6304-6318 Nucleic Acids Research, 2012, Vol. 40, No. 13

doi:10.1093/nar/gks282

Published online 29 March 2012

Analysis of C. elegans intestinal gene expression
and polyadenylation by fluorescence-activated
nuclei sorting and 3'-end-seq

Simon Haenni', Zhe Ji?%, Mainul Hoque?, Nigel Rust®, Helen Sharpe', Ralf Eberhard*>,
Cathy Browne', Michael O. Hengartner®, Jane Mellor', Bin Tian®>* and André Furger'*

'Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, 2Department of
Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark,
NJ 07101-1709, USA, 3Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford,
OX1 3RE, UK, “Institute of Molecular Life Sciences, University of Ziirich, Winterthurerstrasse 190, CH-8057
Zirich and °®Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zurich, Switzerland

Received February 20, 2012; Revised March 13, 2012; Accepted March 14, 2012

ABSTRACT

Despite the many advantages of Caenorhabditis
elegans, biochemical approaches to study tissue-
specific gene expression in post-embryonic stages
are challenging. Here, we report a novel experimental
approach for efficient determination of tissue-specific
transcriptomes involving the rapid release and purifi-
cation of nuclei from major tissues of post-embryonic
animals by fluorescence-activated nuclei sorting
(FANS), followed by deep sequencing of linearly
amplified 3'-end regions of transcripts (3'-end-seq).
We employed these approaches to compile the tran-
scriptome of the developed C. elegans intestine and
used this to analyse tissue-specific cleavage and
polyadenylation. In agreement with intestinal-specific
gene expression, highly expressed genes have
enriched GATA-elements in their promoter regions
and their functional properties are associated with
processes that are characteristic for the intestine.
We systematically mapped pre-mRNA cleavage and
polyadenylation sites, or polyA sites, including more
than 3000 sites that have previously not been
identified. The detailed analysis of the 3'-ends of the
nuclear mRNA revealed widespread alternative polyA
site use (APA) in intestinally expressed genes.
Importantly, we found that intestinal polyA sites that
undergo APA tend to have U-rich and/or A-rich
upstream auxiliary elements that may contribute to
the regulation of 3'-end formation in the intestine.

INTRODUCTION

The transcribed genome equips cells and tissues with the
necessary tools to complete the required biological
processes and execute its function. Analysis of tissue-
specific gene expression is particularly informative if
tissues are isolated from a whole living organism rather
than performed with in vitro cultured somatic cells that
must have undergone some reprogramming to maintain
proliferation.

Although tissue-specific profiling is straightforward for
most large multicellular animals, this can be challenging
for smaller species such as Caenorhabditis elegans which,
despite its obvious advantages for genetic approaches (1),
has limited amenability for biochemical and tissue-specific
approaches. The tough cuticle of the nematodes makes it
very difficult to isolate intact organs and if possible,
requires laborious hand dissection (2). Significant
advancements have recently been made with the cultiva-
tion and subsequent fluorescence activated cell sorting
(FACS)-based purification of tissue-specific embryonic
cells (3—6). In contrast, the analysis of mature tissues is
more complex as post-embryonic cells can’t be cultivated.
The only currently available approach for high-through-
put transcriptome analysis is based on the tissue-specific
expression of a tagged poly(A) binding protein, followed
by formaldehyde cross-linking and immunoprecipitation
of polyadenylated RNAs (7-10). Although this represents
an elegant and successful approach, quicker and simpler
methods that are not limited to the analysis of
polyadenylated mRNAs, are highly desirable.

The roles of chromatin remodelling, transcriptional regu-
lation and alternative splicing in establishing tissue-specific
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mRNA expression have been well recognized (11-13). In
contrast, the contribution of alternative cleavage and
polyadenylation (APA) to tissue-specific gene expression
is only beginning to be fully appreciated (14-21). It is
currently believed that more than half of the mammalian
genes have multiple polyadenylation sites, or polyA sites
(22), resulting in mRNA isoforms with different 3’-untrans-
lated regions (3'-UTR) and/or protein-coding sequences.
Specific sequences located in the 3-UTRs, via association
with RNA binding proteins and miRNAs, affect multiple
steps of gene expression (23) including nuclear cytoplasmic
mRNA export, localization, translation and stability (24).
Thus, modulating 3'-UTR length regulates the scope of
potential interaction partners with the mRNA and so
APA is a major contributor to tuning gene expression for
tissue-specific needs.

Pre-mRNA cleavage and polyadenylation is carried out
by the multi-subunit 3’-end processing complex (25,26),
which executes the two coupled steps, cleavage and
polyadenylation (27). Cis-elements located near the
cleavage site govern the reaction, and vary in sequence
and placement across species (28).

Here we present a novel experimental approach to study
tissue-specific gene expression and polyadenylation in
post-embryonic nematode tissues. We isolated and purified
green fluorescent protein (GFP)-tagged intestinal nuclei by
fluorescence-activated nuclei sorting (FANS) and
determined the intestinal transcriptome by a novel deep
sequencing method named 3'-end-seq. This approach
allowed us to identify and determine expression levels for
about 10 000 nematode genes and compile the most compre-
hensive analysis of the transcriptome in the C. elegans intes-
tine to date. Consistently, genes highly expressed in the
intestine are significantly associated with the GATA
element in the promoter region and are annotated with
gene ontology (GO) functions characteristic of the intestine
(2). In addition, we provide the first global and quantitative
analysis of tissue-specific polyA site usage in C. elegans.
We identified 3282 polyA sites which have not been
reported before. We show widespread APA in the intestine
that correlates with the presence of specific auxiliary
cis-elements positioned upstream of the alternatively used
cleavage sites.

MATERIALS AND METHODS
Nematode strains

Strain JM 149 expresses a nuclear GFP-H2B fusion protein
from the el/t-2 promoter (without coding sequence of the
elt-2 gene) in intestinal cells {Is[pRF4 (rol-6); pJM459
(elt-2p::nls::gfp-h2b)]} and was kindly provided by Jim
McGhee. Strain AWG60 [him-5(el490); wis51] expresses a
nuclear GFP marker in seam cells (scm.:nls::gfp). Strain
PK2011 {unc-119(ed3), crEx37 [sur-5p::GFP, unc-119(+)]}
expressing a nuclear GFP marker in most somatic cells
(short name sur5-GFP) was kindly provided by Jonathan
Hodgkin, as well as the strain GFPF with the myo-3-
p::nls::gfp reporter that expresses GFP in the nuclei of
body wall muscle cells. Strain MS604 [unc-119(ed4)III;
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him-8(e1489)1V; irls37] expressing a nuclear YFP (yellow
fluorescent protein) marker in neuronal cells from the
unc-119 promoter (unc-119p.:nls::yfp::lacZ) was obtained
from Morris Maduro. Strain CB4974 [Is(sul006 Ce
MyoD:.:B-Gal)] was used for the purity assessment of
FANS (note: MyoD is annotated as hlh-1).

Nuclei isolation for microscopy and flow
cytometry analysis

Nuclei preparations for microscopy analysis were
prepared at small scale [two to four 9-cm NGM
(nematode growth medium) plates] and those for flow
cytometry experiments at large scale. For large scale
assays, mixed stage 150ml liquid cultures, grown at
25°C, were harvested by three washes in M9 buffer
(22mM KH,PO,, 33.71 mM Na,HPO,, 85.56 mM NaCl,
1 mM MgS0O,) and incubated for 3045 min at 25°C in M9
buffer for elimination of intestinal bacteria. The worm
solution was subsequently passed through a 70 um cell
strainer (BD Biosciences) and the filtrate collected in
10ml NBP (10mM HEPES pH 7.6, 10mM KCI,
1.5mM MgCl,, ImM EGTA, 0.25mM sucrose) per
250 ul worm slurry (estimated before filtration) for quick
buffer exchange and enrichment of adults. All subsequent
steps were performed at 4°C/on ice. Nuclei were released
in 10ml batches by 5-10 strokes in a pre-chilled Wheat
on stainless-steel tissue grinder (clearance 0.0005
inches = 12.5um) (29). After sequential filtration
through 100 pm and 40pum nylon cell strainers (BD
Biosciences), the solution was centrifuged at 2500 ¢ for
5-10min at 4°C. For run-on experiments, see below. For
flow cytometry analyses, the pellet was resuspended in
3ml cold NPB and split into two Eppendorf tubes.
Large worm fragments were pelleted for 1 min at 4°C at
300 g and the supernatants were transferred to fresh tubes.
A quantity of 100ul of this unsorted sample was
transferred into 1ml Trizol® Reagent, mixed well and
left on ice for later RNA isolation (see below). A
quantity of 50-100 pul were stained with 1 pg/ml propidium
iodide, mounted on microscope slides and analysed using
an Axioplan 2 microscope, the AxioCam digital camera
and the AxioVision software (Zeiss). Half of the remaining
nuclei preparations (of both wild-type control and a
reporter strain) was stained with 1pg/ml propidium
iodide and all samples were immediately analysed by
flow cytometry.

Nuclear run-on analysis

The nuclear run-on (NRO) protocol is based on similar
experimental approaches used in mammalian systems (30).
The nuclei pellet from the NPB precipitation step were
resuspended in 4ml cold hypotonic lysis buffer (HLB:
10mM Tris—HCI pH 7.5, 10mM NaCl, 2.5mM MgCl,,
0.5% igepal), put on ice for Smin and underlaid with 1 ml
HLB/10% sucrose. The two-layered mix was spun at
2500g at 4°C for 10min and the nuclei pellet
resuspended in an equivalent volume of 2x transcription
mix (40mM Tris-HCI pH 7.9, 300mM KCI, 10mM
MgCl,, 40% glycerol, 2mM DTT). For pol II specific



6306 Nucleic Acids Research, 2012, Vol. 40, No. 13

gene detection, nuclei isolated from an entire 150 ml liquid
worm culture were used. For pol I and pol III transcrip-
tion assays, a third of the nuclei preparation was used.
Nuclei were pre-incubated, in the absence of nucleotides,
on ice for 20 min with or without a-amanitin. a-Amanitin
was added to a final concentration of 100 pg/ml.
Unlabelled ATP, CTP and GTP (0.57mM final concen-
tration each) plus 50 uCi [a->>P]-UTP (400 Ci/mmol) were
added (15% of the total volume) and transcription
reactions were incubated at 20°C for 15min. Nuclei were
directly subjected to hot phenol treatment, then RNA was
extracted with phenol-chloroform and subsequently
ethanol precipitated. The RNA pellet was resuspended
in 60 ul water. Transcripts were partially hydrolysed by
addition of 15ul of 1M NaOH and incubation on ice
for Smin. The reaction was stopped by adding 30 ul of
0.5M Tris/0.5M HCI. Radio-labelled transcripts were
hybridized to antisense riboprobes (bound to a nylon
filter, see below) overnight at 42°C in hybridization
solution (6x SSPE, 50% formamide, 5x Denhardt’s
solution, 0.1% SDS, 50 pg/ml herring sperm DNA and
0.1mg/ml tRNA). Hybond N+ nylon membranes were
prepared and using a slot-blotter: 1 g of RNA per slot
was applied for each probe and the filters were
subsequently pre-hybridized at 42°C for 90-120 min in
hybridization solution. After hybridization, filters were
washed in 5x SSPE at room temperature for Smin and
in 1x SSPE/0.1% SDS. Quantitation was carried out
using a Fuji phosphorimager FLA-3000 (software
provided): signal refers to photo stimulated luminescence
(PSL) units.

Riboprobes

The riboprobes for NRO assays were made by insertion of
PCR fragments into linearized pGEM-T plasmids (see
riboprobe table in Supplementary Data). Antisense
riboprobes were synthesized by in vitro transcription from
linearized plasmid DNA as a template in 80 mM HEPES
pH 7.6, 2mM spermidine, 40mM DTT, 3mM each of
rATP, rUTP, rCTP and rGTP, 5 U/ml pyrophosphatase
(Sigma), 1000 U/ml RNase Out, and either 12mM MgCl,
plus 1,800 U/ml T7 polymerase, or 16 mM MgCl, plus
1800 U/ml SP6 polymerase. Transcription reactions were
carried out at 37°C (T7) or 40°C (SP6) for 4h. DNA was
removed by the addition of DNase I buffer and 40 U/ul
DNase I and incubation at 37°C for 1h. The RNA was
phenol—chloroform extracted, ethanol precipitated and
resuspended in 80% formamide, 10mM EDTA pH 8.0.
Samples were stored at —70°C.

FANS

Flow cytometry and sorting experiments were performed
according to standard procedures using Dako Cytomation
MoFlo Legacy sorters equipped with either a 488 nm
argon ion laser (200mW) or a 488 nm solid-state laser
(100mW). Filters: 530/40 bandpass filter (FL-1, green
fluorescence), 670/30 bandpass filter (FL-3, red channel
for PI fluorescence). Sort rates were ~20000 events per
second and the sort mode was set to purity 1 [highest

purity (~99%) with best recovery]. We used a log/log
scale for FSC/SSC to detect small particles. The threshold
was set to only remove electronic noise signals. About
10000 or 50000 events were sorted onto a microscope
slide and the rest of double-positive events (100000—1
Mio events, depending on the batch) was gated for
RNA isolation using Trizol® Reagent. The software to
monitor and analyse the flow cytometry experiments was
Summit v4.3 (Dako). The whole data sets with all the
controls to set up the gates and instrument parameters
are available on request.

Purity assessment of FANS

Liquid worm cultures of strains JM 149 and CB4974 were
mixed 1:1 and used for a nuclei preparation followed by
FANS for the JM149-specific GFP marker. RNA isolated
from one-twentieth of the pre-sorted material (unsorted)
and of ~120000 sorted events (sorted) was linearly
amplified using the MessageAmp "™ I aRNA amplifica-
tion kit (Applied Biosystems, see next section) and
analysed by real-time RT-PCR using gene-specific RT
primers [the forward primers had to be used because of
the antisense nature of the amplified antisense RNA
(aRNA)]. Rpl-43 was used as a normalization control
(primers 5-GAAGGTCGGAATCGTCGGAA-3', 5-GG
TGACGGTTCCGTAGACGTA-3"). Primers for the
LacZ (B-Gal) marker of CB4974: 5-CGCCGGTCGCTA
CCATTACC-3, -GAGCACAGGGAGAAAGAGCAT
G-3'. Primers for the IM149 GFP::H2B marker: 5-CAGG
AGAACTTGCCAAGCACG-3/, 5-TCATTCACAGGA
CAAAGAGAGG-3'.

3'-end-seq

RNA isolated from unsorted or sorted JM149 nuclei
(~65ng) was amplified using the MessageAmp' ™ II
aRNA amplification kit (Applied Biosystems) to create
aRNA. Briefly, the RNA was reverse transcribed using a
primer (R1, Figure 3A) containing the T7 promoter
sequence and 24 Ts. After the second strand synthesis,
double-stranded cDNAs were in vitro transcribed by T7
RNA polymerase to give rise to aRNAs. About 30 ng of
aRNA per sample was used for ligation with a 3’ adapter
(Bioo Scientific), which is 5 adenylated and 3’ blocked.
Ligation was carried out at 22°C for 1 h using truncated
RNA ligase2 (Bioo Scientific). Ligated RNA was then
reverse transcribed using Superscript II reverse tran-
scriptase (Invitrogen), followed by 12 cycles of PCR amp-
lification using a three primer mix (P1, P2 and P3).
Primers P1 and P2 were used at the ratio of 1:10. P2
and P3 contained sequences for cluster generation on
the Illumina flow cell. P3 also contained an index
sequence for multiplex sequencing. The amplified PCR
product was run in an 8% acrylamide gel, and the
product corresponding to insert size of ~50-60nt
were excised from the gel and eluted overnight. Eluted
DNA was purified by ethanol precipitation and was
checked in an Agilent Bioanalyzer using the high sensi-
tivity DNA kit (Agilent technologies). The cDNA were
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then sequenced on an Illumina GA 1Ix. Oligo sequences
are as follows:

R1: - TAATACGACTCACTATAGGGAGA(T)y4

3" Adapter: 5-rAppTGGAATTCTCGGGTGCCAAGGAdC

R2: ¥-GCCTTGGCACCCGAGAATTCCA

P1: ¥-GTTCAGAGTTCTACAGTCCGA(T);,VN

P2: 5Y-AATGATACGGCGACCACCGAGATCTACAC
GTTCAGAGTTCTACAGTCCGA

P3: 5-CAAGCAGAAGACGGCATACGAGATNNNN
NNGTGACTGGAGTTCCTTGGCACCCGAGAAT
TCCA, in which ‘NNNNNN’ is an index sequence.

S1: 5-CGACAGGTTCAGAGTTCTACAGTCCGA(T);

S2: 5-GGAATTCTCGGGTGCCAAGGAACTCCAGT
CAC

Align reads to the C. elegans genome

Sequencing reads (72 nt) were first trimmed to 50 nt and
then aligned to the WS190 genome using TopHat (31)
allowing two mismatches. Only reads uniquely aligned
to the genome were used for subsequent analyses.
Overall, we obtained 9.24 million uniquely mapped reads
for the unsorted sample and 4.71 million uniquely mapped
reads for the sorted sample.

Gene expression analysis

Gene expression levels were calculated as the number of
reads within the gene boundary, with the 5'-end defined
by Wormbase and the 3’-end defined by Wormbase or
the 3’-most polyA site identified in this study, whichever
is further downstream. The reads per million (RPM)
value, calculated as the number of reads assigned to a
gene per million mapped reads in the sample, was used to
indicate the gene expression level. The Fisher’s exact test
was used to examine whether a gene had a significant
difference in gene expression between the unsorted and
sorted samples.

Promoter and GO analyses

The promoter sequences, —500 to +100 nt around mapped
5'-ends of genes, were used in this analysis. The Fisher’s
exact test was used to calculate enrichment of hexamers
for highly expressed genes in the intestine, as compared
with lowly expressed genes. In addition, we divided the
promoter sequence into 10 regions and calculated the
fraction of genes containing GATA elements in each
region, including TGATAA and its antisense TTATCA.
For GO analysis, we used NCBI GO annotation of genes.
The GO Parser program of BioPerl was used to get all
genes associated with a GO term. We used the Fisher’s
exact test to assess whether a GO term is significantly
associated with highly or lowly expressed genes.

PolyA site identification

The genomic position corresponding to the 5-end of
aligned 3’-end-seq reads was considered as the —1
position relative to the cleavage site. Since the cleavage
reaction often is not precise, leading to multiple cleavage
sites located adjacent to each other (22), we progressively
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clustered cleavage sites located within 20nt from one
another. When a cluster size was <20nt, the position
with the highest number of supporting reads was used as
the representative cleavage site for the polyA site, and all
other cleavage sites were assigned to the same polyA site.
When a cluster was >20nt, we split the cluster into
multiple polyA site clusters. This was carried out by: (i)
identifying the cleavage site with the greatest number of
supporting reads in the cluster and assigning other
cleavage sites within 20 nt to the cluster and (ii) repeating
(1) until no cleavage site was unassigned. We further
required that a representative cleavage site had at least
three supporting reads. PolyA sites with the usage level
<5% after clustering in both unsorted and sorted
samples were not used in this study. In addition, we
examined the —10 to +10nt region surrounding each
polyA site for indication of false polyA site identification
due to internal priming of A-rich sequence (32). If there
were >6 consecutive As or >7 As in a 10nt window, the
polyA site was considered as an internal priming candi-
date and was not used for further analysis.

Analysis of polyA sites

For genes with more than one polyA site, we calculated
the usage level for each polyA site as the number of sup-
porting reads for the polyA site divided by the total
number of reads assigned to the gene. The Fisher’s exact
test and absolute usage level difference between samples
were used to examine whether a polyA site had significant
difference in usage between unsorted and sorted samples.
The Fisher’s exact test was used to assess whether a
cis-element is significantly associated with polyA sites
more or less used in the intestine. To identify PAS in a
set of polyA sites, we selected the hexamer with the highest
frequency in the —40 to —1 nt region of the polyA site, and
removed polyA sites associated with the hexamer and
repeated the process for the remaining polyA sites, until
not a single hexamer occurred in more than 5% of the
remaining polyA sites.

Trans-splicing gene annotation

The operon information was obtained from Ref. (33).
Operon genes were further divided into first, middle and
last genes, based on the location in operon. The SL1 gene
annotation was obtained from the modENCODE Spliced
Leaders track (7). Genes without spliced leader annotation
were annotated as No SL.

RESULTS
Purification of C. elegans nuclei by FANS

In order to analyse tissue-specific gene expression in
postembryonic stages of C. elegans, we explored the
possibility of purifying nuclei from transgenic strains
expressing nuclear GFP markers from tissue-specific pro-
moters, rather than attempting to isolate whole intact
cells. As the isolation of nuclei from postembryonic
stages was not established, we first developed an experi-
mental approach that enabled us to mechanically release
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nuclei from the nematodes. As shown in Figure 1A and B,
the consequent protocol results in the release of free nuclei
of varied diameters ranging from 3 to 10 pm. To confirm
that the isolated nuclei remain structurally intact, we sub-
jected them to nuclear run-on analysis (Figure 1D-F). To
that end, we prepared filters containing antisense
riboprobes complementary to regions in the polymerase
I (pol I) and polymerase III (pol III) transcribed rDNA
genes and the polymerase II (pol II) transcribed rps-6 and
vit-2 genes (Figure 1C). Hybridization efficiency of all the
antisense probes was first verified by exposing control
filters to T7 in vitro transcribed radio-labelled sense
transcripts (Figure 1D, T7 panel). Isolated nuclei were
subsequently incubated in transcription buffer containing
radio-labelled UTP either in the presence (+o) or absence
(—a) of a-amanitin (Figure 1D). The pre-incubation of the
nuclei with a-amanitin significantly reduced the pol II and
pol III derived signals (Figure 1D-F) but largely had no
effect on the a-amanitin resistant pol I transcribed rRNA
genes. Thus, our results show that the isolated nuclei pools
are transcriptionally active, indicating that the isolation
procedures results in structurally intact nuclei.

To determine whether the nuclei release protocol is
suitable to isolate tissue-specific nuclei, we focused on the
worm strain JM149 which expresses a nuclear GFP-H2B
fusion protein under the control of the intestinal specific
elt-2 promoter. We selected this strain because the
JM149 phenotype has strongly fluorescent intestinal
nuclei (Figure 2A, top panel) and, since the intestinal
transcriptome has previously been analysed by other
methods (2,9,10), reference data was readily available for
comparison.

Nuclei pools released from JM149 cultures also
included strongly green fluorescent nuclei (Figure 2A,
bottom panel). In addition, to gauge the scope of the
technique, we also tested the nuclei release method using
worm strains expressing nuclear GFP in all somatic cells
(Supplementary Figure S1A), seam cells (Supplementary
Figure S1B), neuronal cells (Supplementary Figure S1C)
and body wall muscle cells (Supplementary Figure S1D).
In all cases, intact fluorescent nuclei were released and
thus the method can be applied to nuclei from many
different cell types from developed tissues (Supplementary
Figure S1).

Since it has been successfully applied in other systems
(34,35), we next explored the possibility of further purify-
ing released fluorescent nuclei from the pools by subject-
ing them to fluorescence-activated-nuclei sorting, a
process we named FANS. To that end, we scaled the pro-
cedure and isolated nuclei from a 150ml liquid JM149
culture (Figure 2A). The released nuclei were subsequently
labelled with the non-specific nucleic acid stain propidium
iodide (PI) and subjected to FANS (Figure 2B). To
control if this approach is feasible to purify intestinal
nuclei, we first gated the highly GFP and PI positive
events (Figure 2B, gate R3) onto a microscope slide.
Gating was restrictive, which is evidenced by the fact
that only 0.08% of all detectable double events qualified
for selection (Figure 2B, bottom panel). Although only
few nuclei were GFP positive before FANS (Figure 2C,
top panel), the sorted material exclusively contained

double (PI red and green) positive events (Figure 2C,
bottom panel) which confirmed amenability of the
approach. We next FANS-purified intestinal nuclei at a
large scale using the same parameters, subsequently
isolated total RNA from the selected material and con-
firmed the presence of coding and non-coding RNA by
RT-PCR (data not shown). This provided us with proof
of principle that our approach allows isolation of intact
RNA from selected nuclei. As the ultimate goal was to
determine the intestinal transcriptome and assess tissue
specific polyadenylation, it was critical to establish the
purity of the final sorted RNA material.

We therefore designed an approach that enabled us to
assess the contamination level of the final RNA preparations
by non-intestinal RNA. To that end, we mixed JM149
nematodes with an equal number of a different transgenic
strain expressing B-galactosidase (MyoD.:8-GAL). Nuclei
of this hybrid culture were released and a sample was used
to isolate ‘unsorted” RNA. The remaining nuclei were sub-
jected to FANS and total RNA was retrieved from the
sorted material. We then compared the relative B-Gal
mRNA levels present in RNA pools from nuclei before
and after FANS by real time RT-PCR. This analysis
revealed a contamination level of <5% in RNA isolated
from FANS purified nuclei (Figure 2D), confirming that
the FANS approach is a feasible method to analyse
intestinal-specific nuclear gene expression of postembryonic
C. elegans stages.

Analysis of gene expression by 3'-end-seq

We next wanted to globally analyse intestinal gene
expression by deep sequencing. However, our initial
analysis was complicated by the relatively low amounts
(<1 pg) of RNA extracted from sorted samples. This tech-
nical issue and the fact that many C. elegans genes overlap
at the 3’-end (36), which makes it difficult to resolve the
sequencing reads generated by regular non-strand-specific
RNA-seq methods, prompted us to develop a new method
suited for our samples.

We first ameliorated the issue of low quantity of unsorted
RNA by including an in vitro transcription step by T7 poly-
merase to amplify the source material in a linear fashion
(37). As outlined in Figure 3A, a T7-oligo-d(T) primer is
used to synthesize double-stranded cDNAs, followed by
in vitro transcription with T7 RNA polymerase generating
RNA that is antisense to the original RNA (aRNA). This
step also ensures that only poly(A)+ RNA is amplified. An
adapter was subsequently ligated to the 3’-end of the in vitro
transcribed RNA, which provided the 3’-end target-
sequence for priming subsequent reverse transcription.
After first strand synthesis, we conducted 12 cycles of
PCR reaction to amplify cDNA using a mixture of 3 PCR
primers named P1, P2 and P3 (Figure 3A; see Materials and
Methods section for details). P1 contained 12 Ts followed
by a V (non-T), and an N at the 3’-end. This primer ensures
that (i) cDNAs containing >12 As at the 3’-end are prefer-
entially amplified and (ii) only 12 As of the original poly(A)
tail remain in the final PCR product. In essence, this primer
makes the sequence of one end of the PCR product come
from the region directly upstream of a polyA site. P2 and P3
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Figure 1. Release of transcriptionally active nuclei from postembryonic stages of C. elegans. (A) Representative pictures of isolated nuclei with
different sizes and (B) of a wider field of nuclei to indicate the size distribution. DIC: differential interference contrast; D: DAPI staining; M: merged
picture (DIC and D). Size bar: 5um. (C) Schematic of a 7-kb long ribosomal transcription unit. Antisense riboprobes are indicated by blue boxes;
ets, external transcribed spacer; itsl and its2, internal transcribed spacers; 26S1 and 26S2, two different probes for the 26S rRNA. (D) Top panel
(T7): control hybridization of filters with radiolabelled T7 sense transcripts; middle panel (—a): nuclear run-on analysis without a-amanitin; bottom
panel (+a): run-on analysis with nuclei pre-incubated with a-amanitin. pGEM, control probe from the empty vector; Rps-6, v2 and v3, probes for the
pol II transcribed rps-6 (rps-6) and vit-2 (v2 and v3) genes; 5SS, probe for the pol III transcribed 5S rRNA (E) Nuclear run-on analysis for vir-2
detection plus (+ao) and minus (—o) a-amanitin with a larger volume of nuclei preparation. (F) Quantitation of signals from (D). Values from each
filter were normalized to 18S signals.
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Figure 2. FANS purification of intestinal nuclei. (A) Strain JM149 with an intestinal nuclear marker (e/t-2p::nis::gfp-h2b). Top panels: display of
whole animal. Size bar: 100 pm. Bottom panels: representative pictures of isolated labelled nuclei. Size bar: 5um. DIC: differential interference
contrast; G: green fluorescence; M: merged picture (DIC and G); D: DAPI staining. (B) Flow cytometry analysis of the isolated nuclei and the R3
gate used for sorting. Top: scatterplot of all events; bottom: summary of data. Count: number of events; % Hist: percentage of events displayed; %
All: percentage of all events detected by the flow cytometer. (C) Representative pictures of nuclei prior to (unsorted) and after (sorted) sorting. DIC,
G, and M are as in (A); PI, propidium iodide. (D) Purity assessment of FANS: strains JM149 (GFP::H2B marker) and CB4974 (MyoD.:B-Gal
marker) were equally mixed and subjected to FANS for GFP. RNA from unsorted and sorted material was isolated, amplified to aRNA and
quantitatively analysed by real-time RT-PCR (see Materials and Methods section for details). The graph displays real-time PCR signals normalized
against rpl-43 with unsorted values set to 1. The 21-fold enrichment of GFP::H2B mRNA over B-Gal mRNA indicates about 4.7% contamination.

contained sequences for cluster generation on the Illumina
flowcell. In addition, P3 contained an index region that
allowed multiplexing in sequencing.

Finally, the so-created samples were sequenced by an
Illumina GAIIx instrument. The sequencing reaction was
initiated at the 3’-most A of the 12As at the end of the PCR
product (Figure 3A). Thus, our read sequences, in theory,
correspond to the region directly upstream of the polyA
site. Indeed, we found that reads mapped to the 3’-end of
transcripts annotated on Wormbase (Figure 3B and C).
Notably, the reads are strand-specific, allowing unequivo-
cal assignment of reads to genes even when they are
overlapping at the 3’-end. For the subsequent gene expres-
sion analysis, we normalized read numbers mapped to each
gene to the total mapped reads, and the normalized value
was called RPM. We named our method 3’-end-seq.

Gene expression analysis

Using our 3’-end-seq data, we set out to examine gene
expression in the sorted intestinal nuclei. We first

compared gene expression between unsorted and sorted
samples using RPM. Overall, similar numbers of genes
were considered as expressed in both samples based on
different cut-offs (Supplementary Figure S2A and B),
indicating the overall number of genes transcribed in the
intestine does not differ greatly from other cell types. As
expected, gene expression is not evenly distributed along
the chromosomes (Supplementary Figure S2C). Using P
(Fisher’s exact test)<0.01 and fold change>2, we
identified 2456 genes that had higher expression in the
sorted sample and 1053 genes that had lower expression
in the sorted sample, as compared with the unsorted
sample (Figure 4A and Supplementary Table S1 for the
full list). Examples of two representative genes respectively
are shown in Figure 4B.

We next carried out GO analysis to functionally char-
acterize genes that are highly and lowly expressed in the
intestine relative to the unsorted sample. Consistent with
the functions of the intestine, this analysis revealed that
highly expressed genes were associated with various
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metabolic processes, such as ‘regulation of macromolecule
metabolic process’, ‘RNA metabolic process’, ‘lipid meta-
bolic process’, and ‘carbohydrate metabolic process’; and
several other processes related to various functions of the
intestine, such as ‘transmembrane transport’, ‘defense
response’, ‘response to chemical stimulus’ and ‘oxidative
reduction’ (Table 1). In good agreement with the nature of
a non-dividing somatic tissue, genes involved in develop-
ment, differentiation, cell cycle and sexual reproduction
were significantly lowly expressed in the intestine as
compared with the unsorted sample (Table 1).

To further assess the tissue-specificity of the FANS-
generated RNA sample, we examined the promoter
regions (—500 to +100nt around the 5-ends of mapped
genes) of genes that were highly expressed in the sorted
sample as compared with the unsorted sample. As shown
in Figure 4C, we found that hexamers containing the con-
sensus GATA or its antisense TATC were significantly
enriched in promoter regions of genes highly expressed
in the intestine. Further analysis showed that the GATA
elements are enriched by more than 2-fold in the region up
to 200 nt upstream of the transcript start site (TSS) in
genes that are enriched in the intestine compared with
genes enriched in the unsorted sample (Figure 4D). The
enrichment shows a clear trend gradually increasing
towards the TSS and collapsing in the downstream
region. Since the GATA element with the consensus
sequence A[A/C/TITGATAARR is considered to play a

major role in activating intestinal gene expression (2,9,38),
this finding provides significant support for the tissue-
specificity of our samples.

Finally, we compared our data with a recent tiling array
dataset for the intestinal tissue (10). For the 7781 genes
considered as expressed by both our 3’-end-seq data and
tiling data, a moderate but nevertheless significant correl-
ation was discernible between up- and down-regulated
genes (Figure 4D). Importantly, the genes that are
highly and lowly expressed in the intestine are very signifi-
cantly correlated between the two data sets shown by a
Venn diagram analysis (Figure 4F) or gene density map
analysis (Supplementary Figure S2D). Notably, 3’-end-seq
data had a wider dynamic range for gene expression
differences than the tiling array-based results (see the dif-
ference in scale between x-axis and y-axis in Figure 4D).

In addition, comparison of the genes expressed in
FANS with previous studies by Pauli ef al. (9), Spencer
et al. (10) and McGhee et al. (2), showed a high degree of
overlap (>72% for RPM >0 and >62% for RPM > 1)
(Supplementary Figure S3) Importantly, the genes
commonly detected in our study and other ones tend to
be expressed at high levels (Supplementary Figure S3B),
indicating that some lowly expressed genes in the intestine
were uniquely detected by different studies. Interestingly,
when we examined the list of 80 genes that are considered
not to be expressed in the intestine by Pauli et al. (9), we
found that 31, 10 and 53 genes had detectable expression
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Table 1. Gene Ontology (GO) analysis of differentially expressed genes
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GO_ID, GO_term -log(P)
GO significantly associated with genes GO:0060255, regulation of macromolecule metabolic process 8.23
highly expressed in the intestine GO0:0016070, RNA metabolic process 6.05
GO0:0006629, lipid metabolic process 5.73
GO:0055085, transmembrane transport 4.40
GO0:0006952, defence response 2.63
GO:0042221, response to chemical stimulus 2.61
GO0:0005975, carbohydrate metabolic process 2.42
GO:0055114, oxidation reduction 2.20
GO significantly associated with genes GO:0003006, reproductive developmental process 6.28
lowly expressed in the intestine GO:0010171, body morphogenesis 5.63
GO:0007049, cell cycle 4.46
GO:0000910, cytokinesis 4.26
G0:0042692, muscle cell differentiation 391
G0:0022607, cellular component assembly 3.40
GO:0016192, vesicle-mediated transport 3.19
GO:0006006, glucose metabolic process 3.11
GO0:0030036, actin cytoskeleton organization 2.86
GO:0035188, hatching 2.66
GO0:0040012, regulation of locomotion 2.54
GO:0019953, sexual reproduction 2.21
GO0:0005996, monosaccharide metabolic process 2.13

GO terms were analysed using the Fisher’s exact test, based on highly and lowly expressed genes in the sorted sample versus unsorted (Figure 4A).
GO terms associated with more than 1000 genes or more than 1000 child terms were discarded. To eliminate redundancy, we required that each
reported GO term had at least 25% of associated genes not associated with any GO term with a more significant P-value.

in the FANS dataset, McGhee et al.’s and Spencer et al.’s
studies, respectively. Notably, of the 31 genes detected by
FANS, 28 were also found to be expressed by Spencer
et al. (Supplementary Figure S4) and the remaining 3
were not studied by Spencer et al. Therefore, while biolo-
gical variations leading to differences in gene expression
between different studies cannot be ruled out, it appears
that the method used for gene expression analysis may
account for some discrepancies. In addition, it may not
be trivial to determine truly negative genes due to
pervasive transcription and regulation at the post-
transcriptional level (39).

Analysis of polyA site usage in the intestine

Since our deep sequencing reads correspond to the 3’-end
region of genes (Figure 3B) and originated from nuclear
mRNA, our data created a unique opportunity to examine
polyA site usage in the intestine. Using a stringent algorithm
to exclude false positives due to priming at internal A-rich
sequences (see Materials and Methods section for details),
we mapped 19 324 polyA sites for 11 171 genes (Figure 5A).
Compared with polyA sites recently reported by Mangone
et al. (40) and those by Jan et al. (36) using whole worm
RNA, 3282 polyA sites were unique to this study
(Figure SA and supplementary Table 2).

Using all the polyA sites identified in our data, we
analysed polyadenylation signals, or PAS, in the —40 to
—1 nt region relative to the polyA site. Consistent with
the result reported by Mangone er al. (40) and Jan
et al.(36), we found that AAUAAA, the canonical PAS
in metazoans, was the most significant hexamer, associated
with 43% of all intestinal polyA sites (Supplementary
Figure S5A). The PAS variant AAUGAA was the
second-most prominent intestinal poly(A) hexamer,

associated with 10% of the sites. Another 14 hexamers,
most of which are close variants of AAUAAA or AAUG
AA, were associated with 34% of the sites, and about 7%
of the polyA sites had no prominent hexamer. Also con-
sistent with the findings reported by Mangone et al., our
data showed that polyA sites with different PAS are sur-
rounded by similar nucleotide profiles (Supplementary
Figure S5B). However, sites with weaker PAS appear to
have a higher U-rich content, suggesting that U-rich
sequences can complement functions of PAS, as we previ-
ously observed with human polyA sites (41). Notably,
polyA sites uniquely identified by either of the three
studies had similar nucleotide profiles surrounding the
PAS (Supplementary Figures S6 and S7) and they tend to
be associated with weak PAS (Supplementary Figure S6B).
Multiple polyA sites in a gene lead to alternatively
polyadenylated mRNA isoforms. Overall, we found that
about 35% of the genes expressed in sorted or unsorted
samples were represented by different APA isoforms with
each isoform expressed >5% in at least one sample
(Figure 5B). About 23% of the genes have APA in the
3’-most exon only, leading to 3-UTR isoforms, and
another 12% of the genes have polyA sites located
upstream of the 3’-most exon, potentially leading to
changes of the encoded proteins (Figure 5B). Examples
for each type are shown in Supplementary Figure S8.
About 15% of C. elegans genes are organized in
operon-like structures that are transcribed into polycistronic
pre-mRNAs (42). Maturation of individual mRNAs
involves cleavage and polyadenylation at the 3’-end of
upstream genes and rrans-splicing of a small nuclear
spliced leader RNA (SL snRNA) to the 5-end of down-
stream genes. The nature of the spliced leader used for a
particular gene depends on its position in the operon.
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Figure 5. Analysis of alternative polyadenylation by 3’-end-seq. (A) Venn diagram comparing polyA sites identified in this study and those reported
by Mangone et al. and Jan et al. PolyA sites unique to this study were further separated based on detection in unsorted and/or sorted samples, as
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The first genes in operons receive a leader called SL1 and
downstream positioned genes are trans-spliced to leader
sequences of the SL2 type (33). SLI is also added to most,
but not all monocistronic (Solo) genes. Thus, C. elegans
genes can be subdivided into several groups based on
the pre-mRNA processing structure (Supplementary

Figure S9A), including first, middle and last in an operon,
and Solo genes with or without trans-splicing, i.e. SL1 and
No SL. As reported by Mangone et al. (40) using whole
worm RNA, we found that genes located in operons are
more likely to have APA in the intestine than ‘Solo’ genes,
and ‘conventional’ genes coding for transcripts that are not
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trans-spliced (No SL) are the least likely to have APA
(Supplementary Figure S9B). Also consistent with
previous findings, our tissue-specific result indicates that
polyA sites located in different types of genes with respect
to trans-splicing and operon structures, and different
locations within a gene differ widely in PAS usage
(Supplementary Figure S9C). Some of these differences
may be due to the high level of transcription generally seen
in trans-spliced genes (Supplementary Figure S10).

We next focused on usage of polyA sites in genes with
multiple polyA sites in the sorted vs. unsorted samples. As
shown in Figure 5C, when 5% change of usage was used as
the cutoff, we found 25-35% of polyA sites in different
groups (Figure 5C, top panel) were differentially used
comparing sorted versus unsorted samples. About 20-30%
of the sites were found to be differentially used when a cutoff
of 10% was applied. However, overall we did not observe
global shifts towards promoter-proximal or -distal polyA
sites (Figure 5D). In addition, about 25-40% of the genes
showed differential expression of APA isoforms depending
upon the cutoff, the frans-splicing structure and/or position
in operons (Figure SE). This indicates widespread regulation
of alternative polyA site usage in the intestine. Importantly,
we found that the distance between the two most regulated
polyA sites in the 3’-most exon is >40nt for most genes
(Supplementary Figure S9D), suggesting significant
potential for APA to influence gene expression by 3’-UTR-
mediated regulation.

We further analysed nucleotide frequency around the
polyA sites with different usage in the sorted versus
unsorted samples. As shown in Figure 5F, a number of
S-mers were found to be significantly enriched for polyA
sites more used in the intestine indicating cis-element
differences around polyA sites can govern usage in the
intestine. The most significant elements are UUUUU in
the —100 to —41 region and AAAAA in the —40 to —1
region, suggesting specific regulation of intestinal APA
through cis-elements. The detailed mechanism(s) and
trans-acting factors that are associated with these se-
quences are to be explored in the future.

DISCUSSION

We present a straightforward and effective approach to
isolate nuclei from postembryonic nematode tissues.
Combining the nuclei isolation procedure with a flow
cytometry approach enabled us to purify large quantities
of tissue-specific GFP-tagged nuclei. These nuclei are
competent for nuclear run-on, indicating that their struc-
ture is largely intact. Since we successfully applied our
method to the intestine tissue which is composed of
fewer than 35 cells (nuclei) per animal, it could be
applied to many other tissues in the worm. We believe
this approach will be highly useful for the field because
it enables tissue-specific gene expression analysis of
nuclear transcriptomes using living nematodes and will
complement a similar experimental approach published,
whereas this manuscript was under review (43), which
relies on immunopurification of doubly tagged nuclei.
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The so-far most widely used method is based on the
tissue-specific expression of a tagged poly(A) binding
protein (FLAG-PAB-1) which allows isolation of
tissue-specific mRNAs by co-immunoprecipitation (ColP)
(7,8). We believe that our FANS-based procedure not only
complements this method, but also has several major
advantages. Most importantly, FANS is not limited to
the analysis of mRNA and by using state of the art flow
cytometers, a very high degree of purity is achieved (44). By
using tissue-specific fluorescently tagged histones, the
desired expression of the marker can easily be monitored
in a large number of animals in the growing culture at any
time and during all critical stages of the isolation procedure.
In addition, the use of a GFP-histone fusion marker min-
imizes diffusion of the tag after the nuclei are released (45).
Importantly, FANS as demonstrated in Figure 2D, has the
big advantage that the degree of cross-contamination of
any sample can readily be assessed in each individual
experiment.

Furthermore, the tagged PAB-1 competes with endogen-
ous PAB-1, which may skew data towards highly expressed
mRNAs and mRNA degradation during the ColP
mediated isolation is a constant risk. In contrast, RNA
degradation is kept minimal in the FANS approach since
nuclei remain intact and the whole procedure is carried
out on ice.

FANS is not static but represents an important new
approach with the potential for adaptation to analyse
other aspects of tissue-specific gene expression including
chromatin status and possibly the nuclear proteome. The
method is particularly attractive as several strains are
already available that express tissue-specific nuclear
markers. Furthermore, as the isolated nuclei are transcrip-
tionally active (Figure 1), FANS can be used for whole
worm and tissue-specific global run on sequencing
(GRO-seq) approaches to map the positions of transcrip-
tionally active polymerases genome-wide and in a tissue-
specific context. Thus, FANS is an ideal approach to
study nuclear gene expression events in developed
C. elegans tissues.

Furthermore, our deep sequencing method, 3’-end-seq,
is a novel approach to study gene expression. It needs only
low abundant unsorted material, is strand-specific, and
provides quantitative measurement of gene expression
with a good dynamic range. Since the reads correspond
to the 3’-end region, data normalization is simple without
the complication of gene size or splicing structure. Data
are analysed in RPM instead of density values, such as
RPKM (46).

The purity issue and intestine-specific gene expression

For tissue-specific gene expression analysis, a high degree
of sample purity is critical. Consequently, it was important
to put several measures in place to determine and assess
the purity of the FANS sample. The purification step itself
is highly reliable as it is based on fluorescence-activated
cell sorting, which achieves purities of >99%. In addition,
the sorting process is fully automated and thus highly
reproducible. There is, however, the possibility of
cross-contamination by RNA-containing particles that
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are below the detection threshold of the flow cytometer
but are abundant enough to be stochastically present in
our sorting droplets. For example, FANS is likely to
co-purify the abundant mitochondria that are too small
to be detected by the flow cytometer. Given the large
number of mitochondria in the starting sample, even
after several rounds of dilutions and precipitations, statis-
tically, these organelles can be expected to be present in
the sorting droplets. However, sequence reads from
mitochondrial RNA in the sample can easily be filtered
out and do not compromise the gene expression analysis
as long as sufficient sequencing depth is reached. In
addition, it is possible that the nuclei droplets can get
contaminated by non-intestinal cellular RNA and/or
endoplasmic reticulum (ER) associated mRNAs from
non-intestinal sources. To obtain a measure for this
potential source of false positives, we designed and imple-
mented the contamination experiment presented in Figure
2D. This approach allowed us to experimentally and
quantitatively establish the level of cross-contamination
of non-intestinal mRNA purified by FANS which we
found was <5%. Thus, cross-contamination of the
nuclei droplets by non-intestinal RNA can be considered
as marginal.

To globally validate the tissue specificity of the obtained
data, we performed GO analysis of the highly and lowly
expressed genes in our sample. This widely used analysis
to verify tissue-specific gene expression revealed clear
categories of the highly expressed genes that are in good
agreement with the functions assigned to the intestine
(Table 1). Furthermore, genes that were identified to be
down-regulated compared with the whole worm unsorted
nuclei, are associated with processes that are expected to
be of low importance in the intestine, such as cell cycle
regulation, cytokinesis, reproductive processes, body
morphogenesis and muscle development (Table 1). Thus,
this GO analysis provides strong support for the tissue
specificity of FANS.

Moreover, since we focused on gene expression in the
intestine, we were able to further globally scrutinize our
data by analysing GATA promoter binding sites
(Figure 4C and D) which are known to be critical for
the control of intestinal gene expression (2,9,38). The
analysis showed an overrepresentation of the GATA
element in promoter regions of up-regulated genes in the
sorted sample, in particular in the region around the TSS
(Figure 4C and D). The overrepresentation of the GATA
elements consequently provides strong additional evidence
for the tissue specificity of our sorted mRNA.

In addition, we compared our expression data with the
most recently described intestinal gene expression profile
(10) and found a moderate but nevertheless significant
correlation. Contributing factors that may prevent a
stronger correlation could be the differences between
strains (JM149 used in this study versus SD1084 used
for the tiling array), comparison of embryonic and L2
larvae data (10) with mixed stage gene expression data
in this study. Importantly, for highly and lowly expressed
genes the two datasets are very much in agreement
(Figure 4F). Finally, a cross-comparison with all available
large-scale intestinal data sets (2,9,10) revealed a high

degree of overlap (>70% for RPM > 0; Supplementary
Figure S3).

Conclusively, based on our experimental controls and
three independent global bioinformatic analyses (GO and
GATA-element analyses, as well as comparison with
available datasets) we conclude that FANS is a valid
new experimental approach for the analysis of tissue-
specific gene expression in postembryonic stages of
C. elegans.

The use of nuclear RNA for gene expression analysis

A potential drawback of the FANS method for gene
expression analysis may be its reliance on nuclear rather
than whole cell or cytoplasmic RNA. However, it appears
that relative mRNA levels in nuclear and cytoplasmic
compartments are highly concordant (35,47,48). Never-
theless, for some genes the focus on nuclear RNA may
mask important post-transcriptional regulatory steps. In
fact, regulation at the post-transcriptional level may
explain the presence of potential false positive hits and
could reveal important, previously unknown regulatory
steps that control the expression patterns of such genes.
However, as our GO and GATA analyses demonstrate,
masking potential post-transcriptional regulated genes is
not a major problem for the global analysis of nuclear
mRNA expression profiles in nematodes, at least for the
intestine. This is further supported by the fact that the
analysis of nuclear RNA is increasingly used to profile
tissue-specific gene expression in several organisms,
including nematodes (43,49,50).

The polyA analysis

Alternative polyadenylation has recently been recognized
as an important mechanism to regulate gene expression in
response to cell proliferation and tissue-specific cues
(51,52). Our polyA analysis showed that up to 40% of in-
testinal expressed genes are subjected to alternative polyA
site usage and thus suggests that APA contributes signifi-
cantly to the fine-tuning of intestinal gene expression and
the establishment of the intestinal transcriptome.
Importantly, our intestinal APA data does not show
global shifts between proximal and distal site usage that
has been observed in several human tissues (13,19), a
subset of Drosophila neuronal expressed genes (53) and
during C. elegans development (40). This suggests that
APA usage in the C. elegans intestine is unlikely to be
controlled by modulating expression levels of key
cleavage and polyadenylation factors such as CstF and
CPSF as has been implicated in APA control during mam-
malian cell differentiation (16). It appears more likely that
in C. elegans, the expression of specific auxiliary factors
contributes to polyA selection in the intestine. Interestingly,
increased usage of polyA sites in the intestine does correlate
with the presence of specific cis-elements including ‘UUUU
U’ and ‘AAAAA’ motifs in the 3'-UTR near the polyA
cleavage sites. These sites could act as target sequences
for intestine-specific regulators of APA.

However, it is important to highlight that the data pre-
sented in this study cannot be directly compared with
previous analyses as the former is based on nuclear
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mRNA versus whole cell mRNA in the latter. Whole cell
mRNA represents the net output including cleavage
efficiencies at different APA sites (APA usage) and
differential stability of resulting mRNA isoforms. In
contrast, by focusing on nuclear mRNA, our data is
more likely to reflect actual polyA usage. As we were
unable to detect global shifts in APA usage in our
nuclear analysis, we propose that establishment of
tissue-specific 3’-UTRomes, similar to those associated
with different states of proliferation (54), may be more
complex than initially thought. Intestine-specific APA in
the nematode may largely depend on the presence of gene-
specific auxiliary cis-elements and the expression of tissue-
specific trans-factors.
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