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Abstract

It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-
transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological
branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the
modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software
model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of
various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational
economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model.
First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding
ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time
evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as
an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand
and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be
possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute
with no need to plunge into the Java or Fortran lines.
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Introduction

It is clearly in the tradition of biologists to conceptualize the

dynamical evolution of biological systems in terms of state-

transitions of biological objects, as illustrated in Fig. 1. For

example, at levels of gene molecules or cells, an object in an

‘‘inactive’’ stage, if receiving enough stimulation by external

signals, will switch into ‘‘active’’ stage. After a given period of time

and reaching a specific environment, a cell will ‘‘differentiate’’ and

thus switch from one cell phenotype to another. In the figure as in

the rest of the paper, and although biology as a whole is

indifferently targeted, we mainly concentrate on its immunological

branch since the ideas presented and defended here have been

essentially discussed and experimented with immunological

partners. As a matter of fact, it is definitely a stream of biology

that has a long tradition of software and mathematical modeling

and could consequently be more receptive to the proposals of this

paper. Among examples of state transition are: during its early stay

in the thymus, a pro T-cell is subject to a succession of

differentiation steps, such as DN (Double Negative) then DP

(Double Positive) to finally export mature T-cells (Fig.1a,b) - a viral

encounter that turns an healthy target cell into an infected one - a

T lymphocyte that, by encountering this same infected cell,

switches from a naive state to an effector one to finally a memory

one.

The state-transition diagram originally proposed by David

Harel [1], and developed to specify safety-critical control

software in the avionics industry, has become one of the many

UML (Unified Modeling Language [2,3]) standardized diagrams

and, definitely, one of the most popular and useful ones in the

professional software world. David Harel has become a vocal and

active proponent of using state-transitions diagrams (also called

statecharts through the paper) for biological modeling (see e.g.

[4–6]).

Although the majority of researchers interested in biological

software modeling increasingly agree that the most natural way to

program their models is to adopt Object-Oriented (OO) practices,

UML diagrams are still largely absent from their publications.

However, in the last 15 years, the use of UML has risen constantly,

to the point where it has become the de-facto standard for

graphical visualization of software development. UML and its 13

diagrams has many universally accepted virtues. Most importantly,

it provides a level of abstraction higher than that offered by OO

programming languages (Java, C++, Python,.Net) that encourages

researchers to spend more time on modeling rather than on

programming.

Many indicators are pointing to UML as the natural next step up

the abstraction ladder in the evolution of software development.

Firstly, there is the ongoing multiplication of platforms that can

reverse-engineer code from UML diagrams. Examples at different

levels of sophistication include Rational Rose, Together, Rhapsody,

Omondo and Altova. All major development CASE tools, in

whatever popular programming language, such as Visual Studio or

Eclipse, offer facilities to synchronize the code production and the

drawing of associated UML diagrams. It is still an ongoing topic of

debate just how far this synchronization should go. James
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Rumbaugh, one of the three original UML authors, criticizes the

current evolution of UML while claiming in [7]: ‘‘I think a lot of the

recent work on UML has been misguided. It never was meant to be a

programming language. Use it to get the strategy right and write the

final program in a suitable programming language’’.

Today, in the software community, we can draw an imaginary

axis along which to settle the diverging positions regarding UML.

At one end of this axis are programmers sketching some very

simple and informal diagrams on a whiteboard, to gain perspective

on their own code, to take a little detachment from the code

writing, to communicate what the code does, to document their

production or to serve as a basis for discussion about coding

strategies. Users at this end of the axis are occasional and light

UML users, spending most of their time producing lines of code

and who will only use a maximum of 20% of UML’s graphic

symbols. The ‘‘agile programming’’ community can be counted

among this class of users. On the other end, there are more and

more developers that regard UML as the next generation of

programming language, and actually generate most of their code

automatically through UML diagrams and code generation tools.

Nevertheless, UML is here to stay. There is one and only one

UML, it is the only standardized modeling graphical language and

as such benefits from the support of all the big computer and

software companies that have integrated UML in their product. It

transcends any programming language and any computer

platform and encourages to spend more time on modeling than

on writing code. Its usage is constantly increasing among

developers, so that we can only regret the minor diffusion of this

graphical language among researchers producing biological

software models and hope that this paper will improve the

situation in the years to come.

Although there is a more than 20 years old tradition of immune

software models, very few of them have been the object of further

running and exploitation once their authors published the paper

describing it and even made the code easily available. For most of

the researchers, the amount of new knowledge acquired by

painfully understanding and running the code does not deserve

such cognitive expenses. If forced to run it, they will use and run it

just as a black box. Again the adoption of UML and more

particularly the state-transition diagram should improve the

current situation. As a first but key role, these diagrams could be

construed as some form of entrance door to the final code, also

made available, whatever proximity or homeomorphism exists

between these models and this code.

The abstract of a recent Nature paper [8] urgently claims:

‘‘Scientific communication relies on evidence that cannot be

entirely included in publications, but the rise of computa-

tional science has added a new layer of inaccessibility.

Although it is now accepted that data should be made

available on request, the current regulations regarding the

availability of software are inconsistent. We argue that, with

some exceptions, anything less than the release of source

programs is intolerable for results that depend on compu-

tation. The vagaries of hardware, software and natural

language will always ensure that exact reproducibility

remains uncertain, but withholding code increases the

chances that efforts to reproduce results will fail.’’

Although any mention of UML is absent, we believe that this

reasonable claim is pointing towards the necessary complementary

provision of UML diagram descriptions of how the released codes

are organized and how they are supposed to be executed. Entering

into a code through the UML diagrams largely decreases the

burden of adopting and running someone else software produc-

tion.

For most of the programmers and UML adopters, state-

transition diagrams apply to a single object. In principle, this type

of diagram aims at following the state-transitions of one

complicated class of agent over its lifetime. It indicates all possible

states an object can be found in and all possible transitions (which

can result from an external event or based on some internal

conditions beyond threshold) between these states. In contrast to

the class and sequence UML diagrams, no clear and unanimous

proposal has emerged on ways to automatically map the state

diagram into source code. If ‘‘class’’ and ‘‘message’’ have their

obvious semantic counterpart in any OO programming language,

this is no longer the case for ‘‘state’’ and ‘‘transition’’. Some

software suites, like IBM Rational Rhapsody (whose use is largely

advocated by Harel [4–6]), use custom solutions to generate code

from the state-transition diagram. Alternatively, the state design

pattern [3,9] offers one possible way to automatically associate the

preceding state-transition diagram with a possible corresponding

class diagram mapping each state onto a class responsible for the

behavior of the agent while in that state. Each state will also be

responsible for taking care of the possible transitions occurring

from that particular state.

In software models of biological systems, traditionally a state-

transition diagram is more likely to be translated into an agent-

based model in which one single biological object and its

successive transitions are followed in time. Although we will

equally refer to this very natural and classical translation in this

paper, the main and most original part of its content will be

dedicated to a complementary interpretation of this diagram in

terms of population and Ordinary Differential Equations (ODE).

In such case, we rather are in presence of various populations of

similar objects whose transitions are followed in time. Here state

transition must rather be interpreted in a stochastic way and only a

subpart of the objects in a given state transits to the following state.

A random sampling of the population in the current state

disappears from that same state to move to the next one. In the

paper, we will refer to these two alternative interpretations as

ABM (Agent-Based Modeling) and PBM (Population-Based

Modeling).

Due to the huge number of immune cells present in an

organism, and following the tradition of chemists who rather

privilege the use of population-based kinetics to ABM description

of how molecular objects move, meet and react in time, a PBM

approach has been favored in this paper so as to be more faithful

to quantities found in reality and to be much more computation-

ally effective. Noteworthy, though, the state-transition diagram per

se is not really affected by this choice and would look very much

the same whatever choice is being adopted: ABM or PBM.

Nevertheless, most of the paper is dedicated to a formal translation

Figure 1. Three graphical illustrations of immunological knowledge which are very similar in spirit to state-transition diagrams:
extract from Janeway’s classical immunology textbook [22] illustrating the successive thymocyte differentiation stages - extract
from a paper by Veronique Thomas-Vaslin et al. [15] illustrating the conveyor belt model of thymocyte differentiation to be discussed later -
extract from a paper by Rong and Perelson [23] illustrating the successive infection stages by the HIV virus.
doi:10.1371/journal.pone.0041165.g001
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of UML state-transition diagrams into a PBM grounded on ODE

description (referred in the rest of the paper as PBM=ODE).

There is a long ongoing debate in many scientific communities

regarding the use of agent-based approaches versus population-

based ones. Recent works critically analyze and compare the many

ways to simulate immunology: ODE (deterministic and stochastic),

cellular automata, ABM and even some forms of hybrids among

them, before making their own interesting proposals [10–12]. For

instance, in an attempt similar in spirit to the two models to be

described later in the paper [10], the authors expose a conceptual

workflow model of the immune system response they want to

simulate in terms of logical flow, interactions among the immune

actors and state-change affecting them. However, by non adopting

a standardized graphical modeling language, it is hard to formally

or automatically map this qualitative model into the sophisticated

ABM model that they describe later in that same paper. Even

aware of this conceptual model, even fully grasping it, any

theoretical immunologist interested in better understanding the

simulation results or even replicating them will not avoid the

laborious reading and ‘‘decoding’’ of the proposed simulation

code. The gap between the workflow and the final code remains

too deep.

Although a possible automatized translation of UML state-

transition diagram into either an ABM software or a PBM/ODE

one is under intensive development [13,14], as an alternative to

Harel’s exclusive usage of IBM proprietary Rhapsody, this paper

(aware of the existence of the axis separating the UML users

mentioned early), deliberately avoids to adopt an authoritarian

and definitive position about the right use of state-transition

diagrams on the road to the final software. Rather it just argues for

its increasing use and notices the parallel easy to draw between

these diagrams and ABM or PBM production. Briefly, and

although adopting immunology as a kind of discipline guinea pig,

this paper might be justified at the crossroad of three current

increasing trends in most biological disciplines: 1) A large part of

the biological knowledge is captured in terms of state-transitions -

2) More and more ODE/PBM software models are being

produced but very rarely elaborated and re-used beyond the

authors original production - 3) The UML state-transition

diagram has been standardized and is increasingly adopted by

software developers.

The organization of the paper is as follows. The following

sections will didactically describe the main graphical elements of

the state-transition diagram and how they can be mapped onto a

PBM/ODE corresponding mathematical model. Although this

preliminary pedagogical presentation will not concern any precise

biological reality, the last section will concentrate on two already

published immune models of thymocyte behavior and time

evolution in the thymus. The first one was originally conceived

as a PBM/ODE whereas the other as an ABM. Although readers

are referred to the original papers in order to fully grasp the

content and the running of the two codes, we will sketch how both

could be refactored and expressed in a state-transition form so as

to make them much easier to understand and their respective code

easier to access, to modify and run. For any immunologist, it

should be possible to understand faithfully enough what the two

software models are supposed to reproduce and how they execute

with no need to plunge into the Java or Fortran lines.

Methods

Elementary Transitions
Suppose the three classical and independent biological elemen-

tary transitions illustrated in Fig.2 (all figures have been done by

exploiting various UML software. Although some slight graphical

differences might appear here and there, such as the exact shape of

the ‘‘state’’ rounded rectangles, they are all realized according to

the UML standard.). A cell turns out to be infected by the presence

of a given virus, with a probability p - an inactive gene becomes

active with a probability p (this could occur in presence of a given

signal or a protein that we leave out of the explanatory scheme for

simplicity) - a T-cell differentiates from type DN to DP with

probability p1 and from DP to SP with probability p2. An ABM

model version of the first transition could go that way. The given

cell could move randomly around a coded 2-D or 3-D virtual

environment and, by encountering a virus moving in that same

environment, adopts the infected state with probability p.

Similarly, a gene could, at each simulation time step, turns active

with probability p. On the other hand, an ODE version of the first

state-transition diagram would rather look like:

dIC

dt
~p � V �NC ð1Þ

dNC

dt
~{p � V �NC ð2Þ

with NC the number or the concentration of the non infected cells,

IC of the infected cells and V of the virus. This would describe a

very typical model of viral infection in which the rate of infection is

proportional to the number of NC{V pairings i.e. a classical

mass-action approach.

The ODE version of the third state-transition diagram could

simply look like:

dDN

dt
~{p1 �DN ð3Þ

dDP

dt
~p1 �DN{p2 �DP ð4Þ

dSP

dt
~p2 �DP ð5Þ

One clear advantage of the graphics as compared to the

mathematical translation resides in the economical treatment of

the transitions that appear twice in the ODE, negatively on one

side and positively on the other side. It ought to be much easier

and convenient for a biologist to test the values of these probability

parameters by directly accessing and modifying them on the

graphics instead of manipulating them in the mathematical

writings or in the program. This type of economical representation

will occur many times in the rest of the paper and turns out to be

one key argument in favor of this quite compressed graphical

expression of biological transitions (with no loss of information to

be deplored). The absence of any time sequencing is another

obvious advantage of this ODE translation. In a PBM version of

the state transition diagrams, all transitions occur simultaneously.

Here the transitions are deterministically expressed through the

presence of time rates. Nevertheless a stochastic translation is as

well possible in which case the transition becomes stochastic with a

random sampling of the population in a first state to switch to the

second state. It is left to the biologist modeler to decide which

mathematical time evolution is being favored, deterministic or

stochastic, with no impact on the diagram.

State-Transition Diagrams for Biologists
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A more faithful and complete use of state-transition diagrams

should rather produce graphics of the kind represented in Fig.3.

Additional graphical elements are the origin (with value n) and

death (with value d) states and some internal transitions that, here,

could just represent cell mitosis (with values m). An ODE

translation of this state transition diagram could look like:

dA

dt
~n1z(m1{d1{t1) � A ð6Þ

dB

dt
~t1 � Az(m2{d2) � B ð7Þ

In this mathematical mapping, for sake of simplicity, only linear

expressions have been considered but nothing prevents a transition

to adopt a more sophisticated mathematical non-linear form. For

instance, the transition from A to B could be subject to a different

mathematical treatment expressed by a function f (that could

appear in a way or another on the state-transition diagram or

taken to be implicit and hidden in a box of the CASE tool) so as to

have:

dA

dt
~n1z(m1{d1) � A{f (A, t1) ð8Þ

dB

dt
~f (A, t1)z(m2{d2) � B ð9Þ

Figure 2. Three classical elementary biological state transitions. A cell is being infected by a virus, an inactive gene becomes active and a
thymocyte switches between differentiation stages.
doi:10.1371/journal.pone.0041165.g002

Figure 3. A more faithful and complete use of state-transition diagrams in the presence of origin and death states with possibility
of proliferation and transit from stage A to B.
doi:10.1371/journal.pone.0041165.g003
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We leave as an open issue so far how detailed should the state-

transition diagram be on the way to the final ODE (for instance,

the ‘‘f’’ function discussed above or the type of numerical

integration, the integrative time step…).

A transition can even be conditional such as in Fig.4, in the case

a DP cell can alternatively differentiate to either a SP4 or a SP8

cell with respective probability p1 and (1{p1).

dDP

dt
~{t1 �DP ð10Þ

dSP4

dt
~p1 � t1 �DP ð11Þ

dSP8

dt
~(1{p1) � t1 �DP ð12Þ

Macrostate and Macrotransitions
One nice graphical addition of state-transition diagrams, also

giving rise to a welcome economical representation, is the presence

of compound states and macrotransitions that can be factorized

over all micro states composing the macro one. For example,

suppose that a model follows the course of one student in

computer science during his university years. The student can

succeed or fail (so only two states ‘‘in’’ and ‘‘out’’ would

characterize this preliminary attempt) and a probability of failing

be considered in the model. Now suppose you realize that this

probability is too imprecise to match the real situation, that the

model is far too approximate and that this failure rate really

depends on the academic year (5 successive years for instance), the

probability being much higher in the first year than in the fifth. In

such a case, the ‘‘in’’ state should be further decomposed into 5

successive years/states, with a macro failure rate now depending

on the academic year and 4 additional probabilities characterizing

the successive transitions between these academic years.

As illustrated in Fig.5, this compound state provides a graphical

representation where similar functionality, e.g. transitions, shared

by all single states or sub-states can indeed be factorized so as to

minimize diagram clutter. This hierarchical organization addi-

tionally allows the modeler to ‘‘zoom’’ into specific levels of model

detail and adapt his model to the reality by adjusting his

observation lenses. A simple state may be expanded into a

compound state as more relevant detail about the system becomes

available (for instance new transitions among the micro states).

Figure 4. A state-transition diagram illustrating a conditional
transition. Here a DP cell can alternatively differentiate into either a
SP4 or SP8 cell with respective probability p1 and (1{p1).
doi:10.1371/journal.pone.0041165.g004

Figure 5. Example of compound state-transition diagram containing three single states and internal transitions. A common transition
leaving the compound state is shared by all single states although presenting different transition rates.
doi:10.1371/journal.pone.0041165.g005
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The mathematical translation of Fig.5 could go as follows:

dDN

dt
~{(t1zp1) �DNzn1 ð13Þ

dDP

dt
~t1 �DN{(t2zp2) �DP ð14Þ

dSP

dt
~t2 �DP{p3 � SP ð15Þ

Here the death rate pi (and more generally the macrotransition

rate) might depend on the respective single states but nevertheless

one unique subsequent state remains common to all single states

included in the macro one.

Parallel State Transitions
As illustrated in Fig.6, another optional possibility of UML state

transition diagrams that, more than anything else before, once

again allows a huge representational and graphical economy, is the

presence of parallel transitions. The original idea underlying such

possibility is the existence of simultaneous while distinct activity or

state flows of a singular object. For instance, an university student

can simultaneously move from academic year to academic year

while, during that same period, integrate a sport-specific institution

or modify his civic status by getting married. All these three life

flows occur simultaneously like on three parallel tracks (indepen-

dent but simultaneous in time).

In a more biological context, a cell can differentiate while

moving between different body compartments. The combinatorial

nature of these parallel transitions is the main reason behind this

parsimonious representation in several parallel tracks. In the case

of our student, many transitions should be taken into account (for

instance suppose 5 successive academic years * 2 (for integrating or

not the sport institution) * 2 (for the change in civic status)). Among

possible transitions, our student in the 3rd year of his studies could

get married, being married he could move to the fourth year,

being in the fourth year he could integrate or leave a sport

academy…. Over 20 combined states have to be considered and

as many possible transitions to connect them.

Basic Independent Transitions
Suppose, as illustrated in Fig.6, the two transition sub-diagrams

(A{wB and X{wY ) to be fully independent. An obvious

mathematical translation of the 262 transitions among the 262

combined states could go as follows:

dAX

dt
~{t1 � AX{t2 � AX ð16Þ

dAY

dt
~t2 � AX{t1 � AY ð17Þ

dBX

dt
~t1 � AX{t2 � BX ð18Þ

dBY

dt
~t1 � AYzt2 � BX ð19Þ

This parallel state-transition diagram remains the simplest

representation of something that would be graphically and

organizationally unwieldy due to its intrinsic combinatorial nature.

Moreover, the value of this graphical representation of parallel

transitions is that they provide a manner to specify just the

Figure 6. Two fully independent sub state-transition diagrams
(A{wB and X{wY) executing in parallel.
doi:10.1371/journal.pone.0041165.g006

Figure 7. Two sub state-transition diagrams (A{wB and
X{wY) showing a weak dependency. The transition rates in
the lower track depend on the state in the upper track.
doi:10.1371/journal.pone.0041165.g007

Figure 8. Two sub state-transition diagrams (A{wB and
X{wY) showing a strong dependency. When the object is in
state Y in the lower track, the transition B{wC becomes impossible.
This is indicated by conditioning this transition with [NOT Y].
doi:10.1371/journal.pone.0041165.g008
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deviation from independence, while diagrammatically represent-

ing the sub-systems as if they were truly independent. Let’s

envisage some of these deviations from this total independence

rather unrealistic in many biological contexts.

Weak Dependencies
In the updated version of Fig.6 depicted in Fig.7 (and much

more respectful of biology in general), the two transitions are not

fully independent. The value of the transition rate in one track

turns out to be dependent on the state in which the object is being

found in the other track. Here, for instance, the X{wY

transition rate depends on the current state of the object of

interest in the parallel A{wB sub state-transition diagram. The

new mathematical translation is as follows:

dAX

dt
~{t1 � AX{t2 � AX ð20Þ

dAY

dt
~t2 � AX{t1 � AY ð21Þ

dBX

dt
~t1 � AX{t3 � BX ð22Þ

dBY

dt
~t1 � AYzt3 � BX ð23Þ

Strong Dependencies
A stronger form of dependency (also quite common in biology)

occurs if a transition in one of the parallel sub-diagrams is made

impossible by the object being in a given state in another parallel

sub-diagram such as indicated in Fig.8. In the figure, the B{wC

transition is rendered impossible by the object finding itself in state

Y . The mathematical translation needs to be updated as follows:

dAX

dt
~{t1 � AX{t2 � AX ð24Þ

dAY

dt
~t2 � AX{t1 � AY ð25Þ

dBX

dt
~t1 � AX{t5 � BX{t3 � BX ð26Þ

dBY

dt
~t1 � AYzt3 � BX ð27Þ

dCX

dt
~t5 � BX{t3 � CX ð28Þ

dCY

dt
~t3 � CX ð29Þ

As a clear illustration of this type of strong dependency, the

Fig.9 presents a much more realistic immunological situation

describing three respective and simultaneous dynamical evolutions

of lymphocytes: differentiation, migration and proliferation. Lympho-

cytes, following an initial period of ‘‘naivety’’, have their receptor

bind to a ligand. This induces the cells to become ‘‘effector’’,

performing some function (of no relevance here). After a given

period, effector functionality wears off and this binding process can

repeat indefinitely, but the cells are now upgraded to ‘‘memory’’.

Once in their memory state, cells can become effector again (this

transition might even be faster than in the initial naive case). Such

models are typical in theoretical immunology with parameters N,

E, and My representing naive, effector and memory cell

populations, respectively. b, a and y, d are rates of birth into

naive cell, differentiation into effector, memory state and death

(characterizing the first parallel track), respectively. Moreover, for

the N{wE and My{wE differentiation rate a, we assume a

non-linear function that quantifies the competition for binding to

ligand LN , the details of which have no immediate bearing on our

discussion.

Additionally, lymphocytes spend their life between peripheral

tissues (P) and the lymph nodes (L), where antigenic debris is

drained and collected to be exposed to lymphocytes. So the second

parallel track of the whole diagram just accounts for this transfer

between the lymph nodes and the peripheral tissues (with rates j

and k).

Finally (i.e. the third track) cells cycle in a repetitive succession

of 3 stages (classically labeled G0 - the quiescent stage, S and M )

after which they give rise to a clone (i.e. the 2t characterizing the

transition between the final stage of the cycle M, then the

duplication and the start of a new cycle G0). What is fundamental

here, as a further illustration of a strong dependence among the

parallel evolutions but quite classical in biology, is that once a cell

enters its dividing cycling process, all other parallel state transitions

are blocked. For instance, a T-cell can move from one site to

another only when being in the G0 state, but this displacement

becomes impossible once entering its S=M cycling process.

Translating this parallel state-transition diagram into an ODE

mathematical form, like done in the following, reveals the

enormous complexity of the underlying dynamics and the

incredible simplification allowed by the recourse to state-transition

diagrams. Normally, 18 equations are necessary as an outcome of

this translation. For sake’s of simplicity, we limit ourselves to show

only 4 of these 18 equations, the others being very easy to deduce.

The different cell populations to be simultaneously followed in

time are designated by combining the different states extracted

from the 3 parallel tracks (N and E and My; P and L; 0 and S and

M for the cycle stages). As can be easily deduced from observing

the figure, some of the transition rates are clearly dependent upon

which state in the two other tracks the cells find themselves at.

d

dt
NP0~k �NL0zbz2t �NPM

{(d1zjzp1za(NP0,MyP0,L)) �NP0

ð30Þ

d

dt
NPS~p1 �NP0{(Dzs) �NPS ð31Þ
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d

dt
NL0~j �NP0z2t �NLM

{(d1zkzp1za(NL0,MyL0,L)) �NL0

ð32Þ

d

dt
EP0~k � EL0za(NP0,MyP0,L)za(MyP0,NP0,L)

z2t � EPM{(d1zjzp2zy) � EPO

ð33Þ

Coupled Transitions
Unfortunately, this transition reduction is not totally sufficient to

properly express important statechart semantics. Other very

common biological dependencies between parallel evolutionary

tracks are transitions that have to be synchronized in time. For

instance, when moving from the third academic year to the fourth

one, a European student switches from the bachelor to the master

status and these two transitions should be coupled so as to

simultaneously happen. Figure 10 illustrates the problem with a

parallel statechart representing, one the one hand, a simple cell

division (a cycle restricted to two stages) and, on the other hand, a

3-type differentiation process. Clearly, these two tracks are not

independent: it is when cells transit from the S=M-phase back to

state G0 that they should simultaneously move between two

differentiation stages. The two right halves of Fig. 10 illustrate the

differences in the directed graph that might be indifferently

generated and the correct one truly intended by the statechart

semantics. The easiest way to mark these coupled transitions is by

giving to transitions that need to simultaneously occur a same label

(as illustrated in the figure with the label done).

Results

In the following, we will sketch how existing immune models of

a very similar immunological situation (thymocyte differentiation

in the thymus) should gain in readability and accessibility as an

outcome of the graphical representation under the form of state-

transition diagrams. This exercise will be performed for two

existing and published models: one that gave rise to a PBM/ODE

software and the other an ABM software. It would be much too

long and redundant to describe in details the behavior of these two

models. The main reason for this last section is to advocate a

possible understanding and manipulation of them both with no

need to get into the final code.

State-transition Description of a Thymocyte
Differentiation PBM Model

The Thomas-Vaslin et al. model [15] is a compartmentalized

ordinary differential equation model. Figure 11 represents the

state-transition description of the model, which largely reflects the

conceptual ‘‘conveyor belt’’ models of T-cell differentiation

classically admitted and schematically represented by immunolo-

gists [16–18]. Indeed the mental analogy between state transition

and conveyor belt is obvious, reinforcing our conviction that

immunologists (and biologists in general) should quite easily adopt

Figure 9. As a more realistic example of weak and strong dependencies, the figure illustrates three parallel sub-state-transition
diagrams of a very classical immunological situation with lymphocytes differentiating, migrating and dividing (in 3 successive stages).
When entering its dividing cycle, all other transitions turn out to be impossible. This is indicated by the presence of [Not cycle] with cycle labeling the
compound state of dividing cell. Some of the transition rates ‘‘weakly’’ depend on the states where the lymphocyte is currently found in the other
parallel tracks. b indicates the birth rate to naive cells.
doi:10.1371/journal.pone.0041165.g009
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the graphical language of state-transition diagrams. In essence,

each stage of the conveyor belt represents a particular lineage and

differentiation stage of T-cells, with flows into and from a

particular stage according to the general equation:

dxi

dt
~2crxi{1{(rzdzm(i))xi ð34Þ

The interested reader is referred to the original paper since no

attempt is done here to modify in any way the original model. r, d
and m represent proliferation, death and differentiation, respec-

tively, and xi represents the i’th stage. The parameter c[f0,1g
represents the possibility to deplete specifically dividing T cells, by

the presence or absence of a pharmaco-genetic treatment, as

explained in the original paper. Two daughters of a proliferating

cell migrate into the next generational compartment, except

during treatment (c~0) when dividing cells die by apoptosis and

are lost from the model. The parameter m is an increasing function

of generation, making cells more likely to differentiate between

phenotypic compartments as they progress through their lineage.

The model largely consists of constant progenitor influx (Sn);

differentiation between thymocyte developmental phenotypes

double negative (DN ) and double positive cells (DP) (Un(i) and

Up(i)); egression of single positive (SP stage), either CD4z or

CD8z cells, to the periphery (Us4(i), Us8(i)); proliferation (Pn(y),
Pp(y), and Ps(y)); positive and negative selection (a4, a8) and

natural cell death (Dn, Dp, and Ds). There is no parallelism in this

model, reflecting the original formulation as a system of ordinary

differential equations. However hierarchy and compound states

are present clearly reducing diagram clutter. For instance, the

transition Un(i) from Double Negative implicitly leaves all sub-stages

of proliferation, DN(1), DN(2) and so on, that make up the Double

Negative stage. The value of these differentiation transition rates

depends on the successive stages of proliferation.

All Un(i) transitions enter the Double Positive stage in DP(1), as

indicated by the stub transition in solid black. The same

convention applies to other transitions between compound states.

Note that in all stages a cell can die naturally, but this need only be

depicted once as a transition exiting the main chart, implicating all

stages.

Intuitively, each variable in the system maps onto a stage in

Fig. 11; each term in the equations maps onto a transition.

Although the original model is composed of 30 quite similar

differential equations, this whole mathematics and the code that

captures it can easily be deduced and regenerated from the Fig. 11.

State-transition Description of an ABM Model of
Thymocyte Life Cycle in the Thymus

Let’s now turn to the ABM Souza et al. model [19] which was

originally proposed and simulated as an ABM cellular automata

(CA). As a whole, the transition rules of any CA map naturally and

elegantly onto a parallel state-transition diagram. Again, the

interested reader is referred to the original paper for a detailed

understanding of the simulation. Although available for download,

the Fortran source code is far from easy to understand and the

provision of the state-transition diagram, as done in this paper,

should considerably improve the situation allowing the researchers

to progress further with the existing simulator. The parallel state-

transition diagram in Fig. 12 represents the different simultaneous

transitions taking place in the model and coded as various CA

rules: cells in the model differentiate and proliferate, they may be

bound to thymic epithelial cells, they move and may be located in

one of several anatomical compartments of the thymus. A

complete description of the model includes additional implemen-

tation details that are abstractions of the mechanisms behind cell

decisions to differentiate and apoptose. Many parameters charac-

terizing the transition rules of the CA and which should be

available for testing by the experimentalist appear in the state-

transition diagram. Among others, the modeling abstractions

employed in [19] and indicated in the state-transition diagram of

Fig. 12 are.

N TCR-MHCp binding: a real-valued comparison of the

difference between a T-cell receptor and an epithelial cell’s

Figure 10. An illustration of a coupled transition (existing) in parallel tracks, representing a simple cell division and differentiation
(left). As cells transit from the S=M cycling stage back to state G0, they should also move through the successive differentiated types - G0, G1 and
G3 are three successive generations of cells. The default interpretation goes as the top-right figure but should rather be transformed into the
bottom-right due to the shared labeling 00done00 of the coupled transitions.
doi:10.1371/journal.pone.0041165.g010
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MHC-peptide complex, both abstracted as uniformly random

numbers. Small differences between both numbers correspond

to high affinity and vice-versa. At each interaction, a T-cell

sums these differences and it is the value of this sum,

specifically where it lies in relation to upper and lower

threshold parameters, tlo and thi, that determines whether the

T-cell is positively or negatively selected. Double-positive and

single-positive phenotypes have their own threshold parame-

ters. Binding lasts for Db time.

N Number of interactions: an integer counter of how many

interactions a T-cell has had with epithelial cells. Double- and

single-positive cells cannot differentiate until they cross a

threshold number of interactions, represented by the param-

eters tdp and tsp, respectively. If, after Da time a double-

positive cell has not reached this threshold it apoptoses, i.e.

death by neglect.

N Number of repeated interactions: an integer counter of how

many times an individual T-cell has interacted with the same

epithelial cell. This is Souza et al’s abstraction of the ‘‘signal-

duration’’ hypothesis where long duration TCR-MHC

interactions promote the CD4 phenotype and short duration

promote the CD8 phenotype. Again, a threshold parameter

tcd simulates the phenotype decision.

Although originally coded as an ABM CA simulation, nothing

prevent a PBM version of this model, where populations instead of

single cells occupy each site of the CA. This alternative might be as

well automatically generated out of the diagram.

Discussion

This paper advocates that with some minor enrichment of the

UML state-transition diagrams to better align with scientific

investigation and reporting, this standardized graphical language

can serve as an effective medium of communication and

development for both theorists and experimentalists. Despite

many controversies still existing about the role played by the UML

diagrams with regard to the final code production, no competent

developer would deny the positive impact these diagrams can

provide at particular phases of development. Theoretical biologists

and immunologists [10,11] could gain a lot from the adoption of

standardized professional programming practices, rendering their

software more readable, scalable and usable. Such adoption could

end the current frustrating situation of ‘‘write once run only once’’

Figure 11. State-transition diagram of the Thomas-Vaslin et al. model [15] of thymocyte differentiation. This diagram attempts to
essentially capture the same biological information as the one contained in figure 1b.
doi:10.1371/journal.pone.0041165.g011
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and save so many efforts in programming the same biological

mechanisms again and again.

We have only concerned ourselves with a formalisable subset of

statecharts, avoiding features unnecessary for our needs and,

arguably, for scientific models. Although we have presented the

formal constructs in the context of very didactic hypothetical

examples, they all testify of some difficulties actually met in

modeling immunological data that are inherently parallel and

hierarchical using traditional techniques. This work is still in

progress and we have some clear ideas where future efforts may

focus.

Our non-classical use of statecharts leaves us wanting in some

respects. For example, the informal referencing of parameters,

variables, their units and the functional form of transitions are not

entirely satisfactory. Largely, these issues are not ODE-specific and

appear to be solvable with ‘‘syntactic sugar’’ rather than

reinventing the statechart formalism under a different moniker.

Our focus has been on managing descriptive complexity, but

computational complexity is an ever-present issue too. It is an

interesting open question as to when highly compartmentalised

ODE models (such as [15]) would become less efficient than a pure

ABM effort (such as [19]). Certainly, although we can insulate the

modeler and the experimentalist from the combinatorial growth of

states, we cannot yet insulate the machine. For scientific

simulation, this is a much less pressing issue than depicted in the

statecharts literature, where systems are often embedded with

realtime constraints, but exponential growth is still a concern in

the long term. One interesting possibility is that the techniques

used by statechart researchers (e.g. see [20]) may be adapted as

hybridised numerical integration algorithms.

Statecharts can represent high-level semantics suitable for

pedagogical descriptions as well as low-level quantitative informa-

tion suitable for individual-based ABM and population-based

ODE. Once adopted, they might contribute to ease the

comprehension of ABM or Cellular Automata models proposed

by more and more theoretical immunologists these days and to fill

the gap still existing between these often opposed more top-down

and more bottom-up simulation approaches [10–12].

A unified formalism would better allow these different levels of

description to be directly compared, highlighting how each

modelling effort realises the phenomenological description and

the quantitative and structural assumptions it makes in doing so.

This would require some novel enhancements to the statechart

language, e.g. abstracting interactions that may be based on mass-

action assumptions or localized cellular-automata neighborhoods,

depending on the simulation method. This is largely a problem of

transition implementation, although there are several subtle issues

that would need to be resolved.

The ability to model sub-system parallelism and multi-level

hierarchy is a powerful feature of UML Harel state-transition

diagrams – a feature that has been somewhat lost in the literature

under computer science and software engineering nomenclature.

We have shown how a formalized subset of these diagrams can be

applied to scaling mathematical ODE descriptions of systemic

phenomena. In addition to finessing the associated increase in

underlying model complexity for the modeler, this approach

provides a graphical communication medium that, in our

experience, is readily accepted by non-technical collaborators

and can be productively discussed, questioned and reformulated

without excessive concern for underlying technical details.

Figure 12. Statechart description of the Souza et al. model [19] depicting differentiation, proliferation, TCR-MHC binding and
movement between the different anatomical compartments of the thymus. Although many transitions occur with parameterized rates,
those related to differentiation are rule-based – making use of transition guards that refer to individual attributes. This model has no real hierarchical
structure other than to conveniently specify a shared transition for SP4/SP8 cells.
doi:10.1371/journal.pone.0041165.g012
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We believe that these state-transitions diagram complement

existing methods in Systems Biology, allowing a systems approach

to be taken at a coarser granularity than biochemical reactions,

from various level of granularity from molecules to organisms [21].

We expect that such computer refactorized model not only will

offer interoperability between models and improvement of them

for enlarged integration of multiscale biological systems but also

will allow to execute simulations to test their variability,

fluctuations, robustness, emergence/immergence. Such progress

is necessary in many domains, such as immunology, where the

primary focus is on intra- and inter-cellular interactions. Of course,

this argument generalizes to the scientific study of any complex

system where ‘‘agents’’ are compound, stateful and inter-depen-

dent, like ecological or social systems.
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