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Abstract
Gait velocity has repeatedly been shown to be an important indicator and predictor of both
cognitive and physical function, especially in elderly. However, clinical gait assessments are
conducted infrequently and cannot distinguish between abrupt changes in function and changes
that occur more slowly over time. Collecting gait measurements continuously in-home has
recently been proposed and validated to overcome these clinical limitations. In this paper, we
describe the longitudinal analysis of in-home gait velocity collected unobtrusively from passive
infrared motion sensors. We first describe a model for the probability density function of the in-
home gait velocities. We then describe estimation of the evolution of the density function over
time and report empirically determined algorithm parameters that have performed well over a
wide variety of different gait velocity data. Finally, we demonstrate how this approach allows
detection of significant events (abrupt changes in function) and slower changes over time in gait
velocity data collected from a sample of two elderly subjects in the Intelligent Systems for
Assessing Aging Changes (ISAAC) study.

I. Introduction
Gait velocity has been repeatedly shown to be an important predictor and indicator of both
cognitive and physical function. Gait velocity has been successful at predicting dementia [1,
2], cognitive decline [3], future disability [4], and future risk of hospitalization [5],

D. Austin (austidan@bme.ogi.edu; phone: 503-418-9332; fax: 503-418-9311)..
T. L. Hayes (hayest@bme.ogi.edu)
J. Kaye (kaye@ohsu.edu)
N. Mattek (mattekn@ohsu.edu)
M. Pavel (pavelm@ohsu.edu)

This potential conflict has been reviewed and managed by OHSU.

NIH Public Access
Author Manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 July 23.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2011 ; 2011: 6495–6498. doi:10.1109/IEMBS.2011.6091603.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



especially in aging populations. Other studies have demonstrated a link between gait
velocity and both executive function [6, 7] and cognition [8, 9].

Despite the abundant evidence supporting gait velocity as an important measure of an
individuals' well being and health status, in practice gait velocity is typically assessed
infrequently – often a year or more passes between assessments - and only in a clinical
setting. This clinical based gait assessment methodology suffers from several shortcomings
including the inability to differentiate between abrupt changes in function and slower
changes occurring over time. Additionally, several visits are generally required before
variability (which may also be an important indicator of function) in gait velocity can be
accurately assessed. One approach to overcome these limitations using passive infrared
motion sensors to measure gait velocity unobtrusively in the home setting was recently
proposed and validated [10].

This in-home monitoring technology was developed in the context of the Intelligent Systems
for Assessing Aging Changes (ISAAC) study described in detail elsewhere [11]. Briefly, the
ISAAC study seeks to use home-based unobtrusive sensor technology in wireless networks
to monitor activity patterns such as gait velocity, general activity, and time-out-of-home to
detect changes in cognitive, physical, and behavioral domains. This in-home sensor
technology has been installed in over 200 homes in the Portland, OR (USA) metropolitan
area most of which are currently being monitored. As a result, as part of the ISAAC study
we have unobtrusively collected millions of gait velocity measurements from over 200
hundred subjects in their own residence during normal daily activities.

In this paper, we discuss a method for longitudinal analysis of these in-home collected gait
velocities. We proceed with a brief description of the gait velocity measurement system and
data collection followed by a description of a model for the probability density function of
these gait velocities including the assumptions underlying this model. We then describe an
algorithm for estimating this density function and its evolution over time and provide values
for the algorithm parameters that perform well both for abrupt changes and slower changes
over time, based on empirical evidence. We follow by demonstrating the proposed method
of analysis on two subjects; one who suffered an acute medical event during the monitoring
period and one who suffered a slow decline in function over time. Finally, we conclude by
discussing extensions of this methodology and future work.

II. Data Collection, Modeling, and Estimation
In this section, we briefly describe the in-home gait velocity estimation and collection
followed by a model for the probability density function of the gait velocity measurements.
We then discuss the estimation procedure for the density function and the corresponding
evolution over time.

A. In-home Gait Velocity Data Collection
A detailed description for estimating gait velocity and data collection is described elsewhere
[10]. Here we provide a brief description of the procedure for completeness. A sensor line is
defined as a linear array of four PIR motion sensors placed on the ceiling with
approximately 61 cm (2 ft) between adjacent sensors. The field-of-view of each sensor is
restricted to +/− 4 degrees to increase the precision of subject localization and prevent
sensor firings unless a subject walks directly under a sensor. In addition, the sensor line
placement is chosen to be in the hallway or other narrow corridor to restrict the path the
subject walks to be approximately linear with respect to the sensor line.
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As a subject walks through the line, the four sensors will fire sequentially giving time
information about when the subject is underneath each of the sensors. Since uncertainty
exists in both specific location of the subject and time of firing (due to wireless transmission
and time-stamping errors), we use a statistical linear model to relate the velocity of a subject
to the position and time information from each sensor firing. By assuming that the subject
walks with constant velocity through the sensor line, we can use total least squares to
estimate the velocity from the model. While in general only three of the four sensors need to
fire in order to estimate velocity, in this paper we focus on walking events where all four
sensors have fired. Before estimating velocities from the raw sensor data, we prefilter to
remove events where the velocity is not approximately constant. This is done by requiring
that the time between sensor firings of adjacent sensor pairs in the line normalized by the
physical distance between these pairs match each other within a threshold based on the noise
tolerance of the sensors. This step prevents making estimates for cases where the walking
event does not satisfy the model assumptions (such as when a subject pauses partway
through the sensor line during the walking event). The end results is an estimated gait
velocity and corresponding time stamp for each time a subject walks though the sensor line.

B. A Model for Gait Velocities
For the present analysis we model gait velocities as being drawn independently and
identically distributed from an underlying unknown but parameterized probability density
function. We assume that the parameterization of this density does not change much over
short time scales but can vary over longer time scales. In this description we have
purposefully not defined short or long time scales as we treat these as user specified
parameters in the following subsection on estimating the probability density function.
Symbolically, we assume that

(1)

where vt is the observed velocity at time t governed by the density function f(θt), which is
parameterized by a parameter vector θt that is also a function of t. We also require that

(2)

for [a,b) some short interval of time. Equation (2) describes the condition on which it is
appropriate to use all the data in the interval [a,b) to make estimates of the density at time t.

C. Density Estimation and Evolution
The first step in estimating the underlying gait velocity density is to identify a reasonable
density function to model the velocities. While both Gaussian and Gamma families of
distributions have been successful at modeling these velocities on an individual basis and
have parsimonious parameterizations, we have found that neither type of distribution offers
enough flexibility to adequately model the wide variety of empirical distributions that arise
from different subjects. As a result, we chose to leave the density function unconstrained
and use kernel density estimation on windows of the data. In terms of the model described
above, we estimate the underlying distribution at time t as

(3)

where h is the bandwidth of the kernel K, the parameterization vector θt = {vt'; ∀t' ∈ [a,b)}
consists of all data in the specified time window denoted by [a,b), and i indexes the n
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velocities used in the estimate. Selection of the window [a,b) is what defines the short time
scale for which we assume the density to be approximately constant.

In addition to estimating the density function for a specified window of the data, [a,b), we
also estimate the time t as  associated with the density estimate as the average of the
corresponding times of all walks occurring in the interval. This step is necessary due to the
nature of the data collection step described above. Because we only estimate a velocity when
the sensor line detects a walking event, our data set consists of walks that are not equally
distributed in time throughout the interval [a,b). As a result, we must also estimate the time
at which the density estimate is most representative (specifically, the time that is the average
of the estimated velocity timestamps).

In order to track the evolution of the density over time, we repeat equation (3) on new
windows of data denoted by [ak+1, bk+1). Each new data window is related to the prior
window by the relationship

(4)

where k indexes the data windows, w is the window length and α; 0 ≤ α < 1 is an overlap
parameter that provides a degree of smoothing to the density estimates by using a portion of
the data at the end of the prior interval in the estimate of the density in the next interval.
Once density estimates have been made at all the desired time intervals, the entire density
function can be interpolated uniformly across the entire time period for which the densities
were estimated. This step is desired to fill in locations where the gait velocity data is sparse
(and thus there are fewer density estimates), which can occur due to lack of data caused by
subject vacations, extended time out of house, or technical reasons.

The steps described above to estimate the gait velocity density function and its evolution
require the specification of several parameters. For our implementation on the subjects' data
described below, we selected a window length of w = 60 days and an overlap parameter α =
0.25. We started the first window on the first day of available gait velocity data and indexed
through the entire available record of data. We used a Gaussian kernel defined as

(5)

with h selected according to Silverman's suggestion [12] as

(6)

We note that (6) describes an estimate of the optimal bandwidth for estimating an
underlying Gaussian density. While we did not assume the underlying density was Gaussian,
we determined empirically that this bandwidth allowed reasonable density estimates. An
excellent and thorough description of bandwidth selection and density estimation that
motivated many of our decisions can be found in [12]. In order to prevent poor density
estimates in sparse data regions, we also required at least 20 walks in each window to
estimate a density. Finally, we used linear interpolation to estimate the density function for
each day between the first and last days of available data. Other interpolations can be used if
positivity constraints are maintained and the density estimates at each time point are
renormalized to make the interpolated functions true densities. We selected these parameters
for use in the estimation procedure based on empirical evidence supporting good
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performance on data from a wide variety of subjects with both abrupt changes and slower
changes over time.

III. Application to Eldercare
In this section we show the results of applying the previously described algorithm to
walking speed estimation obtained from the homes of two subjects with interesting data
records. These two subjects were chosen from many tracked subjects to illustrate the ability
of the system to track the distribution and to detect important changes.

A. Subject 1
Subject 1, a 91 year old female at the time of enrollment in the ISAAC study, had her home
installed with our in-home assessment technology including a sensor line and other
technology described elsewhere [13]. She was considered active in the technology arm of
the ISAAC study as of November, 2007. The results of applying the previously described
algorithm to the gait velocity data from her home are shown in fig. 1.

We discuss two features of interest in fig.1. First, in August of 2008 there is a smearing in
the density estimate that was later shown to be the result of a technical issue that caused the
data for the month of August to be excluded. As a result, estimates near this time period
used fewer data points and thus had a higher variability in the density estimate leading to a
smearing of the density estimate in the region of missing data. More importantly is the
abrupt decrease of approximately 30 cm/s in the gait velocity density (a shift in the
distribution from being centered at 70 cm/s to approximately 40 cm/s) followed by an
increase over a few months to a stabilizing central tendency of approximately 55 cm/s.
Subject 1 experienced a stroke in November of 2009 and had a partial recovery toward pre-
stroke abilities over the next few months. However, at least in terms of gait velocity her pre-
stroke ability never fully recovered and she remained at an average walking speed close to
55 cm/s until her death in early 2011. As can be seen in fig.1, the entire cycle of abrupt
change in function due to stroke, partial recovery of function and stabilization at a new
ability level is plainly shown in the evolution of the gait velocity density function.

B. Subject 2
Subject 2, a 96 year-old male at the time of enrollment in the ISAAC study had technology
installed in his home as described for subject 1 and was considered active in May of 2007.
We were able to monitor this subject until he moved from his residence in a retirement
community to assisted living in December of 2010. The evolution of his in-home gait
velocity density function is shown in fig. 2.

Of particular note in fig. 2 is the slow decline of central tendency in the gait velocity
distribution over time. This corresponds to a transition in cognitive function as evidenced by
the scores of this subject on the clinical dementia rating scale, or CDR. Specifically, this
subject first received a CDR score of 0.5 in 2009, indicating probable mild cognitive
impairment (MCI). This MCI diagnosis was confirmed by consensus of a neurologist and
other expert clinical personnel. Further, this slow decline in gait velocity over time preceded
the subject's move into assisted living thus predicting the future need for advanced care.
Both of these phenomena are consistent with the associations between gait and adverse
outcomes outlined in the Introduction section.

IV. Conclusion and Future Work
In this paper we discussed a novel method for analyzing in-home collected gait velocities. In
addition to detailing an algorithm to estimate the evolution of gait velocity over time and
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discussion of algorithm parameters that have worked well over a wide variety of subjects
and gait changes, we demonstrated how the methodology of monitoring the evolution in gait
velocity over time can identify changes associated with adverse outcomes. Additionally, we
demonstrated that this method is applicable for both detecting acute changes in gait function
and tracking longer-term changes that occur more slowly over time. We demonstrated this
on two subjects who have been tracked for over three years each who both suffered adverse
health outcomes that were either detected or predicted by the gait velocity data.

Future work will comprise two parts. First, automatic algorithms will be developed that can
generate relevant clinical alerts based on changes in the gait velocity density function.
Second, plots such as those shown in figs 1 and 2 should be integrated as part of personal
health records for elderly. We believe that this type of visualization tool will aid doctors and
caregivers in diagnosis and identifying patients at increased risk of adverse health outcomes.
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Fig. 1.
An estimate of the evolution of the probability density function of gait velocity for subject 1
noting time and effect of the stroke in November of 2009. The density values are
represented by the color shown in the colorbar.
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Fig. 2.
Estimate of the evolution of the probability density function of subject 2 noting the time of
the clinical dementia rating scale score (CDR) and corresponding diagnosis of mild
cognitive impairment(MCI). The density values are represented by the color shown in the
colorbar.
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