, each line shows the effect of varying the max mismap probability.

gsnap/methylcoder
rmap
pash

brat m=1 f=36 q=3
brat m=4 f=64 q=0
brat m=0 f=36 q=3

novoalign
novoalign t=90
novoalign t=60

bsmap
last gapped (m=10)

bowtie/bismark
bowtie/lister
last m=200
last m=50
last m=10

bowtie/bs_seeker

CPU time (minutes)

10 20 50 200 500 2000

dataset A
dataset B

Figure 3. Run times of various methods for aligning bisulfite-converted
DNA reads to the reference genome.
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parameters that improve it slightly (Supplementary
Figures S1–S4), but we do not use these parameters in
the main figures.

Avoiding biased methylation estimates

Our alignment procedure with Last risks a kind of bias.
Suppose that one genomic cytosine is methylated in 50%
of genomes in our sample, so that 50% of the reads
covering it have c and 50% have t. It is possible that
the reads with c are easier to align, so we align more of
them. This will make the methylation rate appear >50%.
This bias is not specific to Last (25).

We can avoid this bias by computationally converting
all cs in the reads to ts, prior to alignment. This is
expected to harm alignment accuracy: in the example
above, all the reads would become harder to align.

Fortunately, this procedure had little effect in our tests:
Figure 4 shows the accuracy with (blue lines) and without
(black lines) computational c!t conversion.
We mention in passing a useful trick: convert the cs to

lowercase ts, with all other letters uppercase. Our align-
ment procedure treats lowercase identically to uppercase,
but preserves it in the output, allowing us to see which
bases were converted.

Effect of gaps

Last can run in either gapless or gapped mode. Gapped
alignment had only slightly higher accuracy (Figure 4), as
expected since gaps are rare, but significantly lower speed
(Figure 3). Unfortunately, we suspect that gaps are less
rare in real data, so the relevance of this result is unclear.
Among the other methods, only Gsnap, Novoalign and
Pash allow gaps.

Effect of using sequence quality data

In order to learn which aspects of Last contribute to its
performance, we tried it without using sequence quality
data (i.e. pretending that all bases have zero error prob-
ability). This decreased its accuracy, but not greatly
(Figure 4). In one sense this result is encouraging,
because in our benchmark the quality data are perfectly
accurate, but in real data it might not be. (On one hand,
quality data are often made accurate by calibration. On
the other hand, if the quality data are random, calibration
cannot make it informative.) Quality data would likely
have more effect if there were more phred scores in the
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Figure 4. Accuracy of Last, with various parameter settings, for aligning bisulfite-converted DNA reads to the reference genome, for datasets (A)
and (B). The black lines in this figure are identical to the solid black lines in Figure 2.

Table 3. Peak memory usage for the alignment step of the tested

methods

Method Memory (GB)

Bowtie <3
Brat m=0 22
Brat m>0 12
Bsmap 8
Gsnap 10
Last 15
Novoalign 13
Pash 11
Rmap <1
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range 5–15 or so, i.e. not too high and not so low that the
bases are near-random.

Effect of spaced seeds

We also ran Last with contiguous seeds, i.e. seed pattern
‘1’, which means allowing ct mismatches in all positions
and no other mismatches. This decreased the accuracy
quite noticeably, but not so much as to be the main
factor in Last’s performance (Figure 4).
We believe that the key factor behind Last’s perform-

ance is the use of a seed-and-extend strategy with adaptive
seeds.

Effect of genomic repeats

To better understand the impact of alignment accuracy, it
is important to consider not only the genome average
(Figure 2), but also the accuracy in problematic loci, i.e.
repeats (Figure 5).
About 6% of reads came from within primate-specific

LINE-1 (L1P) elements. For these reads, Last and

Novoalign have roughly equal accuracy for a given run
time. Bismark also performs well, especially for Dataset B.

About 5% of reads came from within segmental dupli-
cations. For these reads, Last is more accurate than
Novoalign for a given run time.

About 1% of reads came from within young Alu (AluY)
elements. For these reads, Novoalign clearly performs
best.

Overall, it is possible to achieve non-negligible sensitiv-
ity (30–50%), with error rates <1%, even in these recently
duplicated repeats.

DISCUSSION

Comparison of bisulfite alignment methods

Overall, our results strongly suggest that Last is the best
high-throughput aligner for bisulfite-converted DNA.
However, there is a suspicious pattern in bioinformatics
publications of the authors’ own method performing best.
This could arise because the testers use the other methods
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Figure 5. Accuracy of various methods for aligning bisulfite-converted DNA reads to recent duplications in the genome. The upper row shows
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in suboptimal ways, or over-fit their own method to the
benchmark. To mitigate the first danger, we contacted the
authors of the other methods, described the benchmark
and checked whether we were using their method appro-
priately. As for over-fitting, the only aspects of Last we
changed for this study that affect the results are the score
matrix and the seed pattern, neither of which were fitted to
the benchmark. Nevertheless, an independent test would
be reassuring.

It must also be emphasized that the other aligners are
being improved, indeed newer versions were steadily ap-
pearing as we finalized this study.

Benchmark

Our conclusions depend critically on the validity of the
benchmark. The benchmark used here simulates poly-
morphisms and sequencing errors based on real data, so
that the error rates vary both within and between reads. In
contrast, some previous tests of high-throughput aligners
have used uniform random mutations, which is less real-
istic, and we suspect it favors edit-distance-centric
aligners.

It is also important to consider sensitivity, error rate and
speed in combination, not separately. This is because some
aligners can trade speed for accuracy, or sensitivity for
fewer errors. Thus, it is not very meaningful to measure
‘sensitivity’, instead we must measure ‘sensitivity for a
given error rate and speed’ or the like.

It may be tempting to assess aligners on real data, where
the true answer is unknown, but we can measure the per-
centage of reads aligned and the run time. This is danger-
ous, because it is trivial to align 100% of reads infinitely
fast if correctness is not considered.

Our benchmark is not perfectly realistic. For one thing,
real DNA reads often have non-genomic adapter se-
quences at the ends. For some aligners it is critical to
remove them first: e.g. the Bowtie/Lister method requires
the first 20 bases of the read to match the genome exactly.
Last, on the other hand, finds local alignments between
any part of the read and the genome, so it is robust to
adapters.

More importantly, real data will include DNA reads
from unsequenced regions of the genome, alternative
haplotypes, structural variants, contaminants and
probably other artifacts that we have not imagined.
These cast doubt, in particular, on the extremely low
error rates achieved by e.g. Novoalign: it only takes a
small percentage of confounding artifacts to overwhelm
an otherwise low error rate.

Potential countermeasures for such artifacts include
using a more stringent score matrix, and perhaps a
higher alignment score threshold (Supplementary Text).
It might also be worth flagging alignments of
low-complexity sequence (26). As food for thought, if a
read comes from a locus with different copy numbers in
the sampled and reference genomes, it is not clear what a
correct alignment would be.

Finally, our conclusions only apply to read lengths �85
with error patterns like those shown in Figure 1. We used
two datasets with somewhat different error patterns in

order to make the conclusions more robust. Of course
some sequencing technologies are very different, and
most are evolving.

Methylation rate inference and low-quality bases

Even if the reads are perfectly aligned, it is not completely
trivial to infer methylation rates. In general, one genomic
c will have several cs and ts (and as and gs) aligned to it,
each with a quality score, and we must allow for
sequencing errors and SNPs. This problem is no different
for Last than for any other aligner, so we can use inference
methods developed separately. The only caveat is that it
might be necessary to remove poor quality bases, if the
inference method does not take quality into account.

Possible enhancements

We have assumed the bisulfite conversion rate F& 1, but
it is known that cytosines are more frequently methylated
in certain contexts, especially in cg context. Alignment
accuracy could possibly be improved by incorporating
sequence context in the likelihood-ratio scoring [see the
Supplementary Text for contexts cg, chg (h in non-g),
and chh].
Another enhancement is probabilistic alignment, which

optimizes the accuracy of each column within an align-
ment (8). This will have a significant effect when gaps
are common, as is the case for some sequencing
technologies.
Paired-end or mate-paired reads help disambiguate

alignments to repetitive regions. Different aligners use dif-
ferent algorithms for such data, which are built on simpler
algorithms for unpaired alignment. This study focused on
unpaired alignment, to avoid the confounding issue of dif-
ferent pairing algorithms, and because better unpaired
alignment contributes to better paired alignment.

Beyond bisulfite sequencing

Distorted base patterns occur in other kinds of data too.
Ancient DNA exhibits cytosine to uracil conversions (27).
Some organisms have highly biased base abundances, for
example �80% a+t in Plasmodium and Dictyostelium.
We hope this study will be instructive for adapting align-
ment parameters to these and other non-standard kinds of
sequence data. (We must point out there is at least one
sophisticated aligner specialized for ancient DNA: https://
bioinf.eva.mpg.de/anfo/).
A major reason for Last’s effectiveness is that it builds

on decades of classic alignment research. This makes it
versatile and perhaps especially promising for ‘unusual’
alignment problems. Unfortunately, adapting Last (or
any other aligner) is not straightforward: for example,
the danger of biased methylation estimates is not immedi-
ately obvious. For this kind of reason, any new type of
sequence data may require expert design of an alignment
protocol. Moreover, each type of data may have
special-case tasks, like inferring methylation rates. Thus
there is an important place for specialized tools that
‘wrap’ alignment methods; like Bismark, BS_Seeker and
MethylCoder.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Text (including Supplementary Figures
1–4 and Supplementary Datasets 1–2).
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