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Abstract
Tandem mass spectrometry has emerged as a powerful tool for the characterization of complex
protein samples, an increasingly important problem in biology. The effort to efficiently and
accurately perform inference on data from tandem mass spectrometry experiments has resulted in
several statistical methods. We use a common framework to describe the predominant methods
and discuss them in detail. These methods are classified using the following categories: set cover
methods, iterative methods, and Bayesian methods. For each method, we analyze and evaluate the
outcome and methodology of published comparisons to other methods; we use this comparison to
comment on the qualities and weaknesses, as well as the overall utility, of all methods. We discuss
the similarities between these methods and suggest directions for the field that would help unify
these similar assumptions in a more rigorous manner and help enable efficient and reliable protein
inference.
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1. INTRODUCTION
Recent advances in DNA sequencing and genomics have made it possible to reconstruct and
study the 1918 influenza virus [35], increase the visible color spectrum of mice using human
genes [13], and elucidate the process by which some bacteria can reassemble their shattered
genomes after exposure to extremely high levels of radiation [37]. But DNA sequencing has
its limits; for instance, all cells in the human body are genetically identical despite their vast
and observable functional differences. Finding the proteins, which have functional
importance, in a group of cells can be much more informative. High-throughput sequencing
methods have been applied to RNA [24], an intermediate between DNA and protein, but
RNA transcript is often a poor surrogate for protein expression; not all of the transcribed
RNA is translated, and once translated, the half-lives of different proteins vary widely [2,
11].

Tandem mass spectrometry has emerged as the most powerful tool for analysis of proteins in
complex mixtures [22, 32]. Figure 1A displays the process by which data is acquired in
tandem mass spectrometry-based proteomics. A protein sample is first subjected to
enzymatic digestion which breaks the protein into peptides; if a protein is represented as a
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string of its amino acids, then the peptides produced by digestion will be a set of substrings.
Certain digestive enzymes, for example trypsin or chymotrypsin, cut only at specific amino
acids, resulting in a reduced number of possible peptides for each protein. After digestion,
the peptide mixture is separated using liquid chromatography (LC), which sequentially
elutes peptides according to their hydrophobicity. Subsequently, the population of peptides
eluted at a particular retention time are further separated by their precursor mass to charge
ratio (m/z) using mass spectrometry; this is accomplished by selecting high intensity peaks
from the precursor scan. The population of peptides with a particular retention time and m/z
value is then fragmented at certain chemical bonds, producing several fragments for each
peptide [32]. Ideally, the population of peptides fragmented is homogenous. The m/z of each
fragment in this population is then measured using mass spectrometry to produce a tandem
mass spectrum, a collection of summary statistics about that population of fragments. This
process is repeated for different LC retention times and m/z values, resulting in several
thousand tandem mass spectra from a single experiment.

The problem of tandem mass spectrometry-based protein identification is to identify the
proteins in the original sample from the observed tandem mass spectra (Figure 1B). By
using existing knowledge from classical genetics, biochemistry and genomics, it is possible
to create a database containing an approximate superset of all possible proteins of interest
for a given sample. The proteins in this database can be associated with the peptides they
would be expected to produce when subject to digestion, creating a peptide database; these
peptides may consist of only those that result from a perfect digestion, or may include
peptides lacking certain cleavages. Each observed spectrum is mapped to one or several
peptides by comparing it to the predicted theoretical tandem mass spectrum for each peptide
in the peptide database [8, 25]. These peptide-spectrum matches (PSMs) are imperfect: error
may result from several sources. For instance, matching the spectra to peptides in the
peptide database implicitly makes the incorrect assumption that the population of peptides at
each hydrophobicity and m/z value is homogeneous. Errors can also result from an
oversimplified model of how peptides generate theoretical spectra. Furthermore, it is well-
established that some peptides, for instance those with extreme m/z values, are infrequently
observed, even when they are present [21, 34].

PSMs are scored by the quality of the match between the observed and theoretical tandem
mass spectra [14, 16, 17] and associated with the proteins that would theoretically produce
them when digested. These associations between proteins, peptides, and spectra can be
represented graphically to form a tripartite graph on proteins, peptides, and spectra by
placing edges between proteins and their constituent peptides and between peptides and
spectra that match them (Figure 1B). All protein identification algorithms start with this
tripartite graph and the PSM scores, and then compute either a predicted set of present
proteins or a ranking of proteins based on the belief that they are present in the sample.

An ideal protein identification method would maximize sensitivity, the proportion of truly
present proteins that are identified, while simultaneously minimizing the false discovery rate
(FDR) [3] of identified proteins. The FDR measures the proportion of identified proteins
that are not truly in the sample. The FDR is a useful measure because it quantifies the
proportion of protein identifications that would be biologically meaningless in a follow-up
experiment. Evaluating a method by estimating the sensitivity and FDR of a method is not
trivial, because it is difficult to develop gold standards for complex protein mixtures, which
are the most interesting application for tandem mass spectrometry-based protein
identification.
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Notation
We describe existing methods using a common framework. Figure 2 presents a graphical
view of well-established dependencies in protein inference; these dependencies clearly
reflect dependencies inherent in the mass spectrometry process and are used by every
protein identification method. We denote the proteins using a collection of random indicator
variables X. Similarly, we denote the set of peptides using a collection of random indicator
variables Y. The collection of observed spectra and any other associated evidence (for
instance, the precursor m/z associated with the spectrum) are encapsulated in a collection D.
For simplicity, we call the objects in the collection D “spectra,” even though they may be
spectra paired with precursor masses or other information. Also, we don't discuss the
different assumed peptide charge states used for PSM matches; a peptide identified at
multiple charge states can either be treated as a single peptide or treated as several unique
peptides (one for each charge state). Every method discussed can be approached in one of
these ways without making specific note of a charge state. We will use i, j, k to respectively
index the collection of proteins, peptides, and spectra. Table 1 provides a quick reference for
this notation.

Denote the tripartite graph on all proteins in the protein database, all peptides in the peptide
database, and all observed spectra as G = (E, V ). We say that two nodes (e.g. a protein and a
peptide) are “adjacent” in the graph if there is an edge between them. Let G′ = (E′, V′)
denote the “observed graph,” a subgraph of G containing only the peptides in G adjacent to
observed spectra and only the proteins in G adjacent to those peptides. The edges in G depict
dependencies inherent in the mass spectrometry process. Note that these edges depict a
subset of possible dependencies in the general inference problem; a specific model may
introduce further dependencies by tying parameters that model the processes depicted in this
graph. For instance, a method may exclude peptides with masses exceeding some threshold;
in that example, the mass threshold used would introduce dependencies not depicted in G
(i.e. if a peptide with a particular mass is deemed present, then a peptide with the same mass
will not be excluded by the mass threshold). Conversely, some approaches approximate the
known dependencies by removing edges from or altering G. Unless otherwise stated, all
models assume that proteins and peptides not included in the observed graph are absent.

Of particular interest are peptides and spectra like those labeled with an asterisk in Figure 2.
Peptides in G adjacent to multiple proteins are called “degenerate peptides”; likewise,
spectra that match multiple peptides are known as “degenerate spectra.” Peptide and
spectrum degeneracy are noteworthy because without degenerate peptides and degenerate
spectra, G is a tree; inference on that tree can be performed efficiently (unless further
dependencies are introduced by tying parameters). Because the proteins and peptides are
represented by boolean random variables, the computational cost of a generic naive
approach to inference on a general graph may be exponential in both the number of peptides
and proteins queried; in practice the number of peptides and proteins of interest is often on
the order of ten thousand, making such a naive approach to protein inference practically
infeasible.

We let sj,k denote the PSM score for a paired peptide j and spectrum k. sj,k is a rough
estimate of Pr(Yj|Dk) for (j, k) ∈ E. This likelihood is estimated empirically using
distributions of features of example PSMs where Y is known. Peptide scoring procedures
assume that the spectrum Dk is not degenerate and thus cannot arise from any other peptide;
degenerate spectra are eliminated by keeping only the edge to the peptide with the highest
likelihood score. By also estimating the prior probability Pr(Yj = yj), these methods then use
Bayes rule to estimate:
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In general, sj,k is not a good approximation for Pr(Yj|D) for two reasons. First, a peptide may
be included in several PSMs with different scores. Second, sj,k does not incorporate protein-
level information, which causes covariance in peptides adjacent to the same protein.

Protein grouping
Many of the methods presented below perform some form of protein grouping; that is, they
merge multiple proteins together into a single graph node before or during inference. These
nodes are then treated as a single protein. Afterward, some methods even use the graph
connectivity to remove certain proteins before inference is performed.

A “protein group” refers to a set of proteins which are adjacent to identical peptide sets
(using either G or G′, depending on the graph used by a particular method). After they are
merged, these protein groups are treated as any other protein; therefore, for simplicity we
will refer to both proteins and protein groups as proteins. In addition, some methods remove
a protein if it is adjacent to a set of peptides that is a subset of the peptides adjacent to
another protein. We denote this as the “Occam's razor principle.”

Protein grouping makes evaluation of protein identication methods more difficult because
identification of a protein group does not imply that all proteins in the group are present.
Instead, a present protein group indicates that at least one protein contained in the group is
present. For this reason, it is nontrivial to compare two methods if one performs protein
grouping and one does not. In contrast, the Occam's razor principle does not merge nodes in
the graph and does not influence the way in which the results should be interpreted;
however, the Occam's razor principle operates imperatively without a supporting model, and
can make it more difficult to intuitively understand methods that employ it. Methods that use
the Occam's razor principle, even those that are numerical and probabilistic, are colored by a
heuristic behavior.

2. EXISTING APPROACHES
Several computationally feasible approaches have emerged for performing protein inference
from G and the PSM scores. Here we classify these methods as belonging to one of the
following categories: set cover methods, iterative methods, and Bayesian methods. Set cover
methods approach the problem by accepting a set of peptides based on their associated PSM
scores and then accepting a set of proteins based on their adjacency to the accepted PSMs.
Iterative methods employ numeric heuristics, which are often probabilistically motivated, to
iteratively compute protein scores until convergence is reached. Lastly, Bayesian methods
generatively model the mass spectrometry process and then attempt to compute or
approximate marginals or a maximum a posteriori (MAP) set for the proteins.

Set cover methods
One- and two-peptide rules—The one- and two-peptide rules are the simplest methods
for protein identification. First, peptides are thresholded so that only peptides paired in a
PSM with a score at least τ are present. Second, proteins are similarly thresholded to keep
only proteins adjacent to at least one (or at least two when using the two-peptide rule)
present peptides. Formally, the N-peptide rule can be stated as follows:
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Usually, degenerate spectra are eliminated by keeping only the edge pairing a spectrum with
its highest-scoring peptide match; although this step is not necessary, it prevents an
individual spectrum from matching several peptides. Note that using the one-peptide rule by
itself, a single degenerate peptide may force several proteins to be present (for the N-peptide
rule, N peptides would be required).

DTASelect—DTASelect [33] is a more sophisticated version of the one- and two-peptide
rules. First, protein grouping may be performed. Then, DTASelect lets the user select from
several criteria to determine which peptides are present, for example, peptides contained in a
PSM with a score greater than a threshold or peptides matching at least a certain number of
spectra. Similarly, the user manually creates a rule for what proteins are present. Formally,
DTASelect allows users to define pairs of scoring functions and thresholds fY, τY and fX, τX
for peptides and proteins, respectively:

DTASelect can also determine which proteins are similar to a given protein by comparing
their sets of adjacent peptides; this similarity measure can be useful to determine situations
when a set of peptides can originate from many possible sets of proteins that contain similar
sets of adjacent peptides.

IDPicker—Frequently, one present protein will produce a handful of degenerate peptides
associated with high-scoring PSMs. In such a situation, the one- and two-peptide rules and
DTASelect may not only infer that the present protein was in the sample, they may also infer
that many other proteins adjacent to these peptides were in the sample. Consequently,
degenerate peptides may lead to a high FDR with these approaches. IDPicker [38] addresses
this problem by finding the smallest set of proteins to explain the present peptide set. This
smallest protein set defines the “minimum set cover” of the present peptides. Formally, if y
is the set of peptides adjacent to the present set of proteins y, IDPicker performs the
following optimization:

Because it defines the present peptides conditional on the present proteins, and then
optimizes a constrained set of these proteins, IDPicker models the mass spectrometry
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process from left to right in the graph in Figure 2. In contrast, the one- and two-peptide rules
and DTASelect define the peptide and protein relationship conditionally from right to left on
the graph in Figure 2, despite the fact that the processes underlying mass spectrometry
conditional dependency are oriented from left to right.

Like the one- and two-peptide rules, IDPicker is not a probabilistic approach; however, the
two objectives it jointly optimizes (maximize the identified peptides explained and minimize
the number of proteins to explain them) can be through a probabilistic lens. When
approached in this manner, there is an inherently Bayesian flavor to IDPicker. Recognizing
the similarity to Bayesian methods is important because it explains similar behavior between
IDPicker and Bayesian methods with a very strict prior on the number of present proteins;
the fact that IDPicker most closely resembles Bayesian methods with strict priors provides
understanding for why IDPicker is widely regarded as conservative compared to
probabilistic methods.

IDPicker can be reconstructed probabilistically by separating the optimization into the
product of likelihood and a prior. The necessity that all threshold-passing peptides must be
explained can be enforced by using a likelihood that is nonzero only when each of those
peptides is adjacent to a present protein. Furthermore, large protein sets can be penalized by
placing a prior on X that decreases with the cardinality of X (via an arbitrary strictly
decreasing positive function h). The MAP estimate of the resulting model will be identical to
the minimum set cover found by ID-Picker; of the protein sets that result in nonzero
likelihood, the smallest will have the highest prior and will therefore be the MAP estimate
(at least one nonzero likelihood is guaranteed because each peptide in the graph must be
adjacent to at least one protein, by definition).

IDPicker performs protein grouping; this operation resolves some possible ambiguities
where two sets of proteins would both be candidates for the MAP estimate. Note that, in this
context, the Occam's razor principle would be redundant, because any protein set containing
a protein adjacent in G to a subset of the peptides from another protein could be reduced to
explain the same peptides without including the former protein.

Iterative methods
ProteinProphet—ProteinProphet [23] is one of the first probabilistically motivated
methods for protein identification, and is still one of the most popular and highly regarded.
We will first describe a simplified version of their procedure and then use that to motivate
the additional complexity used in ProteinProphet.

ProteinProphet operates on G′, the graph of observed data and the adjacent peptides and
proteins; proteins not in G′ are given posteriors of zero. First, ProteinProphet performs
protein grouping using this graph and eliminates proteins by the Occam's razor principle.
Then, ProteinProphet eliminates degenerate spectra by removing all but the highest scoring
PSM containing each spectrum. Then ProteinProphet computes peptide scores from the
remaining connected PSMs; these scores are treated as approximate peptide probabilities:
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First, consider a graph with no degenerate peptides. In this case, a simplified version of
ProteinProphet assumes that each peptide contributes independent evidence to the protein
adjacent to that peptide:

When degenerate peptides are encountered, ProteinProphet partitions each peptide score s′j
among its adjacent proteins:

Then these partitioned peptide scores s″ are used as if there is no degeneracy:

Given the protein posteriors, the peptide scores are partitioned so that the size of the
partition associated with each protein is proportional to that protein's posterior:

Because the sum of weights for each peptide must sum to unity, the proportion constant can
be removed thus:

Finally, the protein posterior estimates ∀i, Pr(Xi|D) and the partition weights ∀(i, j) ∈ E′,
wi,j are iteratively updated in a batch-wise manner, until convergence is reached:

while convergence is not reached do
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end while

As described, this scheme treats each partitioned peptide score as exact independent
evidence to an adjacent protein. For this reason, a single high-scoring non-degenerate
peptide j may single-handedly result in a prediction that the adjacent protein i is present.
This protein would be given the same posterior as a protein with several high-scoring
peptides:

The creators of ProteinProphet make a useful observation: among high-scoring peptides,
there are fewer incorrect peptide identifications for peptides associated with proteins that
have evidence from several other peptides. ProteinProphet therefore computes a score called
“NSP” (“number of sibling peptides”) that summarizes other peptide evidence for a
particular protein i adjacent to peptide j:

These NSP values are binned to estimate a new peptide score conditional on the NSP bin:

where ProteinProphet approximates the true peptide posteriors with the peptide score:

. The NSP probabilities are estimated by taking the ratio of expected
numbers of present peptides in each NSP bin.

Finally, the use of NSP is extended to treat each degenerate peptide as several partitionied
peptides, one for each adjacent protein. The peptide scores conditioning on this new NSP

score NSP′ for each protein and peptide will be denoted 
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The final algorithm is as follows:

while convergence is not reached do

end while

When posterior protein estimates Pr(Xi|D) are given by any method, some threshold τX is
used to choose the final set of accepted proteins:

Scaffold—Scaffold [29] first aggregates PSM scores from multiple search engines (e.g.
Mascot [26], Sequest [8], X!Tandem [5]) are aggregated to form a single score these
aggregated peptide scores are then used for protein identification.

Scaffold employs a novel approach to the problem of spectral degeneracy to perform
inference on the observed graph G′. When a spectrum matches multiple peptides, then only
the peptides with scores approximately equal to the top-scoring peptide are kept. These
remaining peptides are grouped together for that spectrum, creating a “peptide group” with a
score equal to the scores of the approximately equal scores of the PSMs from that spectrum
and the peptides it contains.

Scaffold resolves peptide degeneracy using a greedy method. Proteins are assigned peptide
groups that are not adjacent to any other proteins. The protein scores are equal to the sum of
the scores of the assigned peptide groups. Then, degenerate peptide groups (i.e. peptide
groups containing peptides ajdacent to multiple proteins) are assigned to the protein with the
highest protein score. This process is repeated until no more peptide groups can be assigned,
and these ranks are used to represent the belief that a protein is present. The resulting graph
with edges connecting proteins to their assigned peptide groups is processed using
ProteinProphet, but with no weighting of peptide groups.

In Scaffold, proteins are first grouped using standard protein grouping, but proteins may also
be grouped if the sum of the scores of the peptides they do not share is lower than 0.95. The
Occam's razor principle is used to discard proteins that don't have unique peptide evidence.
In an identical manner to ProteinProphet, the present set of proteins x* is found by applying
some threshold to the sorted list of protein posteriors.
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EBP—The EBP method [27] is another probabilistically phrased and motivated method, but
is ultimately a complex numerical heuristic similar to ProteinProphet. Like ProteinProphet,
EBP operates on the observed graph G′. Initially, the EBP method removes spectra
degneracy using the same method as ProteinProphet, and computing

. EBP partitions the problem of protein identification into two
parts. First, the set H consists of proteins that are either present or homologous to a present
protein. Second, the set X ⊂ H consists of proteins that are present in the sample.

Proteins in H must be adjacent to at least one present peptide. Membership in H is calculated
using a Poisson distribution to estimate the probability complement to the event that peptide
adjacent to the protein is truly present. Membership in X is calculated conditional on
membership in H using a weighting scheme similar to ProteinProphet; each weight, where
Σi wi,j = 1, represents the probability that a present peptide j originated from protein i.

In a manner very siminProphet's NSP score, EBP computes an approximate abundance
estimate vi for each protein. The abundance estimates are computed as the total sum of
weighted peptide scores associated with a protein:

The abundance estimates are thresholded into abundance class bins ai = bin(vi). For each
abundance class bin, there is a corresponding set of parameters θa = (Na, τa, na, γa, κa, λa)
with the following meanings:

Variable Meaning

Na Number of proteins in bin a

τ a Total length of proteins in bin a

na Number of peptide matches to proteins in bin a

γ a Proportion of proteins in bin a that are in H

κ a Total length of proteins in bin a and in H

λ a Number of peptide matches in bin a that are correct

These parameters, along with w, are used to sequentially compute estimates of the
following:

The value a is updated as stated above by first computing vi|w and then thresholding it into
the appropriate bin. The probability Pr(Hi|D, θ, a) is estimated by modeling the number of
correct peptide identifications matching a protein i ∈ H as a Poisson process. The parameters
of this Poisson process are defined by the parameters in the appropriate bin θai, and by a

heuristic value , an estimate of the proportional probability that the
highest-scoring random match is to one of the peptides adjacent to i. A value proportional to
the conditional probability that i ∉ H is estimated using the estimated prior probability that i
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∉ H, the product of probabilities that all peptides observed are incorrect identifications and
the probability that the observed number of peptides would be produced by the Poisson
distribution:

Similarly, a value proportional to the probability that i ∉ H can be estimated by summing
over outcomes with a nonzero quantity m of correct peptides identifications. The resulting
summation terms will consist of two Poisson probabilities (one for the correct peptide
identifications, and the other for the incorrect peptide identifications) multiplied by the
probability that exactly that many peptides are correct matches. The latter probability is
estimated by summing over all possible subsets of exactly m present peptides adjacent in G′
to i:

The probability that a protein is truly present in the sample given that it is adjacent to a truly
present peptide is computed by marginalizing out the variable Hi; this marginalization only
takes one step because the set X ⊂ H:

When computing Pr(Xi|Hi, D, θ, a), the method used is nearly identical to the method used
to compute Pr(Xi|Hi, D, θ, a); the difference is that in computing Pr(Xi|Hi, D, θ, a) the
weighted value s″ is used in place of all instances of s′.

The entire iterative estimation process is repeated until the estimated values appear to
converge. The EBP method is not demonstrated to be a true expectation-maximization (EM)
[4] method, despite its probabilistic motivation and description; iterative estimation of
posteriors, weights, and other parameters is not equivalent to iteratively maximizing the
expectation of the full protein configuration likelihood.

The authors don't state an explicit procedure used for updating w; instead, they indicate that
the greatest weight must be given to the protein with the highest current posterior estimate.
Presumably, the authors use the same procedure as ProteinProphet for updating w. The
present set of proteins x* is found by applying some threshold to the sorted list of protein
posteriors. It is suggested that a combinatorial function would allow extension to replicate
experiments by requiring that the protein be present in a certain number of those
experiments.

PANORAMICS—The PANORAMICS method [9] similarly uses the observed graph G′.
First, peptide scores are normalized using parameters that must be established from a known
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data set. Then, proteins are grouped and peptides that produce indistinguishable theoretical
spectra are merged. After that, spectral degeneracy is removed by keeping only the edge to
the highest-scoring peptide. Peptide probabilities are estimated by estimating the probability
that a peptide is absent; the chances a peptide is absent are computed by computing the
probability that all PSMs containing that peptide are absent by taking the product over the
complements of their scores:

If  denotes the event that peptide j is present as a result of the present protein i, then the
probability that protein i is present and the probability that peptide j is present is given using
a formula similar to the unweighted formulation of ProteinProphet:

Finally, by assuming that the probability of observing any peptide given that an adjacent

protein is present depends only on the peptide, the probability of the event  can be
rewritten:

By rephrasing  in this way, it is possible to redefine the posterior protein and peptide
probabilities:

Values of Pr(Xi|D) and Pr(Yj|∃i : (i, j) ∈ E′) that are consistent with these equations are
found using the Newton-Raphson method. A present set of proteins x* is found by applying
some threshold to the sorted list of protein posteriors.

Bayesian methods
Hierarchical statistical model—The hierarchical statistical model [31] assumes that D
⫫ X|Y and generatively models the process by which proteins create spectra to perform
inference on G′. Spectral degeneracy is eliminated by keeping only the edge incident to the
peptide with the highest PSM score for any spectrum.

First, the model assumes an independent and identically distributed (i.i.d) prior for all
proteins: Pr(Xi) = γ. Next, the authors model the process by which a known set of proteins
creates a set of peptides as independent processes from each adjacent protein in G′. Their
model uses different parameters to model the emission of peptides resulting from different
cleavages of that protein; a specific cleavage indicates that the enzyme cut where expected,
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while a nonspecific cleavage indicates that the enzyme would have to cut at an unexpected
location.

where

The probability of a correct PSM match given the associated peptides is likewise calculated
using Z as a random variable that indicates whether a PSM match is correct:

The authors also model the distribution of PSM scores as a mixture of the PSM score
distributions from correct and incorrect PSM matches with mixing proportion λ, where q are
factors that influence the score:

These likelihoods must be defined in order to perform protein inference. In practice, they are
defined as parameterized distributions, and the parameter estimates are made using a
separate data set.

Lastly, the probability that the number of peptide hits for present proteins is greater than
some threshold m is modeled using parameters ρ1 and ρ0:

Then, approximate maximum likelihood estimates (MLEs) of the parameters θ = (γ, α, δ,
λ, ρ1, ρ0) are computed using EM with hidden variables X, Y, and Z. Finally, using the
estimated θ values, the posterior probabilities are estimated for proteins:

These posteriors are thresholded to produce a present set of proteins x*.

Nested mixture model—The nested mixture model approach [19] to protein
identification transforms G′ into a tree. This transformation is accomplished by copying
each degenerate peptide (and the spectra it matches) so that each copy is adjacent to only
one protein. Spectral degeneracy is also removed by keeping only the highest-scoring edges
for each spectrum. This transformation ensures the graph G′ is a tree. Because each peptide
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can only be associated with a single protein, let i(j) denote the protein associated with
peptide j.

The model assumes an i.i.d prior for all proteins: Pr(Xi) = γ. All peptides adjacent to absent
proteins are assumed to be absent, and the peptides adjacent to present proteins are drawn
from a mixture model of present and absent peptides:

The number of peptides adjacent to present and absent proteins are of known distributions f1
and f0, respectively:

In a similar manner, the distributions of PSM scores containing present and absent peptides
are also modeled using distributions g1 and g0, respectively:

The distributions f and g are parameterized by θf and θg, respectively. Because the
transformed graph G′ is a tree, the peptides are conditionally independent of one another
given the associated protein. In a similar manner, the scores are conditionally independent of
one another given the associated peptide. The likelihood can then be computed:

Similarly, the likelihood constant can be computed and normalized out by summing over all
protein states in the joint probability:

The EM algorithm is used to compute approximate MLE estimates of the parameters θ = (γ,
α, θf, θg). Posteriors for each protein are computed and these posteriors are thresholded to
compute the set of present proteins x*.
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MSBayes—MSBayes [20] takes a novel approach to protein inference; a complex, static
model of peptide detectability [10, 21, 34] is used to model the mass spectrometry process
for the entire graph G, rather than for the observed graph. The best peptide match for each
spectrum determines the peptide score sj; peptides that are not in the observed graph are
given scores of zero.

In MSBayes, each protein has an independent prior Pr(Xi|D) = γ; the value of γ is either 0.5
(a uniform prior), or chosen using prior information about the number of proteins in the data
set. The peptide scores are assumed to comprise the data, which are conditionally
independent of the proteins given the peptides. Each peptide is assumed conditionally
independent of other peptides given the proteins. Likewise, scores are assumed to be
conditionally independent of each other given the peptide set:

where Pr(Yj = yj|Sk(j) = sk(j)) is estimated by Peptide-Prophet [16]. The peptide emission
probabilities αi,j are estimated using a static predictor of peptide detectability. This
detectability predictor [34] is composed of a neural network that uses 175 features of each
protein-peptide pair to predict whether a peptide will be observed given that an adjacent
protein is present. The parameters of this model are trained using a “protein standard,” a
small data set composed of a known set of proteins that have been biochemically purified.

Lastly, Markov chain Monte Carlo (MCMC) is used to jointly sample from the space of
proteins and peptides and compute protein posteriors and a MAP protein set as follows:

x, y ← some configuration : Pr(D, X = x, Y = y) > 0

while convergence is not reached do

bx ← random({i1, i2, …} : |bx| = u

by ← random({j1, j2, …} : |by| = v

Denote X′ = {Xi : i ∈ bx}

Denote Y′ = {Yj : j ∈ by}

∀x′∀y′, px′,y′ ← ∝ Pr(X′ = x′, Y′ = y′|∀i ∉ bxXi = xi, ∀j ∉ byYj = yj, D)

Sample an x′, y′ proportional to px′,y′

∀i ∈ bxxi ← 

∀j ∈ byyj ← 

end while

The posterior of each protein can be estimated by computing the frequency of iterations for
which that protein is present in the configuration x. These posteriors are thresholded to
estimate the present set of proteins x*. Alternatively, the MAP protein and peptide set can be
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computed by storing the joint configuration that results in the highest proportional posterior.
This MAP protein set can be treated as the set of present proteins:

Fido—Fido [30] first removes spectral degeneracy by keeping only the edge to the highest-
scoring peptide for each spectrum. Peptides with identical theoretical spectra are merged so
that they are treated as the same peptide. Then, protein posteriors are computed using a
graphical model similar to MSBayes. The Fido model is different in that it does not use a
static detectability model; peptide detectabilities are estimated using a fixed parameter α
that is shared among all peptides. Fido can operate on the observed graph G′ or on the full
graph G, by using zero or near-zero scores for unobserved peptides. A noise model is used
to account for the chance that a peptide is observed incorrectly; the parameter β is used to
model the probability that a peptide will be observed even though it is absent.

The data are assumed conditionally independent of the proteins given the peptides.
Furthermore, the process by which a peptide is emitted from an adjacent protein is assumed
to be independent of other peptides being emitted. Likewise, the process by which absent
peptides are incorrectly observed is assumed to be independent of the process by which
proteins emit peptides. Together, these assumptions allow the peptide set to be marginalized
out given the protein set:

A value proportional to the probability of observing a spectrum given the adjacent peptide
state is calculated directly using the original likelihood Pr(Dk|Yj = yj); this score is estimated
empirically by PeptideProphet and is used, along with an estimate of Pr(Yj = yj), to compute
Sj,k. By using the PeptideProphet estimate for the peptide prior Pr(Yj = yj) and the score Sj,k,
a value proportional to the original likelihood can be computed:

Disjoint subgraphs are independent; therefore, posteriors are computed by marginalizing the
set of proteins in each connected subgraph of G. Because the cost of this marginalization is
exponential in the number of proteins in the connected subgraph, graph transformations are
used to reduce the number of proteins in a connected subgraph, and then exact or
approximate posteriors are computed using the transformed subgraph.

The first graph transforming method clusters proteins using the same procedure for protein
grouping; however, rather than treat each cluster as present or absent, a cluster is represented
by the number of present proteins it contains. Because computation of Pr(Yj = yj|X = x) only
depends on the number of present proteins adjacent to peptide j, and because all proteins
adjacent to peptide j must be in the same cluster, then it is sufficient to condition on the
number of proteins in the adjacent clusters. Let Nv represent the number of present proteins
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in protein cluster v, where v indexes the protein clusters and X(v) represents the set of
proteins in cluster v. Finally, let the size of cluster Nv be written len(Nv), while denoting the
number of present proteins in the cluster with |Nv|. Marginalizing over all protein
configurations can then be performed by marginalizing over all cluster configurations and
accounting for the number of unique protein configurations that could result in an identical
cluster configuration:

Effectively, considering the clusters rather than the proteins exploits symmetry that results in
an identical likelihood from multiple protein configurations. Marginalizing over all cluster
configurations can be performed much more efficiently than marginalizing over all protein
configurations:

The second graph transformation graphically exploits the fact that proteins will not co-vary
due to a shared peptide if the peptide has a score equal to zero. A peptide j with a zero score

 must be absent; therefore, it cannot be emitted by any adjacent protein and cannot be
the result of the noise model. Consider a graph with that peptide duplicated so that a unique
copy exists for each adjacent protein, and these peptides are now only adjacent to one
protein each. The set of necessary events likewise states that each adjacent protein cannot
emit the peptide, and that the peptide cannot be created by the noise model. The only
difference introduced is that the noise model is counted once for each protein in the
transformed graph, rather than once overall. This effect is therefore removed by dividing the
original likelihood by (1 − β) for each duplicate peptide added (aside from the original).

This second transformation substantially decreases the number of proteins in each connected
subgraph, which makes marginalization more efficient. Furthermore, because the peptide
scores are not sacrosanct, small scores can be treated as zero for the purposes of this
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operation. Thus, in the cases when the marginalization would be too computationally
expensive, the graph transformation can be relaxed to duplicate peptides with larger scores.
In this way, approximate posteriors can be computed to meet a desired time constraint
specified by the user. These posteriors can be thresholded to produce a present set of
proteins x*; the same graph transformations can be used to find the MAP protein set, which
will be composed of the MAP protein set in each connected subgraph.

COMPARISON OF EXISTING APPROACHES
In the publications originally presenting these methods, some are compared against other
existing approaches. In this section, we analyze each comparison and evaluate the methods
relative to each other. Table 2 depicts our analysis of each published comparison between a
pair of methods. For each method, we consider the accuracy demonstrated in the original
publication, as well as the computational cost required to apply it to large, biologically
interesting data sets.

We also consider the validity of the published evaluation of each pair of methods.
Traditionally, decoy database methods have been used to evaluate mass spectrometry-based
protein identifications [7]. This approach introduces proteins into the protein database that
are known to be absent; these absent proteins, known as “decoys,” may come from a species
known not to contribute to the sample, or may be generated by shuffling or reversing the
original protein database. The proteins comprising the original protein database (before
decoys are introduced) are called “target” proteins. The decoy proteins can be used to
estimate the FDR of a given set of protein identifications; if decoy proteins are favored no
more and no less than absent targets, and if the number of decoys and targets are equal, then
for each decoy protein found in a predicted present protein set x*, it is expected that one
incorrect target protein in x* is also present. This target-decoy approach makes assumptions
that are known to be incorrect regarding the target and decoy databases, which result in
several caveats to using it to estimate the FDR.

Below, we describe the caveats to the published comparisons between pairs of methods, as
well as the outcome of the competition to produce an analysis of each method's accuracy.
Overall, we use this analysis of a method's accuracy, along with the method's efficiency and
computational scalability, as criteria to predict and evaluate its utility for identifying proteins
in large data sets from complex protein mixtures. Each method is evaluated against the other
methods and assigned a score: performed much worse (□□□□), slightly worse (■□□□),
essentially the same (■■□□), slightly better (■■■□) or significantly better (■■■■).
Relative scores indicating that a method performed significantly worse than other methods
suggest serious drawbacks to using that method that will frequently come up in common
practice. Relative scores indicating that a method performed slightly worse than another
method suggest a significant drawback to using the method, but not so significant that it
prevents the method from being useful in certain settings. In the following discussion of
these comparisons, we justify each evaluation.

In [38], IDPicker is compared to the one- and two-peptide rules using replicate experiments
from a protein standard containing 49 proteins, proteins from yeast cells, and proteins from
human. For each data set, the authors choose a peptide threshold τY by controlling the
peptide FDR estimated using a decoy database. The IDPicker method substantially increases
the specificity of the method, while slightly lowering the sensitivity. It is trivial to observe
that IDPicker will always select a subset of the proteins chosen by the one- or two-peptide
rule when using the same peptide threshold for both methods; therefore, IDPicker can never
have superior sensitivity, and so it is appropriate to use a more lax peptide threshold for
IDPicker in order to compare it to the one- and two-peptide rules. Even so, it is practically
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and theoretically clear that IDPicker will result in substantially greater specificity, especially
in instances where there are many degenerate peptides. Each degenerate peptide adjacent to
a present protein has a large chance of receiving a high score; using the one- and two-
peptide rules, all proteins adjacent to that degenerate peptide will be included in x*, even if
only one of them was present.

Furthermore, degenerate target peptides are much more likely to be adjacent to target
proteins; the expected scores of target peptides, which consist of a mixture of present and
absent proteins, will be higher than the expected score of decoy peptides, which are
necessarily absent. Target protein identifications are often used as a surrogate for true
positive protein identifications when there is no ground truth regarding the set of present
proteins. Therefore, methods like the one- and two-peptide rules are more likely to include
absent target proteins rather than decoy proteins, resulting in an overestimated sensitivity
and underestimated FDR.

Understandably, the IDPicker method is less efficient than the computationally trivial one-
and two-peptide rules. Solving minimum set cover is NP-complete [15]; however, like many
NP-complete problems, it can often be solved efficiently in practice, and when an exact
solution is inefficient, it can be approximated using established approaches.

ProteinProphet is one of the most popular and seminal protein identification methods, and so
many methods have been compared to it. In [27], the EBP method is compared to
ProteinProphet using several replicate experiments on a protein standard consisting of 18
purified proteins [18]. Using two protein thresholds τX ∈ {0.9, 0.7, EBP achieves a greater
specificity (one fewer decoy protein identified), but a lower sensitivity (one and two fewer
present proteins identified, respectively). Furthermore, EBP is shown to be conservative; the
FDR estimated computing the expected value of the complement of the posterior
probabilities of proteins included in x* [6] is substantially higher than the true FDR. For this
reason, a fairly high protein threshold would be required to achieve greater sensitivity. This
higher protein threshold is likely to increase the FDR. For this reason, we conclude that the
method has not been demonstrated to be superior to ProteinProphet. EBP may even lower
the interpretability of the protein posteriors due to its conservative estimates.

The iterative procedures underpinning EBP are very similar to ProteinProphet and are
mostly very efficient; however, when estimating the probabilities Pr(Hi|D, θai) and Pr(Ti|D,
θai, w), there is a sum over all subsets of observed peptides adjacent to a protein. This term
requires summing over the power set, which grows exponentially with the number of
observed peptides adjacent to any protein. Unless this sum of products can be transformed
into a product of sums using dynamic programming or some other procedure, it will become
prohibitively inefficient to perform on data sets from complex organisms like humans,
where the number of peptides adjacent to a protein can be very large.

In [9], ProteinProphet is compared with PANORAMICS on a data set from the plant
Arabidopsis thaliana. The authors calibrated parameters for their peptide score in a rigorous
manner using a protein standard; the protein standard is different enough from the A.
thaliana data set that these parameter estimates are unlikely to provide an unfair advantage
to their method. The authors then search the data against two different databases. The first
database is the A. thaliana proteome (targets) combined with reversed copies of every target
protein. The second database is the NCBI NR database, which contains over 3.1 million
proteins. For both searches, the protein threshold τX was varied to produce a receiver
operating characteristic (ROC) curve, which plots the number of true positive protein
identifications against the number of false positive protein identifications. When the spectra
were searched against the A. thaliana data set, ProteinProphet identifies more target proteins
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from the A. thaliana proteome in the low FDR region. In general, ProteinProphet performs
very well at low FDR thresholds, and it is common to see comparisons in which competing
methods outperform ProteinProphet only once the FDR becomes higher.

When these spectra are searched against the combined NCBI NR (target) and NCBI NR
reversed (decoy) database, PANORAMICS identifies many more targets than Protein-
Prophet in the moderate FDR region. The authors suggest that this increased number of
identified targets indicates an increased sensitivity compared to ProteinProphet; however,
the paper does not indicate whether these NCBI NR proteins are actually from A. thaliana.
The demonstrated tendency to distinguish targets from decoys, regardless of species, is
actually quite detrimental; in practice, the organisms producing the sample data are almost
always known, and the challenge is to separate and distinguish the present target proteins
from the absent target proteins. A preference for target proteins, regardless of species, can be
the result of degenerate peptides from a single present protein that allow several other
adjacent proteins to be included in the set x*. For this reason, PANORAMICS appears to be
slightly less reliable than ProteinProphet, which includes fewer and fewer target proteins as
the protein threshold τX is lowered.

The principle strength of the PANORAMICS method is its elegant simplicity, which casts
the protein identification problem as a numeric equation; approaches to numerically solve
such equations are extremely efficient. Their numeric solution is not demonstrated to be
unique, but it is an appealing heuristic.

In [31], ProteinProphet is again compared, this time to the hierarchical model. The two
methods are both used to analyze a data set consisting of 23 peptides together with 12
purified proteins. The proteins are enzymatically digested, and the resulting peptide mixture
is treated as containing 35 present “proteins”; the 23 peptides are treated as single-peptide
proteins. The authors use the two methods to identify peptides at different peptide
thresholds, and they demonstrate that ProteinProphet has a slightly greater sensitivity at a
low FDR and a lower sensitivity at a higher FDR. They do not perform a similar comparison
for proteins; instead, they choose a single cutoff at τX = 0.8 and show that ProteinProphet
and the hierarchical model identify the same number of present proteins and decoy proteins.
The ad hoc choice of protein threshold is uninformative, especially given the tendency of
ProteinProphet to outperform other methods in the low FDR region.

Unfortunately, the hierarchical model computes a sum over all peptide and protein
configurations, and the paper does not discuss the resulting computational cost. Depending
on the implementation, the cost of computing posteriors will grow with either the
exponential or the factorial of the number of variables (or the number of proteins, if the sum
of products over peptides is transformed into a product of sums) in a connected subgraph; in
practice, this poor scalability makes the hierarchical model computationally prohibitive for
so many data sets that the method is not practically useful.

In [19] the nested mixture model is compared to ProteinProphet on a yeast data set using an
unspecified decoy database of artificial proteins. The nested mixture model has slightly
higher sensitivity than ProteinProphet at low FDR, which is fairly impressive. Overall, the
method performs similarly to ProteinProphet; however, the utility of the nested mixture
model is low, because the treatment of degenerate peptides (essentially assuming that no
peptides are degenerate) will cause the model to perform poorly on data sets from complex
organisms such as human, whose graphs feature substantial peptide degeneracy.
Furthermore, the treatment of degenerate peptides resembles the one- and two-peptide rules,
and may result in an overestimate of sensitivity, because target peptides are more likely to
have higher scores and target proteins are more likely to share degenerate peptides with
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other target proteins. Also, like the one- and two-peptide rules, the independent treatment of
peptides makes this method very computationally efficient.

In [20], ProteinProphet is compared to MSBayes on a protein standard composed of 49
proteins [38] using a detectability model with hundreds of parameters chosen from another
replicate of the same data set. MSBayes is shown to have a higher specificity but a lower
sensitivity using a protein threshold of τX = 0.5. Considering that the threshold is so lax, the
fact that ProteinProphet is still more specific indicates that the MAP protein set is very
permissive. Furthermore, the fact that so many parameters for the detectability model are
estimated on essentially the same data set makes the results less meaningful; even though
the detectability model is shown to perform fairly well using parameters estimated from
other data sets [34], it is highly probable that even fairly small changes in the quality of the
peptide detectability estimates may result in large changes in the set of identified proteins.

MSBayes is not as efficient as ProteinProphet, but this may be because MSBayes is
implemented in an interpreted language. The underlying MCMC procedure could be
reimplemented in a more efficient, compiled language to be roughly the same speed as
ProteinProphet. The MCMC procedure jointly samples protein and peptide states, despite
the fact that the model permits peptides to be conditionally independent of each other given
the protein set. Using this conditional independence would permit the peptides to be
marginalized out in linear time given a sampled protein state, dramatically reducing the
space that needs to be sampled. Furthermore, d-separation can be exploited to ensure that a
block sampling chooses protein blocks so that every protein in the block shares a peptide
with another protein in the block. Otherwise, a block will be d-separated by proteins whose
states have been sampled, and can be sampled independently, rather than jointly.

In [30] ProteinProphet is compared to Fido on a protein standard of several replicate
experiments performed using 18 purified proteins [18], a data set from the bacterium
Haemophilus influenza set, a yeast data set [14], and a data set from the worm
Caenorhabditis elegans [12] using a variety of decoy databases. The model parameters α, β,
and γ are estimated using a low-resolution (about 10 points per variable) grid search to
choose the values that simultaneously maximize the accuracy (as measured by target decoy
distrimination) and minimize the error between the empirical FDR (using the decoy
database) and the estimated FDR (using the computed posterior probabilities). Using these
parameters, Fido performs slightly better for the low FDR regions of the yeast, H. influenza,
and C. elegans data sets and substantially better on the protein standard. On the protein
standard, which consisted of hundreds of replicate experiments, ProteinProphet gives many
proteins posteriors of 1.0, including some decoy proteins. Fido does not give these proteins
such high posteriors, and is substantially more accurate and better calibrated, partly due to
the noise model, which can account for large numbers of spectra yielding higher average
PeptideProphet scores, even for decoy peptides. The small improvement on three of the data
sets must be measured against the fact that Fido estimates some parameters using the target
and decoy database specifically for each set. Although estimating parameters on each data
set using the target and decoy labels makes the small improvements less meaningful, it is
unlikely that this parameter estimation results in substantial overfitting; the parameters are
shown to be relatively robust between data sets, and it would be surprising if a low-
resolution optimization of three jointly related parameters could simultaneously result in an
accurate and well-calibrated model due to overfitting alone. Furthermore, the improvement
on the protein standard data set is so substantial that it is nearly impossible that it is due to
overfitting.

Fido is just as efficient as ProteinProphet. In practice, some data sets may respond less to the
graph transformations, but large connected subgraphs can still be separated by duplicating
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peptides even when they have nonzero scores. If protein grouping is used, Fido's clustering
transformation will provide no speedup; however, posteriors assigned to protein groups are
not as informative as posteriors assigned to individual proteins. For this reason, it is
necessary to use a prior or rephrase the likelihood if inference on protein groups is to be
reinterpreted as posteriors on individual proteins. The speedup introduced by protein
clustering may allow more realistic protein priors to be efficiently applied.

In [30] Fido is also compared to MSBayes on a protein standard composed of 49 purified
proteins [38]. Fido performs slightly better in the low FDR region, but both methods
basically perform the same. Furthermore, there is the possibility that a very small number of
human contaminant proteins may bias the evaluation slightly because they will be treated as
absent even though they're present.

Fido is more efficient than MSBayes, which is written in an interpreted language. However,
a python reimplementation of Fido makes the runtime comparable to MSBayes; therefore, it
is reasonable to assume that an efficient reimplementation of MSBayes in a compiled
language could be scaled to very large data sets.

DISCUSSION
Quantitative methods, which estimate numeric protein scores instead of simply imperatively
computing the protein set x*, have a distinct advantage over nonquantitative methods,
because quantitative methods offer information regarding the confidence of the proteins
identified. Furthermore, among quantitative methods, probabilistic methods offer easily
interpreted scores; marginal protein posterior probabilities indicate the chances that a certain
protein is present in the sample. In contrast, with nonprobabilistic quantitative methods, a
score threshold of τX may be appropriate for one data set, but on another larger data set, the

protein threshold should be stricter . This property leads to a method that must be run
and adjusted manually to achieve satisfactory results.

Probabilistically motivated heuristics, like the iterative methods presented in this review,
often provide very useful and satisfying ways to approach a problem initially, but these
methods do not provide an intuitive understanding of the inference problem itself; therefore,
numeric heuristics can be very difficult to improve and extend. Furthermore, because these
methods are defined procedurally, rather than derived from clearly stated assumptions, they
can be brittle. For example, ProteinProphet is often extremely accurate and efficient;
however, for some large data sets, like the combined replicates from the protein standard of
18 proteins, ProteinProphet becomes inaccurate and unreliable. Post-processing methods
like MAYU [28] attempt to compute more rigorous FDR estimates after ProteinProphet is
run, but the entire approach of “fixing” the results after the fact, rather than improving the
gestalt process of identification, is reminiscient of the very approach that sometimes makes
ProteinProphet unreliable.

Several assumptions stated or implicit in these various approaches are quite similar. For
instance, the one- and two-peptide rules, DTASelect, ProteinProphet, EBP, Scaffold,
PANORAMICS, and the nested mixture model all make assumptions that make the graph
into a tree by somehow partitioning peptides among their adjacent proteins. This shared
assumption is no coincidence: inference on a tree is substantially easier than inference on a
general graph. Thus, rather than starting with a formal and rigorous formulation of the
protein identification problem and then making it more efficient, these methods change the
question they ask so that it becomes easier to answer. Likewise, every method presented
makes assumptions to remove spectral degeneracy, which results in a subgraph on peptides
and spectra composed of disjoint trees.
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Rather than making assumptions that make the graph (or a snapshot of the graph in one
iteration) into a tree, the hierarchical model, MSBayes, and Fido attempt to solve the actual
problem by modeling the mass spectrometry process generatively and then taking steps to
compute protein posteriors or the MAP protein set. In the case of the hierarchical statistical
model, a naive treatment of inference on the non-tree topology of the graph results in a
runtime exponential in the number of connected proteins in a subgraph; this runtime makes
the procedure of little use in practice. MSBayes, on the other hand, avoids an exponential
runtime by using MCMC. Fido uses graph transformations so that the cost of
marginalization or approximate marginalization is not prohibitively large.

Because the Bayesian methods approach protein inference by modeling the mass
spectrometry process and then taking the necessary steps to make inference feasible, they
have a convenient modularity that allows the models to be easily improved; for instance,
prior information regarding the number of present proteins or prior information regarding
peptide detectability can be easily integrated into these models. In contrast, iterative
methods are much more difficult to improve in this way. For instance, it would be quite
difficult to come up with a way to correctly adjust ProteinProphet's protein-peptide weights
to account for prior information on the number of present proteins. Bayesian approaches, on
the other hand, don't partition the peptides among adjacent proteins; instead, they take into
account the fact that shared peptides may only be present in a single protein by “explaining
away” the shared peptide when an adjacent protein is present. Because Bayesian methods
model mass spectrometry in an intuitive way, it is trivial to see how these methods could
incorporate prior information into the protein prior for a model.

It is easy to see that much more accurate and sophisticated models of the mass spectrometry
process are possible. For example, peptide detectability is best modeled in a sample-specific
way, not statically. Although some of the factors that determine peptide detectability are
invariant between experiments, others will depend on the experiment and on the specific
proteins present. For instance, a highly abundant protein can result in highly abundant
adjacent peptides, some of which may outcompete other less-abundant present peptides with
similar mass and retention time; these less abundant peptides will not be selected during the
precursor scan, and will not be detectable. Bayesian methods are very well-suited to
incorporate more complex models of peptide detectability, which could easily model
experiment-specific peptide detectability trends. Similarly, Bayesian methods can be easily
extended to the full tripartite graph. The spectral degeneracy removed by all methods offers
a great deal of unused information: for example, a spectrum with a spurious highest scoring
peptide match is likely to have a lower ranked peptide match from a present peptide. Using
protein-level information, the present peptide may have other evidence, which could
upweight the chances it produced the degenerate spectrum, and subsequently downweight
the effect of the spurious PSM.

These more complex models of mass spectrometry will introduce greater computational
burden; however, that must not dissuade us from modeling the process as accurately as
possible. First of all, there is a wealth of information on efficient graphical inference, for
instance tree decomposition [1] and loopy belief propagation [36], that could substantially
improve the efficiency of inference even with accurate models.

Furthermore, even if the cost of inference using a more accurate model were prohibitive, a
better generative model of the mass spectrometry process could be applied to evaluation.
The target-decoy strategy is so flawed that it makes rigorous comparison of methods very
difficult. On one hand, degenerate peptides may increase the probability estimates of absent
target proteins more than decoy proteins, yielding an incorrectly optimistic estimate of
sensitivity and FDR. On the other hand, because high-scoring decoy peptides are going to
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stratify uniformly over the decoy proteins, whereas high-scoring target peptides are more
likely to cluster to fewer present target proteins, target-decoy databases may overestimate
the number of absent targets and yield overly pessimistic FDR estimates [28]. Robust
generative models could supplement or replace the target-decoy strategy, and be used to
evaluate the protein sets proposed by different methods.

Models of the mass spectrometry process and inference techniques are not the only facets of
protein inference that could benefit from increased formality and attention. The problems of
evaluating methods and reporting results are also ripe for fundamental improvements and
novel approaches. For instance, posterior-based rankings on proteins don't account for non-
independence between the included proteins: if a higher-scoring protein is chosen, that
choice should decrease the rank of another protein that is adjacent to an overlapping set of
peptides. Furthermore, the MAP approach does not adequately illustrate the relative
advantage of the MAP set compared to the protein set yielding the second highest posterior.
Often this leads to biologists interpreting results themselves, even after substantial statistical
inference is performed: it is common to ask, “Are there any other sets of proteins that might
result in the identified set x* using this method?” Ideally, rigorous statistical procedures
should evaluate methods by mapping all possible sets of present proteins to all possible sets
of identified proteins and estimating the probability that a method would make each
identification from each present set. If such an approach could be made computationally
efficient, then it could dramatically improve the utility of mass spectrometry and
substantially improve the confidence with which protein samples can be analyzed.

Above all, it is important to recognize that a number of very similar approaches to protein
identification have been repeatedly applied in different packaging. When a field is in its
infancy, heuristics are the natural approach to take; heuristics are fast sketches of our
qualitative goals, and they are often easy to implement. Nevertheless, as a field grows into
maturity, it is increasingly important to approach problems formally. Mass spectrometry is
currently experiencing an exciting watershed moment reminiscient of the early ages of the
genomics era, where formal approaches to open problems promise to not only substantially
improve our understanding of the processes that drive life, but also to propose questions that
may result in novel statistical concepts and methods with myriad of other applications.
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Figure 1. Protein identification using tandem mass spectrometry
(A) In the tandem mass spectrometry-based proteomics experiment, a collection of proteins
is digested into peptides. The peptides are separated by their LC retention time and then by
separated by precursor m/z using mass spectrometry (MS). The resulting peptide population
is fragmented and subject to a second round of mass spectrometry to produce a tandem mass
spectrum. This process is repeated for different LC elution times and precursor m/z values to
produce several thousand tandem mass spectra. (B) The observed tandem mass spectra are
matched to peptides using a search database. In the graphical view of the inference problem,
proteins are adjacent to their constituent peptides (i.e. an edge connects proteins to the
peptides they would produce in the proteomics experiment).
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Figure 2. The general graphical view of dependencies in protein inference
Proteins (X), peptides (Y), and spectra (D) form a tripartite graphGwith edges indicating
well-established dependencies motivated by the mass spectrometry process. Examples of a
degenerate peptide and a degenerate spectrum are labeled with asterisks. It is important to
note that in the graphG, all proteins, peptides, and spectra are included, even those that are
not connected to observed spectra.

Serang and Noble Page 28

Stat Interface. Author manuscript; available in PMC 2012 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Serang and Noble Page 29

Table 1

Notation reference. Here we define each variable from our notation. We also present the variables used to
index each collection. Because the notation for indices is consistent, the type of variable accessed in the graph
G is known by the name of the variable: i ∈ V, i′ ∈ V, are proteins in G, j ∈ V, i′ ∈ V are peptides in G, and
k ∈ V, k′ ∈ V are observed spectra. Similarly, (i, j) ∈ E denotes an edge between protein i and peptide j and
(j, k) ∈ E denotes an edge between peptide j and spectrum k

Name Meaning Indexed by

X Collection of indicator variables for the proteins i, i′ ,…

Y Collection of indicator variables for the peptides j, j′ ,…

D Collection of observed spectra and precursor masses k, k′ ,…

s Collection of PSM scores (j, k)

G = (E, V) The graph containing all proteins, peptides, and observed data –

G′ = (E′, V′) The graph containing all observed data, peptides adjacent to the observed spectra, and proteins adjacent to those
peptides

–

x* Collection of indicator variables for the proteins identified by a method i, i′ ,…

y* Collection of indicator variables for the peptides identified by a method j, j′ ,…
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