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ABSTRACT

Numerous examples exist of how disrupting the
actions of physiological regulators of blood cell de-
velopment yields hematologic malignancies. The
master regulator of hematopoietic stem/progenitor
cells GATA-2 was cloned almost 20 years ago,
and elegant genetic analyses demonstrated its es-
sential function to promote hematopoiesis. While
certain GATA-2 target genes are implicated in
leukemogenesis, only recently have definitive
insights emerged linking GATA-2 to human hemato-
logic pathophysiologies. These pathophysiologies
include myelodysplastic syndrome, acute myeloid
leukemia and an immunodeficiency syndrome
with complex phenotypes including leukemia. As
GATA-2 has a pivotal role in the etiology of human
cancer, it is instructive to consider mechanisms
underlying normal GATA factor function/regulation
and how dissecting such mechanisms may reveal
unique opportunities for thwarting GATA-2-
dependent processes in a therapeutic context. This
article highlights GATA factor mechanistic prin-
ciples, with a heavy emphasis on GATA-1 and
GATA-2 functions in the hematopoietic system, and
new links between GATA-2 dysregulation and human
pathophysiologies.

INTRODUCTION

Drilling into mechanisms governing the control of hemo-
globin synthesis led to the discovery in the 1980s of a
new class of transcription factors containing a highly

conserved Cys4 dual zinc finger DNA-binding module.
These proteins were deemed GATA factors based on the
nucleotide composition of their cognate DNA-binding
motif (1). The discovery of GATA-1 was followed by
the cloning of five additional mammalian GATA factors
(GATA-2-6) (2-9). Historically, GATA-1, GATA-2 and
GATA-3 are deemed the hematopoietic GATA factors
(10), while GATA-4, GATA-5 and GATA-6 are termed
the cardiac GATA factors (11,12). Extensive biological
and genetic analyses have revealed exceptions to this gen-
eralization, including expression of the hematopoietic
GATA factors in endothelium (9,13,14), breast and
prostate (15,16) and neurons (17,18).

Loss-of-function analyses established the essential
GATA-1 functions to promote erythrocyte, megakaryocyte,
mast cell and eosinophil development (19-25) and GATA-3
functions to promote specific aspects of T-cell lympho-
poiesis (26,27). GATA-2 is uniquely essential for the
genesis and/or function of hematopoietic stem/progenitor
cells (28-30). Gata2-null mouse embryos are severely
anemic and die at approximately embryonic day (E) 10
(28). Despite the critical GATA-2 requirement for the for-
mation of all lineages of blood cells, some primitive erythro-
blasts exist in Gata2-null embryos. The absence of these cells
in Gatal”" —Gata2™~ compound mutants indicate that
GATA-1 and GATA-2 can function redundantly in the
genesis and/or survival of primitive erythroblasts (31). The
GATA-2 requirement for the control of hematopoietic
stem/progenitor cells is dose dependent, as Gata2"’~ HSCs
are functionally impaired, even though the mice are viable
(30,32). GATA-2 overexpression in murine bone marrow is
also inhibitory for hematopoiesis (33). While this result has
potentially important pathophysiological implications,
transcription factor overexpression studies are difficult to
interpret, given ample opportunities for overexpressed
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proteins to aberrantly engage cellular regulatory factors. As
GATA-2 is also expressed in endothelial cells, placenta,
prostate, pituitary and select neurons, it will be instructive
to compare GATA-2 mechanisms in hematopoietic versus
non-hematopoietic systems, although this is currently a
virgin territory. Clearly, many unanswered questions
remain regarding cell type-specific GATA factor mechan-
isms and biological actions.

GATA FACTOR MECHANISMS: FUNDAMENTAL
PRINCIPLES

The purification and cloning of GATA-1 (34,35) ushered
in studies that elucidated mechanistic principles
governing GATA factor function (36). The zinc finger
residing closest to the carboxy-terminus (C-finger)
mediates sequence-specific DNA binding to WGATAR
motifs (37,38), while the zinc finger proximal to
the amino-terminus (N-finger) mediates an important
protein—protein interaction with the nine zinc finger-
containing coregulator Friend of GATA-1 (39-42). The
N-finger may also stabilize DNA binding in certain
contexts (43). Additional interactions involving the zinc
fingers have been documented (44,45), including binding
to the myeloid transcription factor PU.1 (46), the erythroid
transcription factor ELKF (47) and the mediator complex
component Medl (48). Much less is known about the
structural basis and biological implications of these inter-
actions. The broad GATA-1 N-terminus enhances en-
dogenous target gene activation in a context-dependent
manner (49). Missense mutations in the N-terminus
trigger the usage of an alternative translational start site,
yielding a mutant that is strongly associated with the de-
velopment of transient myeloproliferative disease and
acute megakaryoblastic leukemia (50-52).

Despite approximately 7 million GATA motifs in the
human genome, all capable of forming high-affinity
complexes with GATA factors and naked DNA in vitro,
GATA-1 and GATA-2 occupy only 0.1-1% of these
motifs in erythroblasts, based on chromatin immunopre-
cipitation coupled with massively parallel sequencing and
real-time PCR validation (14,53,54). While the molecular
determinants for this exquisite discrimination are not fully
understood (55), FOG-1 facilitates GATA-1 occupancy at
a subset of chromatin sites (56,57). Genome-wide analysis
of cis-elements residing at endogenous GATA-1 and
GATA-2 occupancy sites led to refinement of the GATA
consensus from WGATAR to WGATAA. However, the
percent of total WGATAA motifs occupied remains very
low. Beyond GATA motif sequence composition, the
most rudimentary determinant of chromatin occupancy,
diagnostic patterns of histone posttranslational modifica-
tions demarcate occupied versus unoccupied sites, both
containing  conserved GATA  motifs (53,58-60)
(Figure 1, Principle 1). In principle, the unique epigenetic
signature of occupied sites may represent primed chroma-
tin structures recognized by GATA-1 as a pivotal deter-
minant of site selection. Alternatively, the signature may
arise as a consequence of GATA-1 chromatin occupancy,

followed by recruitment of GATA-1 coregulators that
modify chromatin surrounding the occupancy site.

GATA-1 chromatin occupancy leads to either activa-
tion or repression of target genes, both of which can be
mediated by FOG-1 (36) (Figure 1, Principle 2). One mode
of FOG-1 function involves interaction of its N-terminus
with the NuRD chromatin remodeling complex (61-63),
which can mediate both repression and activation.
GATA-1 utilizes FOG-1 to induce higher order chromatin
loops, based on chromosome conformation capture (3C)
data (64—66). In principle, such loops can mediate activa-
tion or repression, dependent upon the physical relation-
ship between the loop and functional features of a gene
and the precise nature of the structure formed. GATA-1
also recruits the chromatin remodeler BRGI to chroma-
tin, which can mediate higher order looping (67-69).

Additional GATA-1 mechanisms exist, including
FOG-1-independent activation and repression (41,70,71),
although these mechanisms remain poorly understood.
GATA-1 commonly co-localizes on chromatin with the
stem cell leukemia/T-cell acute lymphocytic leukemia-1
(Scl/TAL1) protein (58,59,72), and the co-localization
commonly correlates with transcriptional activity
(54,58,72) (Figure 1, Principle 3). Scl/TALI is a master
regulator of hematopoiesis that binds E-boxes and
non-DNA-binding components including LMO2, LDBI,
ETO2, and single-stranded DNA-binding proteins (73—
79). In the context of naked DNA, optimal composite
elements that support complex formation contain an
E-box, a downstream GATA motif, and an 8-bp spacer
(76). The 8-bp spacing is crucial for GATA-2-dependent
enhancer activity in a transient transfection assay using
cells expressing endogenous GATA-2 (58). However,
GATA-1 and Scl/TAL1 also co-localize at certain chro-
matin sites lacking composite elements (59,72). Notably,
the additional protein constituents of the complex
modulate its transcriptional regulatory activity in a
context-dependent manner (80) and are linked to the de-
velopment and/or progression of human hematologic
malignancies (81-84). Sophisticated ChIP-seq analyses in
the HPC-7 multipotent hematopoietic cell line
demonstrated that additional components co-localized
with GATA-2 and Scl/TALTI (85). This analysis revealed
1015 regions of 200 bp or less in which Scl/TAL1, LYLI,
LMO2, GATA-2, ERG, FLI-1 and RUNXI occupancy
was detected. As each of these factors is likely to engage
additional important partners, considerably more work is
required to understand the structure/function of these
higher order chromatin complexes containing multiple
master regulators of hematopoiesis.

GATA factor interplay appears to be a common
mechanism for controlling developmental processes
(36,86). During the development of erythrocytes,
GATA-1 displaces GATA-2 from chromatin sites at
target genes, and this GATA switch (defined as an
exchange of different GATA factors at a chromatin site)
is tightly coupled to an altered transcriptional output
(53,87-90) (Figure 1, Principle 4). GATA switches were
first described at the Gata2 locus, at which GATA-1
binding instigates repression, thus explaining the differen-
tial GATA-1 and GATA-2 expression pattern during
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Figure 1. GATA factor mechanistic principles. The models depict mechanistic principles derived from studies of GATA-1 and GATA-2. While the
fundamental nature of these principles is likely to be shared by other GATA factors, additional GATA factor-specific mechanistic permutations are
expected. Principle 1: GATA factors occupy a very small percent of the WGATAA motifs in a genome (<1%), suggesting that crucial mechanisms
exist that control the discrimination among these highly abundant motifs. However, such mechanisms are not firmly established. The model depicts
the occlusion of select GATA motifs, thus creating an obligate requirement for chromatin remodeling/modification reactions to increase access of the
WGATAA residues required for GATA factor binding and/or to selectively occlude the vast majority of sites. At certain sites, FOG-1 (56,57) and
GATA-1 acetylation (95) enhance chromatin access. Presumably, a host of regulatory factors mediate the essential process of establishing/main-
taining accessible and occluded sites. Principle 2: GATA factors activate and repress target genes via multiple mechanisms, including with or without
FOG-1 (36). Presumably, this mechanistic diversity reflects the specific chromatin architecture at a genetic locus, the subnuclear environment in which
the locus resides and the regulatory mileau characteristic of the specific environment. Principle 3: GATA-1 and GATA-2 commonly co-localize with
Scl/TALI, another master regulator of hematopoiesis (96), at chromatin sites. The model illustrates GATA factor and Scl/TALI occupancy of a
composite element consisting of an E-box and a WGATAA motif, which was originally described by Wadman ez a/. (76). Similar to the description
above, only a very small percentage of composite elements are occupied by GATA factors in cells (53,58). As co-localization does not require the
E-box (72), there is much to be learned about the biochemical nature of the GATA factor and Scl/TALI interaction. However, the co-localization
measured by ChIP often correlates with transcriptional activity (54,58,72). Principle 4: GATA switches are defined as a molecular transition in which
one GATA factor replaces another from a chromatin site, which is often associated with an altered transcriptional output. The GATA switch
depicted reflects that occurring at the Gata2 locus during erythropoiesis, in which GATA-1 displaces GATA-2 from chromatin, which rapidly
instigates repression (87). Context-dependent GATA switches may either activate or repress transcription and, in certain cases, may sustain the
original transcriptional output (36).
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erythropoiesis  (36,87). GATA-1 utilizes FOG-1 to propose that they represent common devices to change

displace GATA-2 from chromatin (56). The capacity of
FOG-1 to bind the NuRD complex is required for the
GATA switch, as GATA switches were impaired in a
knock-in mouse strain expressing FOG-1 defective in
NuRD complex binding (62). Ectopic FOG-1 expression
in mast cell progenitors induces a GATA switch in which
GATA-1 replaces GATA-2 from the —2.8kb GATA
switch site of the Gata2 locus, which was linked to
Gata? repression and generation of erythroid,
megakaryocytic and granulocytic progeny (97). During
the differentiation of trophoblast giant cells, GATA-2 dis-
places GATA-3 at Gata2, which is associated with tran-
scriptional activation (91). Though GATA switches have
not been studied in many systems, it is attractive to

transcriptional activity in diverse biological contents.
Two aspects of the GATA switch paradigm merit
careful consideration. First, erythroid GATA switches
inform us that different GATA factors can exert qualita-
tively distinct functions through an identical chromatin
site; one GATA factor mediates target gene activation,
while the other confers repression or vice versa. Thus,
while different GATA factors share certain biochemical
attributes, including their highly conserved zinc finger
module (92), intrinsic differences underlie the qualitatively
distinct activities. A notable difference is the relative high
and low stabilities of GATA-1 and GATA-2, respectively
(93,94). As proteasome inhibition stabilizes GATA-2 and
blocks GATA switches, the low stability appears to be an
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important determinant of GATA switches (93). Another
important implication of the GATA switch paradigm is
that GATA switches and the requisite factors/signals that
control the switches represent a novel tool to control de-
velopmental processes. Since certain non-hematopoietic
cell types can express multiple GATA factors, it would
not be surprising if the erythroid GATA switch mechan-
ism were applicable to non-hematopoictic contexts.
Despite major progress in elucidating GATA factor mech-
anistic principles, many questions remain unanswered re-
garding how cellular signaling pathways dynamically
control GATA factor activities and GATA factor-
dependent biological processes.

In summary, GATA factor mechanistic principles
(Figure 1) include: (1) GATA factors target a small
subset of chromatin sites containing a cis-element with
the consensus sequence WGATAA; (2) GATA-1 activates
or represses target genes in a FOG-1-dependent or -inde-
pendent manner; (3) GATA-1 and GATA-2 commonly
co-occupy chromatin sites with Scl/TAL1, and members
of the Scl/TAL1 complex promote or suppress GATA
factor-regulated transcription in a context-dependent
manner; and (4) GATA switches can involve qualitatively
distinct activities of different GATA factors through an
identical chromatin site.

REGULATING GATA FACTORS
POSTTRANSLATIONALLY

While multiple posttranslational modifications are
implicated in regulating GATA factor function, pro-
gress on defining the respective mechanisms does not
seem to be commensurate with the level of activity in
the field. Common themes have not emerged regarding
how posttranscriptional mechanisms regulate different
GATA factors. Furthermore, the precise impact of most
posttranslational modifications on GATA factor
activities, including chromatin occupancy, coregulator re-
cruitment, GATA switches and higher order chromatin
transitions at endogenous loci is unknown.

GATA-1 harbors seven serines that can be
phosphorylated in cultured cells (98). Six of these serines
(S26, S49, S72, S142, S178 and S187) reside in the
N-terminal region, while another (S310) is near the
C-finger. S72, S142 and S310 are conserved among
multiple species. Whereas six serines in the N-terminal
region are constitutively phosphorylated, S310 phosphor-
ylation is elevated upon dimethyl sulfoxide (DMSO)-
induced differentiation of mouse erythroleukemia (MEL)
cells (98). Substitution of all seven serines with alanines
does not affect GATA-1 binding to naked DNA or trans-
activation activity in a non-erythroid cell transient trans-
fection assay (98). S310 resides in the region implicated in
DNA bending, based on GATA-1 C-finger peptide
binding to DNA (38), but S310 mutations do not affect
DNA bending (98). Though mutation of S310 blocks fetal
liver erythroid progenitor cell maturation (99), mice
bearing alanine substitutions at S72, S142 and S310
exhibit a normal phenotype, save moderately decreased
erythroid burst-forming unit (BFU-E) and erythroid

colony-forming unit (CFU-E) in bone marrow (100).
Phosphorylation of these residues is therefore either
not essential for murine erythropoiesis or undefined
mechanisms compensate for loss of phosphorylation
sites in vivo. Treatment of K562 cells with hemin,
sodium butyrate (NaB) or N-acetylcysteine increases
GATA-1 phosphorylation and enhances DNA binding
in vitro, but the phosphorylated residues mediating this
effect are unknown (101). Mitogen-activated protein
kinase (MAPK)-mediated phosphorylation of S26 in
interleukin 3 (IL-3)-dependent Ba/F3 hematopoietic cells
increases expression of E4bp4 and Bcl-X; survival genes in
a transient transfection assay (102). Erythropoietin
induces S310 phosphorylation via phosphatidylinositol
3-kinase (PI3K)/Akt (103), and this enhances expres-
sion of TIMP-I, which encodes tissue-inhibitor of
metalloproteinase-1 (103). Since multiple kinases phos-
phorylate GATA-1, and GATA-1 phosphorylation is
regulated in distinct contexts, it is attractive to consider
how extracellular stimuli, such as hematopoietic cyto-
kines, instigate cellular signaling mechanisms that orches-
trate  GATA factor function in physiological and
pathophysiological states. However, the triple phosphor-
ylation site knockin mouse described above did not
reveal compelling insights in this regard.

IL-3 induces GATA-2 phosphorylation in hematopoi-
etic progenitor cell lines, which is dependent upon MAPK.
However, the phosphorylated residues were not described
(104). In transiently transfected COS cells, GATA-2
phosphorylation does not affect reporter gene activity
(104). Insulin treatment of HEK?293 cells stimulates
PI3-K/Akt signaling, which induces GATA-2 phosphoryl-
ation at serine 401 (105). Serine 401 phosphorylation was
reported to impair nuclear translocation, based on
overexpression of the mutant in HEK293 cells (105). In
addition, naked DNA-binding studies suggested that
serine 401 phosphorylation impairs GATA-2 DNA-
binding activity (105). Additional work is required to
discover the full ensemble of GATA-2 phosphorylation
sites, relevant kinases and functional consequences of
phosphorylation in distinct cell types in vivo.

Analogous to phosphorylation, posttranslational acetyl-
ation of the e-amino group of lysine represents a common
mode of controlling protein structure/function (106—109).
Acetylation of histone and non-histone proteins (110) is
mediated by a host of histone acetyltransferases (HATS) or
histone deacetylases (HDACs). Through recruitment to
chromatin via binding trans-acting factors (111), HATs
acetylate the N-terminal flexible tails of core histones in
nucleosomes at specific genetic loci. Molecular conse-
quences of histone acetylation include neutralizing the
lysine positive charge, which reduces the histone affinity
for DNA and increases cis-clement accessibility to their
cognate binding protein. Histone acetylation can also
increase chromatin accessibility by opposing higher order
chromatin folding (112). Finally, acetyl-lysine binds a
protein module termed a bromodomain (113), thus
creating a platform for protein recognition (114,115).

GATA factors contain multiple acetylation sites located
predominantly within their zinc finger regions. The
Adenovirus  ElA-binding region of the HATSs



CREB-binding protein (CBP) (116) and its paralog p300
(117) bind and acetylate the GATA-1 C-finger (118).
Studies with the CBP/p300 inhibitor ElA provided
evidence for an important role of CBP/p300 in erythroid
maturation and gene regulation (118). Two lysine-rich
motifs (amino acids 243-246 and 312-315) at the
C-terminus of the GATA-1 zinc fingers are acetylated
(119). GATA-1 acetylation facilitates transactivation in
transient transfection assays (119) and promotes
GATA-1 chromatin occupancy (95). Acetylated GATA-1
binds and recruits Bromodomain Protein 3 (BRD3) to
chromatin (120). As a small molecule inhibitor that antag-
onizes this interaction reduces GATA-1 and BRD3 chro-
matin occupancy and decreases erythroid maturation of
GI1E-ER4 cells, it will be interesting to further explore
the mechanistic and biological implications of this inter-
action. GATA-1 recruits CBP/p300 to chromatin sites,
including the B-globin LCR and Bmajor promoter, and
presumably this underlies GATA-1-dependent induction
of H3 and H4 acetylation at these sites (121-123).

GATA-2 is acetylated at K102 within the N-terminal
region and at multiple additional lysines within the
zinc finger module including K281, 285, 334, 336, 389,
390, 399, 403, 405, 406, 408 and 409 (124) (Figure 2).
p300-mediated acetylation of GATA-2 in hematopoietic
cells enhances its DNA binding and transactivation
activities in a transient transfection assay and inhibits
GATA-2-mediated growth inhibition (124). A GATA-2
mutant lacking four lysine acetylation sites, C-terminal
to the C-finger, was unable to rescue primitive erythropoi-
esis in GATA-2 morphant Xenopus tadpoles (125). In this
system, Ca’*calmodulin-dependent kinase-4 signaling
inhibits GATA-2 acetylation and function (125). Thus,
signal-dependent control of GATA-2 acetylation appears
to represent an important mode of regulating GATA-2
activity. HDAC3 and HDACS, but not HDACI, bind
GATA-2, suppressing GATA-2 transactivation activity
in HEK293T cells (126).

Certain posttranslational modifications involve the con-
jugation of small proteins, including ubiquitin and related
small ubiquitin-related modifier (SUMO) proteins, to re-
cipient proteins. The four vertebrate SUMO proteins are
~10kDa and structurally resemble ubiquitin (127,128).
While SUMO-2 and SUMO-3 share >90% sequence
identity, SUMO-1 is only 50% identical to SUMO-2/3
(129). SUMO-4 has sequence similarity to SUMO-2, but
endogenous SUMO-4 has not been detected (130).
Sumoylation, which covalently links SUMO to a lysine
within a target protein, is reversible and dynamically
regulated (131). Sumoylation involves an enzymatic
cascade, analogous to ubiquitination (132). The ElI
activating enzyme Aosl-Uba2 forms a thioester bond
with SUMO in an ATP-dependent reaction and subse-
quently transfers SUMO to the E2 conjugating enzyme
UbcY. An E3 ligase facilitates the transfer of SUMO to
its substrate and an isopeptide bond is formed between the
C-terminal glycine residue and the e-amino group of a
lysine residue of the acceptor protein. Conjugating
enzymes and SUMO-specific proteases regulate the level
of sumoylation. Six mammalian sentrin/SUMO-specific
protease (SENP) homolog (SENPI1-3, SENP5-7) have

Nucleic Acids Research, 2012, Vol. 40, No. 13 5823

been identified (133). Whereas polyubiquitination
triggers proteasome-mediated proteolysis, sumoylation
commonly controls protein—protein interactions by
regulating the activity, localization and stability of target
proteins, masking an existing binding site, occluding a site
for a distinct modification or providing an interface for
interaction with proteins containing a SUMO-interacting/
binding motif (SIM/SBM) (134).

GATA-1, GATA-2 and GATA-4 sumoylation have
been described (135-137). Though most sumoylation sub-
strates contain the consensus motif WKXE (138) (W, large
hydrophobic amino acid; X, any amino acid), some
SUMO targets lack this consensus, and experimental
analysis is required to determine whether a consensus is
a bona fide sumoylation site in vivo. GATA-1 is
sumoylated at K137, which is embedded in a sumoylation
consensus, within the N-terminal region. The SUMO
ligase PIASy can sumoylate K137 (136). Initial analyses
using a transient transfection assay in non-erythroid cells
and a Xenopus animal cap explant assay suggested that the
K137R mutant and wild-type GATA-1 have similar
activities (136). PIASy binds GATA-1 and was reported
to repress GATA-1-mediated transactivation via a K137-
independent mechanism in a transient transfection assay
with overexpressed factors. In genetic complementation
analysis in GATA-1-null erythroid precursor (G1E) cells
expressing GATA-1 fused with an estrogen-receptor
ligand-binding domain (ER-GATA-1) at near physio-
logical levels, K137 sumoylation promotes GATA-1-
mediated transcriptional regulation (both activation and
repression) at a subset of endogenous GATA-1 target
genes (139). SUMO-dependent genes are predominantly
FOG-1-dependent targets. The GATA-1 V205G mutant,
defective in FOG-1 binding, yields molecular phenotypes
similar to the K137R mutant. Furthermore, SUMO-and
FOG-1-dependent genes migrate away from the nuclear
periphery upon GATA-I-induced erythroid maturation,
while SUMO- and FOG-1-independent genes persist at
the periphery (139). The use of tiled bacterial artificial
chromosome probes revealed that sumoylation endows
GATA-1 with the capacity to expel the B-globin locus
from the nuclear periphery without inducing gross
changes in the positioning of neighboring chromosomal
regions (140). Given these mechanistic insights, it is of
considerable interest to investigate how SUMO-specific
proteases fit into the GATA factor regulatory circuitry.
SENP1 knockout mice die from severe anemia between
E13.5 and postnatal day 1 (141). SENPI knockout mice
exhibit hematopoietic defects in the fetal liver, which cor-
relate with accumulation of sumoylated GATA-1, as well
as hypoxia-inducible factor-la. As SENP1 desumoylates
a broad spectrum of substrates, the hematopoietic de-
fects presumably reflect the aggregate actions of this
broad activity, presumably including FOG-1, which is
sumoylated in erythroid cells (142).

GATA-2 interacts with PIASy in transfected COS cells,
which preferentially conjugates SUMO-2 to GATA-2
(135). In a transient transfection assay in endothelial
cells, PIASy suppresses GATA-2 transcriptional activity
at the endothelin-1 (ET-1I) promoter. Whereas the
repression requires the GATA-2-PIASy interaction, the
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Figure 2. GATA-2 mutations in human hematologic disorders (143-146). Specific GATA-2 mutations in human patients are indicated, with details
denoted in the legend. Each symbol represents a single patient with the particular mutation. The diagram of GATA-2 protein organization illustrates
the N- and C-fingers, acetylation sites (124), the serine 401 phosphorylation site and two sumoylation consensus motifs. The diagram at the bottom
illustrates the amino acid sequence composition of the C-finger and neighboring regions, with the positions of disease mutations highlighted. Stop,

mutation that creates stop codon; frs, frameshift mutation; del, deletion.

PIASy RING-like domain with SUMO ligase activity is
dispensable, indicating that PIASy regulates GATA factor
activity independent of sumoylation. While GATA-2
contains two potential sumoylation sites (human amino
acids 221-224 and 388-391) that conform to the consensus
(Figure 2), the sumoylation site has not been described.
Further analysis is required to elucidate the function of
GATA-2 sumoylation at endogenous loci. GATA-4 is
sumoylated at K366 in the C-terminal region (137).
Based on the initial evidence for functional significance
of at least certain GATA-1 and GATA-2 posttranslational
modifications, it is attractive to propose that
signal-dependent targeting of GATA factors represents a
canonical mode of regulating hematopoiesis. By contrast

to well-established cytoplasmic to nuclear signaling para-
digms, many questions remain unanswered regarding the
nature of the signaling pathways that target GATA
factors, the precise molecular consequences of the
posttranslational modifications and how dysregulated sig-
naling, often a hallmark of hematologic malignancies, in-
fluences GATA factor activity.

HUMAN PATHOPHYSIOLOGIES CAUSED BY
GATA-2 DYSREGULATION

Given the essential GATA-2 function to promote hemato-
poiesis, alterations in GATA-2 levels/activity would be



expected to initiate and/or promote the development of
hematologic malignancies. However, until recently, only
circumstantial evidence implicated GATA-2 in human
cancers. Four related human disease syndromes harbor-
ing germline mutations in GATA2 are associated with
an increased incidence of myeloid neoplasia, either
myelodysplastic syndrome (MDS) or acute myeloid
leukemia (AML). Three of the four syndromes—
Monocytopenia/Mycobacterium avium complex
(MonoMAC) (143,147), Dendritic cell, monocyte, B and
Natural Killer Lymphoid deficiency (DCML deficiency)
(144) and Emberger’s syndrome (145,148)—share the
hallmark feature of immune dysfunction with an increased
propensity to develop MDS or AML. The fourth, a
familial MDS/AML, lacks the immune dysfunction and
systemic symptomatology characteristic of the other
cases (146). Though these entities appear to be rare,
their study provides new insight into the role of GATA2
in immune function and in the regulation of growth, mat-
uration and apoptosis in the myeloid compartment.

Sequencing of candidate gene exons in the genomic DNA
of pedigrees of familial MDS/AML revealed a T354M
GATA2 mutation in three pedigrees and a T355del in one
pedigree (146). This analysis also revealed several pedigrees
harboring mutations in RUNXI or CEBPA, disease genes
for familial AML (149). Molecular modeling suggested that
T354 and T355 stabilize the GATA-2 C-finger (146). The
T354M mutant exhibits lower affinity for DNA, reduced
transactivation activity and is less effective in synergizing
with PU.1 to activate the CSF1R (Fms) promoter in a tran-
sient transfection assay (146). When tested for the ability to
block ATRA-induced maturation and apoptosis of HL-60
cells, the T355del mutant acted as a null, while the T354M
mutant blocked ATRA effects, consistent with expect-
ations for a leukemogenic oncogene. Based on gene expres-
sion profiling in HL-60 cells, the T354M and T355del
mutants appeared to be null alleles (146). Two additional
pedigrees harboring the T354M mutation were recently
reported (150,151). Further mechanistic analysis is
required to rigorously analyze the function of these
disease mutants at endogenous loci and in diverse cellular
contexts.

Holland’s group had previously described a syndrome
of monocytopenia with susceptibility to opportunistic in-
fections by the Mycobacterium avium complex, termed
MonoMAC (143,147), which occurs in both sporadic
and autosomal dominant familial form. The immune
deficiencies were significant: patients suffered from
disseminated cutancous human papilloma virus infection,
aspergillosis, histoplasmosis or cryptococcal meningitis. In
addition, some suffered from pulmonary alveolar
proteinosis, which is typically associated with macrophage
dysfunction. Patients had markedly diminished circulating
monocytes (10 cells per microliter, average), as well as B
cells and natural killer (NK) cells; T cells were variable
(147). Other causes typically associated with the particular
spectrum of immune defect seen in these patients (e.g. HIV
infection, IL12/IL23/TFNg or NF-kB dysfunction) were
ruled out (147).

The frequency of myeloid neoplasia (MDS or AML) in
the combined familial and sporadic cases of MonoMAC
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was 50%; these were associated with trisomy 8,
monosomy 7 and dicentric chromosome 6 (147). Given
the GATA2 mutations in familial MDS/AML (146), the
authors investigated such mutations in the MonoMAC
kindreds, 13 of the 16 they originally reported. This
revealed frameshift mutations (G81fs, M1del290, D259fs
and N317fs), a deletion spanning the N- and C-fingers
(D340-381), a small deletion in the C-finger (A362-365)
and missense mutations within the GATA-2 C-finger
(T354M, N371K, R396W, R396Q, R398W) (143). In
addition, one missense mutation occurred outside the
finger region: P254L.

Bigley et al. (152) further characterized the immune
deficiency in four patients with MonoMAC syndrome,
referring to it as DCML deficiency. DCML is associated
with the absence of granulocyte monocyte progenitors
(GMPs) and common lymphoid progenitors (CLPs)
(152). As expected, with long latency, DCML can lead
to MDS (153,154). Exome sequencing revealed GATA2
mutations in these four patients: a frame shift after
amino acid 200; a T354M missense mutation; a R398W
missense mutation and a D340-381 deletion spanning
the C-terminal end of the N-finger, extending into the
C-finger (144).

Emberger’s syndrome is characterized by lymphedema
with myelodysplasia progressing to AML, as well as
immune dysfunction (widespread cutaneous warts and
sensoneural deafness) (148). Whole-exome sequencing of
three individuals with Emberger syndrome revealed
GATA2 mutations, and further analysis of additional
cases of Emberger syndrome (four more sporadic cases
and additional individuals from the two affected
kindreds) revealed additional GATA2 mutations (145).
These mutations span from the N-terminus to the
C-finger, and include five frame shift mutations, one
nonsense mutation and two missense mutations within
the C-finger (R361L and C373R) (145). Using a luciferase
reporter bearing a GATA-2-responsive CD34 promoter
construct transfected into HEK293 cells, they
demonstrated that the R361L and C373R mutants have
a decreased capacity to transactivate the reporter.
However, the molecular basis for the defective activity
was not established.

It is instructive to consider the mechanistic basis of the
immune deficiency in MonoMAC/DCML deficiency and
Emberger’s syndrome. It is unlikely that the myeloid neo-
plasia in these patients yields immune dysfunction, since
the spectrum of opportunistic infections is distinct from
that seen in the neutropenia of MDS, but is similar to that
seen in IRF8 deficiency and IFNgamma/IL-12 deficiency.
There are several clues that through its interaction with
PU.1 (155), GATA-2 plays an important role in
monocyte/macrophage/dendritic cell development. First,
GATA-2 controls phagocytosis by pulmonary alveolar
macrophages (156), and pulmonary alveolar proteinosis
is a feature of the MonoMAC syndrome. Second, with
haploinsufficient GATA-2 mice, there is loss of
lymphoid and monocytic cells with retention of granulo-
cytes (32). Furthermore, there are specific defects in the
granulocyte/macrophage progenitor pool (157). GATA-2
interacts with and represses PU.1 (158), which induces
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¢-Fms and Flt3 expression (159,160). The common devel-
opmental origin for macrophage/dendritic cells and
lymphoid cells (161) may tie together the deficiencies in
B and NK cells seen in MonoMAC patients. In addition
to PU.1, GATA-2 can bind C/EBP-a (162), a key regula-
tor of granulopoiesis. Whether GATA-2 disease muta-
tions affect this interaction, thereby altering C/EBP-a
function, has not been addressed.

Regarding mechanisms underlying the pathogenic
activities of mutant GATA2 alleles, do the proteins
function as null alleles? Dickinson ez al. posit that the
frameshift and 42 amino acid deletions act as null
alleles, though N-terminal frameshifts in GATAI
(associated with AML) can be translated through initi-
ation at a downstream codon, resulting in the production
of an N-terminally truncated mutant with reduced activity
(50); whether this happens with GATA-2 frameshift mu-
tations is not known. Strikingly, nearly all the point mu-
tations identified in these four papers localize to the
GATA2 C-finger. Initial mechanistic analyses (146) sug-
gested that the T354M and T355del alleles exhibit
certain functional differences. While we propose that
these mutations lead to haploinsufficiency, considerably
more work is required to evaluate functional consequences
of the mutations.

Are there links between the immune deficiency and
MDS/AML? It was suggested that the increased incidence
of MDS in patients with GATA-2 mutation-induced
MonoMAC syndrome may result from defective regula-
tion of HSC proliferation: in the face of systemic immune
dysfunction and recurrent infection, the stem cell com-
partment is stimulated to proliferate, and since committed
progenitors are also dysfunctional due to GATA-2
haploinsufficiency, this leads to chronic stress on the
HSC compartment, HSC exhaustion and MDS (163).
GATA-2 haploinsufficient mice have a decreased stem
cell pool, with a higher percentage of quiescent LSK
cells and increased apoptosis (32). The immune deficiency
and MDS/AML may not be linked, since GATA-2 muta-
tions alone, independent of immune dysfunction, may lead
to MDS/AML (146). The presence of chromosomal aber-
rations (trisomy 8 and 21, monosomy 7 and dicentric
chromosome 6 (147) suggest that additional events are
needed for malignancy to develop and/or GATA-2 muta-
tions increase the likelihood of these mutagenic events
occurring. These points may explain the long latency for
the development of this set of syndromes and the low
penetrance of MDS/AML development. Alternatively,
the long latency and variable penetrance may be due to
the time required for subtle deregulation of hematopoiesis
to segue to a full-blown malignancy.

GATA-2 expression can be upregulated in AML, and
this portends a poor prognosis (164—167). By contrast,
GATA-2 can be downregulated in murine retroviral trans-
plant models of AML, and forced GATA-2 expression did
not sustain leukemic cell growth (168). GATA2 has been
identified as a common site of proviral insertional activa-
tion in AMLs occurring in retrovirally infected
NUP98-HOXD13 transgenic mice (169). Zhang et al.
(170) identified a gain-of-function GATA-2 mutation
occurring in the accelerated phase (AP) and blast crisis

(BC) phase of CML (170). They analyzed 85 cases of
CML in either accelerated phase or blast crisis for
genetic alterations in any of 13 candidate genes of
known importance to hematopoiesis or tumor progres-
sion. Eleven of these had mutations in Runx! (AMLI),
while eight had a L359V mutation. Another case had a six
amino acid internal deletion (D341-346). Both these reside
in the C-finger. Kaplan—Meier-type analysis of patients
with the L359V mutation showed a statistically significant
shortening of time to disease progression. Though more
work needs to be done to establish the mechanism, Zhang
et al. provide initial evidence that the L359V mutant acts
as a dominant-active allele: it appears to bind naked DNA
more tightly; to bind to PU.1 more tightly, and to more
strongly inhibit PU.1-mediated transactivation on target
promoters; it had a modest inhibitory effect on vitamin D3
and all-trans retinoic acid differentiation of HL-60 cells
and caused BCR-ABL-transduced primary hematopoietic
cells to take on a more monocytic phenotype (170).
Analysis of 688 DNA samples from patients with non-
CML-AP/BC hematologic malignancies failed to identify
sequence alterations in GATA2, emphasizing that the
L359V mutation is specific to AP/BC phase of CML (171).

CONCLUDING REMARKS

Despite the emergence of compelling mechanistic prin-
ciples, knowledge of how cellular signaling pathways
regulate GATA factor activity remains primitive. Taken
together with the many unanswered questions regarding
how GATA-2 coding region mutations dysregulate
GATA-2 function, major efforts are required to construct
a lucid picture of how physiological GATA-2 activity
suppresses the development of MDS and leukemia.
Elucidating the cell type-specific regulatory circuitry in
which GATA-2 is embedded, and careful scrutiny of the
dynamics of this circuitry, will reveal key regulatory com-
ponents/nodes that offer opportunities for innovative and
efficacious targeted interventions. Given the rapidity of
progress vis-a-vis linking GATA-2 dysregulation to hema-
tologic pathophysiologies, and the ever-increasing ease in
conducting whole-genome analyses, further rigorous ex-
plorations into this rich pipeline will almost certainly
yield pivotal insights into the molecular basis of the
human diseases discussed and more.
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