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Abstract

Resistance to tamoxifen (Tam), a widely used antagonist of the estrogen receptor (ER), is a common obstacle to successful
breast cancer treatment. While adjuvant therapy with Tam has been shown to significantly decrease the rate of disease
recurrence and mortality, recurrent disease occurs in one third of patients treated with Tam within 5 years of therapy. A
better understanding of gene expression alterations associated with Tam resistance will facilitate circumventing this
problem. Using a next generation sequencing approach and a new bioinformatics model, we compared the transcriptomes
of Tam-sensitive and Tam-resistant breast cancer cells for identification of genes involved in the development of Tam
resistance. We identified differential expression of 1215 mRNA and 513 small RNA transcripts clustered into ERa functions,
cell cycle regulation, transcription/translation, and mitochondrial dysfunction. The extent of alterations found at multiple
levels of gene regulation highlights the ability of the Tam-resistant cells to modulate global gene expression. Alterations of
small nucleolar RNA, oxidative phosphorylation, and proliferation processes in Tam-resistant cells present areas for
diagnostic and therapeutic tool development for combating resistance to this anti-estrogen agent.
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Introduction

Tamoxifen (Tam) is commonly used as an adjuvant hormonal

therapy for patients with breast cancer. This selective estrogen

receptor modulator (SERM) blocks the effects of estrogen in breast

cancer cells by competitively interacting with the estrogen receptor

(ER), thus preventing ER-mediated transcription through estrogen

response elements of various genes. While conventionally used in

ER-positive tumors, which comprise approximately 70% of breast

cancers [1], in recent years Tam has also been used to successfully

treat some ER-negative breast tumors [2]. Even so, the benefits of

hormonal therapy have often been limited by resistance to this

drug. Approximately one-third of early-stage breast cancer

patients will become resistant to Tam over the 5-year treatment

period [3], making resistance to Tam treatment one of the major

obstacles to the successful treatment of breast cancer. Although

studies have already revealed several mechanisms of Tam

resistance, including increased metabolism of Tam [4], loss or

alterations of ERa and ERb expression [5,6,7], estrogen

hypersensitivity [8], altered expression of co-regulators [9], and

microRNA (miRNA) interference [10], many of these investiga-

tions focused on individual types of mechanisms and lacked global

analysis of gene expression and signaling pathway alterations for

association with the development of Tam resistance. While global

microarray studies have been performed [11,12], some were

limited to a chosen set of genes, while others were genome-wide

studies that still did not include small RNA analysis and focused

instead on the protein-coding genome [13,14]. In order to

improve the effectiveness of Tam therapy, a more comprehensive

understanding of the molecular mechanisms and pathways

determining Tam sensitivity would help overcome this clinical

problem.

In the current study, next generation sequencing (NGS)

technology was used to identify the genes and pathways potentially

involved in Tam resistance through a global analysis of the

transcriptomes in Tam-sensitive (TamS) and Tam-resistant

(TamR) breast cancer cells. NGS, or deep sequencing, offers a

powerful platform for characterization of altered gene expression,

as it allows for a more unbiased exploration of all areas of the

genome and transcriptome. RNA-Seq can overcome microarray-

associated problems with cross hybridization of similar sequences

and allows for single nucleotide resolution, as well as reducing

under-representation or the omission of low abundance sequences

[15]. Although one study has been recently published using NGS
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to explore tamoxifen resistance [16], this investigation used deep

sequencing to identify hits from an shRNA screening library..

While it is recognized that prior biological knowledge can be

important in developing some biologically relevant clustering

models, new relationships between molecules can be missed by

using such a technique. Thus, we present an alternative analytical

method.

As the RNA-Seq field is relatively new, analysis models must be

tested and compared for their ability to accurately analyze

genomic data. Traditional approaches for pattern identification,

such as hierarchical clustering or other partitioning methods, are

based on cluster analysis for differential gene expression under one

specific condition or treatment [17], without considering the

mechanisms behind differential expression across environments.

These approaches can cluster genes into different groups

according to their known functions, but are not able to catalogue

genes based on the patterns of how different genes respond to

different environmental signals. The difference in expression of the

same gene between environments, called phenotypic plasticity,

plays an important role in the adaptation of organisms or cells to

environmental changes [18,19]. Therefore, we developed an

algorithmic model for clustering genes based on environment-

dependent differences and ratios by incorporating these measures

into a mixture model framework, in which an optimal number of

gene clusters can be estimated and the patterns of gene expression

plasticity tested. Because of the integration of intrinsic environ-

ment-dependent plasticity, results from our model are biologically

more relevant than those from traditional clustering approaches

using a single environment, which rely on known functional

similarities or a predetermined number of gene clusters.

Using this new method, we found that large global changes

occur in TamR cells, with differential expression of many genes

involved in transcriptional/translational control as well as cell

cycle and mitochondrial dysfunction. Through clustering, we

identified patterns of differential expression in response to

differences between TamS and TamR cells, with similar functions

often clustered together in expression. Through our approach,

1215 mRNA and 513 small RNA (smRNA) transcripts were

identified as significantly differentially-expressed, indicating that

resistance to Tam is multi-faceted, derived from global changes in

gene expression, and involves multiple pathways.

Results and Discussion

The objective of our study was to overcome the limitations of

previous studies by developing a comprehensive analysis of the

transcriptome changes involved in Tam resistance in breast cancer

using the NGS method. NGS allows for unbiased analysis and

exploration of all possible cellular molecules and pathways. Tam

resistance is a complex problem, and the field would benefit

tremendously from studies examining global changes with NGS,

which have not been previously explored.

Validation and comparison of gene expression levels
between Tam-sensitive and Tam-resistant breast cancer
cells

In order to reveal the potential genes and mechanisms involved

in resistance to Tam, we used a NGS approach with ABI SOLiD3

technology as a means of examining and comparing the

transcriptomes of TamS and TamR breast cancer cell lines.

These cell lines were previously characterized for tamoxifen

resistance [20,21], which was confirmed before sequencing.

Experimental procedures are summarized in Figure 1A. A total

of 71,250,509 and 69,005,180 reads, for TamS and TamR cells

respectively, were sequenced. Gene expression of parental MCF-7

(TamS) cells was used as a baseline for up- or down-regulation of

expression in TamR cells. Gene expression data by RNA-Seq are

generally thought to follow a Poisson distribution . [22]. To check

whether our data are Poisson-distributed, we calculated chi-square

goodness of fit test statistics for read counts observed in TamS and

TamR cell lines, respectively. The calculated test statistics by

assuming the Poisson distribution are smaller than critical

thresholds, suggesting that these RNA reads obey a Poisson

distribution (P.0.90). Based on this two-standard deviation

criterion of mRNA expression which indeed followed a Poisson

distribution (Fig. 1B), we found that 667 mRNAs were significantly

differentially-expressed between the TamS and TamR cell lines.

To better analyze and categorize the transcriptome differences

associated with Tam resistance, including analysis of smRNA, we

used the Fisher’s Exact Test (FET), in which significance was

assessed with the normalized data by FPKM (fragments per

kilobase of exon per million fragments mapped). This allows for

analysis of smRNA (which may map to unidentified genome

regions with no recognized gene lengths) in addition to mRNA

and more accurately deals with variation between different

treatments or cell lines [23]. FET was therefore also used to

analyze the significance of differential expression between the

TamS and TamR cells for each gene, a method which has recently

gained favor in microarray analysis [24]. Among a total of 7713

small RNAs, 513 display significant differences in exon reads

(Fig. 1C) between the two cell types. For intron reads, 55 smRNAs

were differentially-expressed (Fig. 1D). From a total of 23,561

mRNA genes, 1215 were differentially-expressed (870 up-regulat-

ed and 335 down-regulated) between the TamR and TamS cells

(Fig. 1E). Interestingly, upon comparison of the mRNA expres-

sion, only 150 genes were found by both the ‘‘two-standard

deviation’’ method and FET (Fig. 2A). Table 1 lists the most

differentially-expressed genes found by both tests.

For preliminary verification of differential expression between

the TamS and TamR cell lines, we chose ten genes found by both

statistical tests (five of which were up-regulated and five down-

regulated in TamR cells) and compared their mRNA levels using

quantitative RT-PCR. An additional treatment group of TamS

cells grown in phenol red-free media, which acts as an estrogen

mimic [25], was added to explore the effects of estrogen

independence on the gene expression changes. Three replicates

from cell culture experiments were prepared on three separate

days that were distinct from those used for NGS. Figure 2B shows

the mRNA levels of the selected genes as determined by qRT-

PCR. The qRT-PCR confirmed the general up- or down-

regulation of the genes. Quantitatively, the fold-changes observed

were usually smaller in the qPCR analyses than the NGS by

approximately 2-fold. The down-regulated genes in TamR cells,

GTSE1,IFITM2, and mir-1974 showed a 6-fold difference by NGS

but only a 2 to 4-fold difference by qRT-PCR, while genes CCDN1

and U2AF1 showed a more moderate decrease of a 2-fold

difference which was similar to their 1.7- difference found by

NGS. Although all the down-regulated genes were more down-

regulated in TamR cells than in TamS cells grown without

estrogen, it was interesting that JUNB and mir-1974 trended

towards an up-regulation under estrogen independent conditions,

suggesting a distinct mechanism for the emergence of tamoxifen

resistance. TamR upregulated genes, ATP5E, CCDN1, SIRT3,

UBC, and mir-21,a, showed a 7–9 fold difference by NGS but only

a 2–4 fold difference by qRT-PCR. While ATP5E, SIRT3, and

mir-21 all had increased expression levels under estrogen

independent conditions, all the up-regulated genes were increased

further when the cells were tamoxifen resistant. Thus, while some

NGS Analysis of Tamoxifen Resistance
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Figure 1. NGS identification and comparison of differentially-expressed genes in TamR cells by the Fisher’s exact test. (A) Total RNA
from human breast cancer cell lines MCF-7 (TamS) and MTR-3 (TamR) were collected and subjected to the next generation sequencing process. (B)
Gene expression followed a Poisson distribution with significantly differentially-expressed genes two standard deviations from the mean in the
traditional method. The new method used the FET significance test. The change of the normalized smRNA exon reads (C) and intron reads (D), and
exon reads for mRNA genes (E) from TamS to TamR cells is plotted against the mean expression between these two types of cells for the new
method. Purple dots represent significantly expressed genes as determined by FET; gray dots represent genes with similar expression. The red
horizontal line at zero provides visualization for the signs of differential expression.
doi:10.1371/journal.pone.0041333.g001
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of the validated genes have altered expression as they become

estrogen independent, further alterations in expression appear to

be necessary for the development of resistance to tamoxifen. An

initial ontological exploration of both methods’ sets of statistically

significant genes indicated that genes related to ESR1 (estrogen

receptor alpha) comprised one of the most enriched pathways

(Fig. 2C). This adds validation to the significance of our data set in

comparison to previous studies [9,26,27].

Phenotypic plasticity clustering analysis
Due to the large number of differentially-expressed genes, we

next sought a method to categorize the genes based on their levels

of differential expression to determine if any new patterns

emerged. Because many traditional clustering methods create

clusters based on known gene function similarities, they fail to

recognize novel patterns of gene expression. Other methods that

do not rely on gene function are usually limited because they force

genes to fit into one of a predetermined number of gene clusters

that can create false relationships between genes. To overcome

these limitations, we developed difference and ratio models (see the

Methods) that take into account phenotypic plasticity of gene

expression and cluster the FET significant genes into different

groups based on the pattern of differential expression between

TamS and TamR cells (Figs. 3, 4). Phenotypic plasticity of gene

expression can be measured as absolute differences or ratios of

expression levels between environments or treatments. The

difference model determines the assignment of genes to particular

clusters based on absolute differences in gene expression levels

from one environment (TamS) to the next (TamR), whereas the

ratio model identifies expression patterns according to relative

difference of gene expression. The optimal number of clusters is

determined by a model selection criterion, such as the commonly

used Akaike information criterion (AIC) [28] or Bayesian

information criterion (BIC) [29]. in this study, both the AIC and

BIC values under different numbers of clusters were calculated,

with an optimal number of clusters corresponding to the minimum

AIC value, which produced identical results for the optimal

number of clusters. The two models for absolute difference and

ratio of expression may also produce similar results, but

meanwhile, they are complementary in identifying particular

clusters. Detailed method and validation is unpublished as of yet.

Figure 2. Comparison and validation of differentially-regulated genes by the two significance methods. (A) Venn diagram of overlap of
significant genes found by simple calculation of two standard deviations or the Fisher’s exact test. (B) Validation of mRNA levels of selected genes
found by NGS was performed on MCF-7 (TamS), estrogen independent TamS cells (MCF-7-E2), and MTR-3 (TamR) cells by qRT-PCR. The log ratio of
MCF-7-E2 or TamR to TamS gene expression is shown to indicate up- or down- regulation. GAPDH was used as a control. Each point represents mean
6 S.D. of triplicate determinations; results shown are the representative of three identical experiments. *p,0.05; t-test. (C) GeneGO (Thomson
Reuters) network analysis of the most significant networks dysregulated in TamR cells. Red circles with a red dot in the middle next to the proteins
indicate up-regulation in TamR cells. The different shapes indicate different classes of proteins. Green lines indicate activation while red lines indicate
inhibition; gray lines are unspecified interactions.
doi:10.1371/journal.pone.0041333.g002

Table 1. Most differentially-expressed genes revealed by both significance tests.

Gene Function Fold-change P-value

Up-regulated Genes in TamR cells

ANKRD32 Ankyrin repeat domain: cell-cell adhesion and cell structure 12.25 0.015

ABHD10 Alpha-beta hydrolase 11.81 0.002

INTS12 Integrator complex subunit: associates with RNA polymerase II 9.19 2.00E-04

SIRT3 Sirtuin 3: deacetylase 9.19 .015

TATDN1 Putative deoxyribonuclease: alternative splicing 8.75 7.65E-05

UBC Ubiquitin C: ubiquitination 8.75 0.008

CAV2 Caveolin-2: formation of caveolae 8.31 0.050

ATP5E ATP synthase: oxidative phosphorylation 7.61 2.48E-81

HIST1H2BM Histone 1: gene expression 7.44 4.31E-09

RAB27B Ras oncogene: vesicular fusion and trafficking 7.00 0.003

Down-regulated Genes in TamR cells

RPLP1 60S ribosomal protein: translation 222.86 1.42E-12

SLC12A9 Solute carrier: membrane transport 218.29 0.034

REEP6 Receptor accessory: cell surface receptor expression 211.43 0.001

IFITM2 Interferon induced transmembrane protein: cell cycle arrest and apoptosis 211.43 4.5E-05

NDUFS6 NADH dehydrogenase: oxidative phosphorylation 29.14 .001

TSSC4 Tumor suppressing subtransferable: 28.00 0.016

TMSB15B Thymosin b: actin binding 26.86 0.027

HIST1H3E Histone 1: gene expression 26.86 0.003

CSNK2A2 Casein kinase: PI3K and Wnt signaling 26.10 0.016

ATP6V0E2 ATP synthase: oxidative phosphorylation 25.94 0.007

doi:10.1371/journal.pone.0041333.t001
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Figure 3. Clustering patterns of genes by absolute difference and ratio of expression. Clustering as determined by the difference model
for smRNA exon reads (A) and intron reads (B), as well as mRNA genes for exon reads (C) in TamS (S) and TamR (R) cells. Clustering as determined by
the ratio model for smRNA exon reads (D) and intron reads (E), as well as mRNA exon reads (F) in TamS (S) and TamR (R) cells. The number in
parentheses corresponds to the number of genes in each cluster.
doi:10.1371/journal.pone.0041333.g003
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Figure 4. Heatmap comparison of differentially-expressed genes by clustering analysis. Heatmaps showing results of the clustering of
small RNA exons (A) and introns (B), as well as mRNA exons (C) absolute difference gene expression (R-S) between TamS (S) and TamR (R). Heatmaps

NGS Analysis of Tamoxifen Resistance
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The AIC and BIC criterioa calculated from the difference

model both favor the choice of five clusters for the 513 exon genes

and four clusters for 55 intron genes of the differentially-expressed

small RNA genes. Figures 3A and 3B plot the patterns of absolute

difference in smRNA gene expression in the TamS and TamR

cells, showing marked differences in the pattern of differential

expression. The majority of exon genes fall into Cluster 3 which

represents low expression genes (Fig. 3A). It should be pointed out

that for these weakly expressed clusters in both cell types, some

sub-clusters may exist in terms of the relative difference which

would be found with the ratio model. In general, the counts of

intron reads are strikingly low compared with exon reads (Fig. 3B).

Distinct patterns of absolute difference in gene expression can also

be detected for total exon reads for mRNA. Introns were not

included for mRNA analysis as they do not accurately portray the

genes being expressed. Among 1215 significant mRNA genes, we

detected three clusters based on both the AIC and BIC criteria

(Fig. 3C), with the majority of genes falling into the low expression

Cluster 2 with little absolute difference between the cell types.

Overall, these results suggest that the difference model is effective

for large differences in gene expression, but genes that have low

expression could be inaccurately categorized as having no change

between treatments.

The ratio model was better able to cluster genes together that

had lower absolute expression but a high degree of difference in

expression between TamS and TamR cells (Fig. 3D, E, F); up- and

down-regulation is more evident in this format. In this model,

fewer genes were clustered due to some genes only being expressed

in one cell line. For smRNA gene expression, the model found four

clusters for the exon-significant genes (Fig. 3D), while the absolute

difference method found five (Fig. 3A). Intron-gene expression was

clustered into three groups (Fig. 3E). For the differentially-

expressed mRNA genes, the genes clustered into three groups

again (Fig. 3F). As expected, the ratio model was better able to

capture the nuances of the fold-changes than the absolute

difference method, but the absolute difference method was

superior at clustering genes simply by their absolute low or high

levels of expression.

Taken together, this model was able to cluster differentially-

expressed genes into groups with similar degrees of expression

differences. With the model accurately taking into account the

statistical ramifications of comparing across different environmen-

tal groups rather than just across multiple samples of the same

treatment, our next goal was to determine if the genes within

clusters have any significant known relationships to one another.

Effects of Tam resistance on smRNA expression and
clustering

In order to better understand how different types of smRNA

were affected in TamR cells, we next examined the smRNA

clusters. Based on clustering by absolute difference, almost all

genes were designated to a single cluster (Cluster 3) in both the

exon and intron analyses. These clusters were low expression

genes that showed little difference between TamS and TamR cells

when measured on an absolute expression scale (Fig. 3A–B). The

majority of these differentially-expressed small RNA aligned to

known small nucleolar RNA (snoRNA) genes as well as other non-

coding RNA (ncRNA) regions. snoRNAs were both up- and

down-regulated in TamR cells. This relatively new category of

non-coding RNA was originally thought to be unimportant or to

only have effects on the chemical modifications of other RNA

molecules [30]. However, there is recent evidence showing that

snoRNAs can act much in the same way as micro-RNA (miRNA),

regulating gene expression [31]. Other ncRNA categories included

those related to histone modification, small cajal nucleolar bodies,

and vault RNA, with one notable exception: miRNA mir-16-2 was

found in Cluster 3. This miRNA normally stops E2F control of

proliferation [32] and its down-regulation would allow prolifera-

tion to continue. smRNA exon Clusters 1, 2, and 5 contained only

a few transcripts that were differentially-expressed, and all aligned

sequences were mapped to snoRNA genes. The remaining group,

Cluster 4, which contains moderately-expressed genes with little

absolute difference but significant fold-change between TamS and

TamR, did include one interesting transcript – RMRP (RNA

component of mitochondrial processing endonuclease), a ncRNA

that binds several proteins to create the endonuclease complex

controlling mitochondrial transcription.

Comparison of the ratios of smRNA expression revealed much

of the same alteration of snoRNA as well as other significant

ncRNA. Most differentially-expressed smRNA that were not

labeled as snoRNA were mapped to regions that were generally

categorized as nonspecific ncRNA, open reading frames, and

transcription regulation. However, there were some significant

changes in miRNA. In Cluster 4, we found that known oncomir

mir-21 expression was increased in TamR cells by ,5-fold, as was

uncharacterized mir-1259. Up-regulation of mir-93 and mir-125A,

which are involved in invasion, migration and metastasis [33,34],

was observed in Cluster 4. Cluster 2 contained newly discovered

mir-1974, a mitochondrialy-targeted miRNA [35] found to be

decreased in adrenocortical carcinoma [36]. In addition to these

specific miRNAs, other areas of smRNA dysregulation include

transcripts that lead to alteration of transcription by modification

of histone acetylation and methylation proteins. smRNA from

several histone-associated proteins like Histone 1 complexes A-D

as well as histone acetyltransferases (MYST4) and methylators

(MBD1) were only found in TamR cells, and thus were not

included in the clustering analysis in the ratio setting. However,

such binary ‘‘on/off’’ expression suggests a strong role in

mediating drug resistance.

In general, smRNA analysis of TamR and TamS breast cancer

cells illuminated large alterations of snoRNA levels. This study

provides support for the exploration of snoRNA in the cancer

genome and drug resistance phenotype. Clustering analysis did not

appear to cluster genes based on function, but analysis is restricted

by the limited characterization of snoRNA and other ncRNA. As

the field progresses, these snoRNA may be better categorized and

the significance of the clusters may become apparent. Additional

limitations of the smRNA analysis lie in the fact that some

transcripts aligned to protein-coding exons of genes. While many

of these genes may be subject to alternative splicing leading to the

creation of smRNAs, the actual function of these smRNAs could

be unrelated to the function of the gene. For this reason, we did

not include analyses with these alignments. Overall, the existence

of so many snoRNAs, miRNAs, and smRNA transcripts related to

gene expression (histone modification, mitochondrial transcrip-

tion, etc.) implicate the intricate regulation of a large set of gene

expression changes in the development of Tam resistance.

showing results of the clustering of small RNA exons (D) and introns (E), as well as mRNA exons (F) ratio gene expression (R/S) between TamS (S) and
TamR (R). Gene expression levels are displayed for R and S on a log(absolute values) scale. (R-S) are absolute values while (R/S) values display a fold-
change from R to S cells. Clustering groups are represented by different colors above the heatmaps. P-values were calculated using a x-squared test.
doi:10.1371/journal.pone.0041333.g004
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Gene ontology and clustering analysis of mRNA
expression

To better understand the wide-range of altered mRNA

transcripts and proteins in TamR breast cancer cells, we

performed a gene ontology and pathway analysis of the

differentially-expressed genes and clusters. Analysis was relegated

to exon-significant mRNA transcripts since these can be verified as

protein coding regions.

Using the absolute difference method, the majority of genes fell

into one cluster, Cluster 2. Figure 3C shows that this cluster

contains genes with low levels of expression and little absolute

difference in gene expression. This is to be expected, as most

transcripts are not highly expressed. Clusters 1 and 3 contain

transcripts mostly from snoRNA regions, with varying levels of up-

and down-regulation in TamR cells. While Cluster 2 contains

snoRNA transcripts as well, it also includes miRNAs mir1248,

mir1291, and mir1978, which are slightly up-regulated with

moderate absolute expression levels in TamR cells. So far, these

miRNAs have not been associated with any disease state.

Transcripts for the non-protein coding RMRP, that was also

found by smRNA analysis, clustered in this group as well. The

assignment of RMRP and snoRNA to both smRNA and mRNA is

unsurprising due to their intermediary sizes before processing

ranging from 60–350 bp. Transcripts from the mRNA analysis

designated as miRNA are probably the result of unprocessed

transcripts or previously named miRNAs being assigned to areas

of alternative splicing of unknown genes.

The clustering analysis gave a more substantial set of results for

the mRNA transcripts using the ratio method that compares the

relative difference of individual genes expression from TamS to

TamR cells (Table 2). Of the three clustering groups, Cluster 1

contains all of the down-regulated genes in TamR cells. Analysis of

the biological functions and pathways contained in Cluster 1 genes

indicates a high level of modification of mitochondrial oxidative

phosphorylation and gene expression regulation. Some of the ATP

synthase genes are down-regulated by 2-fold, as are ribosomal

proteins 60S proteins. Transcripts from splicesome genes U2AF1

and U2AF2 are decreased by 5- and 2-fold, respectively, in TamR

cells. Expression of the transcription factor JUNB, which binds and

represses AP-1, was decreased by 5.5-fold, which has previously

been shown to be linked to increased cell cycle progression and

lack of response to Tam [37]. In general, the down-regulation of

Cluster 1 may be required for specific gene expression changes

that allow Tam resistance to occur. Changes (up or down) in

energy metabolism molecules have been observed previously with

Tam treatment [38] and might be necessary for altered global

gene expression.

Cluster 2 exhibits a more moderate increase in gene expression

of TamR cells, many of which are related to expression of

transcripts and proteins. Pathway and function analysis shows this

cluster to have the most diverse set of gene functions with

alterations in mitochondria, transcription, translation, cell cycle,

and ubiquitination. Transcription regulation is altered with a

number of histone-associated genes that are up-regulated 2- to 3-

fold as well as histone binding protein HINT1. Protein synthesis is

affected on several levels. Ribosomal transcripts that code for

proteins rather than rRNA were also increased such as 40S (RPSs:

ribosomal protein S) small subunit and 60S (RPLs: ribosomal

protein L) large subunit ribosomal proteins; interestingly, mito-

chondrial ribosomal proteins (MRPLs and MPRSs) were also

increased. Another level of protein regulation was found with

increases in translational machinery including up-regulation of

initiation factors (eIFs), as well as increased elongation factor

eEF1E1. Finally, post-translation modification is also up-regulated

with an increase in proteosomal PSMs (proteosome/macropain)

subunits.

The TamR breast cancer cells in Cluster 2 are also character-

ized by expression of cell cycle and mitochondrial energy

metabolism genes. Molecules involved in the progression of cell

cycle are moderately up-regulated in TamR cells. Cyclin D1 kinase

(CDK1) and Cyclin D3 kinase inhibitor (CDKN3) are increased as are

Cyclin B (CCNB1) and Cyclin C (CCNC). Master regulator RB1

(retinoblastoma 1) is increased as well. We also found a 2-fold

increase in various E2F5 transcripts in TamR cells, as well as a

decrease in mir-16-2, an E2F negative regulator miRNA which

stops E2F1 control of proliferation [32]. The increase in E2F

transcripts is probably partially due to the activation of HNF4a as

they are known targets of the transcription factor. Multiple

components of mitochondria are altered as well. In addition to the

increase in mitochondrial specific ribosome proteins, NADH

dehydrogenase subunits (NDUFs) are increased as are cytochrome

c oxidases (COXs). Drug resistance has been previously linked to

changes in cell cycle [39] and oxidative phosphorylation with a

decreased use of glycolysis [39,40].

Cluster 3 genes, which were highly up-regulated in TamR cells,

also contained transcripts related to dysfunctional mitochondria

and oxidative phosphorylation, in addition to those related to

proliferation and drug resistance. Genes from the ESR1 pathway

were also increased including downstream proliferation activators

and nuclear receptor regulators. These genes include HRAS,

MAPK1, NCOA, NRAS, NRIP1, SRA1, and TAF7. Different ATP

synthases were affected, increasing 4- to 7-fold in TamR cells.

Interestingly, activation of transcription factor HNF4a (hepatocyte

nuclear factor 4, alpha) genes was found with increases in targets

without an increase in HNF4a mRNA. HNF4a has not previously

been associated with breast cancer, but has been linked to types of

ovarian and liver cancer [41] in addition to changing the

expression of drug metabolism enzymes [42]. Caveolin-2 (CAV2),

which is involved in creating caveolae or invaginations of the cell

membrane, was also increased ,8-fold in Tam resistant cells.

CAV2 expression is associated with poor prognosis in breast cancer

patients [43] and with multi-drug resistance in multiple cancer

types [44]. Overall, Cluster 3 contains many of the traditional

molecules associated with Tam resistance, including those related

to ESR1 along with multi-drug resistance molecules.

Taken as a whole, while all three clusters contain many of the

same type of genes – mitochondrial and those related to gene

expression – Cluster 2 stands apart with its inclusion of additional

categories of modifications. Specific regulation of gene expression

with histone modification, translation factors, and proteosome

components is found exclusively in this cluster as are oxidative

phosphorylation members relating to NADH dehydrogenases and

cytochrome c. The designation of a variety of gene types to Cluster

2 is unsurprising since this cluster represents moderately altered

genes, and most genes would be expected to only have moderate

expression changes rather than dramatic ones.

Comparison to traditional analysis methods and previous
studies

A comparison of the ontology of genes found to be differentially-

expressed between TamS and TamR cells validated the results of

the NGS study. Numerous previous investigations have explored

the mechanism of Tam resistance, from large microarray [13] and

shRNA [16] screens to focused mechanism studies. These studies

have linked pathways related to estrogen receptor to be of great

importance to Tam resistance, which was confirmed by our study.

Both the FET and two-standard deviation significance test showed

that molecules related to ER-a (ESR1) pathways were found to be
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the most enriched genes as analyzed by GeneGo network and

pathway analysis (Fig. 2C), such as DDX5, MAPK, and NRIP genes.

The other pathways implicated by the traditional two-standard

deviation method are also in agreement with previous studies,

including down-regulation of cell death/apoptosis molecules [45]

and up-regulation of cell cycle regulators [46] and metabolic genes

[47] (Fig. 2D). Tam resistant cell lines and tumors are known to

have dysregulated cell cycle and apoptotic pathways in an attempt

to survive long-term treatment and to overcome the cytostatic

effects of Tam. One of our qRT-PCR genes confirmed to be up-

regulated in TamR cells, the gene for Cyclin D1, has been shown

to be increased in the plasma of breast cancer patients that have

poor outcomes and are non-responsive to tamoxifen [48].

Although the FET analysis found many of the same metabolic

and cell cycle regulators, apoptotic and cell death regulators were

not among the most prominent molecules found by our new

method, which may indicate that a variety of analytical methods

should be used when exploring RNA-Seq data. While in

agreement with the traditional ontology analysis, the expanded

study, which uses the FET significance test and our model, gave a

broader picture of the vast changes between these two cell lines.

The ability of the TamR cells to change global expression of so

many genes is highlighted by the amount of alteration at all levels

of transcriptional and translational control including changes in

epigenetic regulation, transcription factors, and post-translational

regulation. smRNA is altered in both miRNA and snoRNA forms,

emphasizing the complexity and dysregulation of smRNA in Tam

resistant breast cancer. Previously known miRNAs were also

implicated, with increases in mir-21 expression which targets

tumor suppressors [49], as well as up-regulation of mir-93 and mir-

125A [33,34], which are both involved in the development of more

aggressive phenotypes capable of migration and metastasis. These

results together represent a global change in the way that genes are

transcribed and expressed.

Additionally, along with traditional mechanisms of Tam

resistance such as up-regulation of ESR1 and other proliferative

pathways, alterations in mitochondrial function occurred in TamR

cells. This is not unexpected as new modes of energy metabolism

would be necessary to have a global control of gene expression,

and glycolysis may no longer provide adequate energy supplies.

Altered oxidative phosphorylation has been linked previously to

increased drug resistance [40].

Several large microarray studies on patient breast cancer tumors

were previously reported which presented gene signatures

associated with tamoxifen resistance and breast cancer recurrence.

While these studies were limited by the fact that they did not

explore smRNA expression, they did look at the prognostic value

of gene expression signatures of tamoxifen resistant tumors. When

the microarray gene signatures from Loi et al [50], Jansen et al [51],

and Ma et al [52] were compared to our differentially expressed

genes, relatively few genes overlapped. Out of the 81 transcripts

reported as differentially expressed by Jansen et al., 73 could be

matched confidently to our data. Of the 73 matched we observed

7 changed in expression. A similar 10% overlap in genes was

Table 2. Functions of mRNA exon expression clusters in Tam-resistant cells.

Category Function Molecules

Cluster 1 (down-regulated)

Mitochondria ATP synthases ATP: 5J2, 6V0E2

Gene expression Ribome 60S RPL: 17, 27, 28, 35, 39, 41 , P0, P1

Splicesome U2AF: 1, 2

Transcription factor JUNB

Histone-associated HIST1H: 1C, 2AE, 2BD, 2BO, 3E, 4A, 4D

Cluster 2 (moderately up-regulated)

Gene expression Histone-associated HIST1H: 2AC, 2AM, 3F, 3J, 4H, HIST2H: 2AB, 2AC

Histone-binding HINT1

Ribosome40S RPS: 4X, 5, 6, 8, 21, 23, 24, 25,27

Ribosome 60S RPL: 3, 5,10A, 11, 13A, 23, 30, 36, 37, 38, P2

Initiation factors eIF: 2A, 3E, 3H, 3M, 4A1, 4G2, 5, 6

Elongation factors eEF1E1

Proteosome PSM: A1, A2, A4, A5, A7, B1, B2, C2, D6, D7, D10, D12, G3

Mitochondria NADH dehydrogenases NDUF: A1, A4, A6, B2, C1, S3, S4

ATP synthases ATP: 1F1, 5A1, 5B, 5I, 5O, 6VOE1,6VOE1, 8B1,

Cytochrome c COX: 6C, 7A2L, 7B, 7C,16

Mitochondrial ribosome proteins MRPL: 16, 27, 32, 39, 47, 50, 53 MRPS: 7, 17, 21, 22, 23

Cell cycle Cyclins CDK1, CDKN3, CCNB1, CCNC

Retinoblastoma RB1

Cluster 3 (highly up-regulated)

Mitochondria ATP synthases ATP: 5E, 6V1D, 6V1H

Estrogen receptor ESR1 pathway CCNC, HRAS, MAPK1, NCOA, NRAS, NRIP1, PHB2, SRA1, TAF7

Gene expression HNF4a targets ABD10, DPH5, NOP6, E2F

Multi-drug resistance Caveolins CAV2

doi:10.1371/journal.pone.0041333.t002
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found in our comparison with Loi et al where we confidently

matched 173 out of 181 genes, while 17 out of these 173 changed

expression in our dataset. We had no overlap with Ma et al. It

should be noted that the gene signatures of these three previous

microarray studies do not have a single gene that overlaps with

one another, despite the studies using some of the same patient

tumor datasets. In our case, this could be due to the difference in

using a different technology. Microarrays measure one part of the

gene, which are usually 39 biased. With the sequencing approach,

reads are measured across the gene. The differences could be

attributed to the fact that these different methods are not analyzing

the exact same thing. This is why prognostic values cannot be

assigned to our gene results. While our current RNA-Seq data

cannot be associated with a predictive gene signature for

tamoxifen resistance as was produced by these previous micro-

array studies, the addition of patient samples to our analysis would

make it possible to determine what genes are truly correlated with

a response to tamoxifen in breast cancer patients. In general, there

have been many challenges with the reproducibility of replication

studies [53].

In fact, our own ontological analysis of the Loi et al [50], Jansen

et al [51], and Ma et al [52] studies revealed that these predictive

gene signatures shared little overlap in pathway and network

analyses. Using both Ingenuity Pathway Analysis (IPA) and Roche

GeneGo, we found a variety of different gene ontology terms for

pathways and networks that were the most enriched for these

different studies (Table S1), demonstrating the difficulty in

studying the overlap between individual gene signature studies.

A shared theme of cell cycle regulation, apoptosis, cytoskeleton

rearrangement, DNA repair, immune response, small molecule

biochemistry, and steroid receptor signaling were shared by the

three studies and were confirmed in our own tamoxifen resistant

dataset. The range of enriched pathways and networks found by

these predictive gene expression signatures highlights the challenge

in confirming significant results in tamoxifen resistance.

The diversity of molecules involved in Tam resistance was also

established in a recent meta-analysis of three separate microarray

studies [54]. The systematic study by Huang et al. examined the

275, 130, and 252 genes found in three public microarray data sets

(GSE6532, GSE9195 and GSE9893), respectively, comparing

Tam-sensitive and Tam-resistant breast cancer samples. While the

authors found little overlap in the actual genes between datasets,

they did find a general theme of cell cycle and proliferation

transcription factor over-expression including an increase in

activation of various E2F’s in tamoxifen resistant cells in all three

studies. In fact, E2F gene expression was the only common

molecules between all three studies. They concluded that Tam-

resistant cells were highly proliferative compared to their sensitive

counterpart, a finding that is corroborated by our current study.

Specifically, we also found an increase in E2F5 transcripts in

TamR cells (Fig. 5A), as well as a decrease in general E2F negative

regulator mir-16-2 (Fig. 5B). Thus, while our study was performed

in breast cancer cell lines, these findings support the validity of our

method and its significance for clinical cases. Targeting of E2Fs

may be a promising area for the development of adjuvant

therapies that may sensitize breast cancer cells to Tam treatment.

Conclusions

Our study highlights the ability of NGS to profile and

characterize transcriptome changes in Tam-resistant breast

cancer. RNA-Seq analysis of gene expression of Tam-sensitive

and Tam-resistant breast cancer cells led to the identification of

1215 mRNA and 513 smRNA transcripts that were differentially-

expressed. The sheer number of differentially-expressed genes

demonstrates – quite effectively – that resistance to Tam is not

through changes in an individual molecule or pathway, but is the

result of global changes in gene expression (Figs. 4, 5).

RNA-Seq and NGS allow for an unbiased search for these

pivotal transcriptome modifications. Regardless of these advan-

tages, use of NGS has been limited by the lack of suitable analysis

tools for the large amount of data generated. Our clustering

method will add a means of determining the significance of similar

levels of expression changes as found by NGS, which may, in due

course, lead to the determination of molecules that induce these

global or cluster changes. The ultimate goal of these studies was to

identify molecules that could be exploited to modulate sensitivity

of breast cancer cells to Tam. Although our study was focused on

two breast cancer cell lines, these results will help with future

studies with patient tumors that have the potential to identify new

targets that are universally dysregulated in tamoxifen resistance. In

particular, as total smRNA on an NGS platform has not

previously been used to characterize Tam resistant tumors, further

research in this specific area of study would help to identify which

smRNAs are universally dysregulated. In light of the large number

of gene expression changes found, it is conceivable that some

alterations are the driving changes leading to Tam resistance

Our findings reveal three areas that are modified on multiple

levels in our Tam-resistant cells. First, proliferation signaling is

modified with changes in cell cycle control and ESR1 down-

stream genes that permit unregulated proliferation of the Tam-

resistant cells (Fig. 5C1, 2, 3). Second, mitochondria and oxidative

phosphorylation are affected (Fig. 5C4). Several different types of

units in the electron transport chain are altered that may permit

new and more efficient means of energy production for the breast

cancer cells. Finally, this study indicates that gene expression

regulation is dramatically altered from changes in transcriptional

control to adjustments in post-translational modifications and

protein degradation (Fig 5C5, 6, 7, 8, 9). Within this area, we find

that snoRNA could play a major role in Tam resistance.

Independently, each of these areas could be investigated for

therapeutic targets, and further exploration of the changes in

snoRNA may lead to new diagnostic tests for Tam resistance.

Together, our results exemplify the need for personalized medicine

as the large number of genetic changes in Tam resistance can be

overwhelming, but patterns of dysregulation may emerge as a

patient’s own genetic signature is compared to samples of known

resistant phenotypes. Using NGS and clustering methods,

therapies may be developed that target proteins or genes that

are found to regulate these global changes, sensitizing more breast

cancers to the anti-proliferative effects of Tam.

Materials and Methods

Cell lines
Parental MCF-7 cells were grown in DMEM (Hyclone)

supplemented with 5% fetal bovine serum (FBS) (Hyclone), 100

units/mL penicillin, and 100 mg/mL streptomycin. The MTR-3

line (MCF-7 Tamoxifen-Resistant-3) was derived from the

parental MCF-7 cells by continuously culturing the cells in the

presence of 1 mM Tam (Sigma Aldrich) in phenol red-free DMEM

(Hyclone) supplemented with 5% charcoal/dextran-stripped fetal

bovine serum (CSS) (Hyclone) and antibiotics. Estrogen indepen-

dent cells (MCF-7-E2) were derived from parental MCF-7 cells

grown in phenol red-free DMEM (Hyclone) supplemented with

5% CSS (Hyclone) and antibiotics. Cells were maintained at 37uC
in a humidified atmosphere containing 5% CO2/95% air.
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Figure 5. Dysregulation of pathways and processes involved in Tam resistance as revealed by NGS. Changes in E2F control of
proliferation are in agreement with previous clinical sample studies with increases in E2F5 (A) and mir16-2 (B) expression in TamR cells. (C) Pathway
analysis of clusters revealed several important areas of dysregulation in Tam resistance: traditional Tam resistant ESR1 (1) and proliferation (2)
pathways are up-regulated in TamR cells, as are molecules involved in cell cycle progression (3). Oxidative phosphorylation is altered (4).
Transcription was affected with modification of histone and transcription factor expression (5). Expression of transcripts was altered by the large
number of smRNA molecules that were dysregulated, particularly in snoRNA (6) and miRNA (7) expression. Translation of proteins is affected in Tam
resistance as well with up-regulation of ribosomal and translational machinery (8). Protein expression was also affected by an up-regulation of
proteosomal proteins in TamR cells (9).
doi:10.1371/journal.pone.0041333.g005
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RNA preparation
Total RNA was prepared with TRIZOL Reagent (Invitrogen)

from MCF-7 and MTR-3 cells grown under preferred culture

conditions as described above. RNA was extracted and isolated as

recommended by the manufacturer. Sample integrity was verified

with Nanodrop 1000 and Agilent Bioanalyzer 2100.

Library preparation for SOLiDTM NGS sequencing
Library preparation for both whole-transcriptome (WT) se-

quencing and small RNA (smRNA) sequencing was performed

using the smRNA expression Kit (Applied Biosystems Inc,) based

on SOLiD WT and smRNA sequencing protocols provided by

ABI. rRNAs were depleted from total RNA using the Ribominus

Eukaryotic Kit (Invitrogen). rRNA-depleted total RNA (0.5–

1.0 mg) was fragmented by RNase III. The fragmented rRNA-

depleted total RNA were hybridized and ligated with adaptors,

followed by reverse transcription. The cDNA were size-selected in

100,200 nts, amplified (12–15 cycles), and re-size-selected as

recommended by ABI. The purified PCR products were size-

selected in the range of 150,250 bp, containing 50–150 bp

cDNA inserts (quantitated and qualified by Agilent Bioanalyzer

2100) for WT and 108–135 bp PCR products containing 18–

40 nt of smRNA inserts to make libraries.

Sequencing
The individual prepared libraries were quantitated as templates

for emulsion PCR; the template molecules were attached to beads,

enriched for adaptor P2, and immobilized to the slide according to

the ABI SOLiD emulsion. The sequencing runs were performed

on a SOLiD v 3.5 for both WT-seq and small RNA-Seq. The

number of P2 positive template beads (equal to the number of

transcripts) deposited on the sample slide were 71,250,509 and

69,005,180 of 50 nt length for WT sequencing, and P2 positive

beads for small RNA sequencing were 35,686,597 and 35,176,389

of 35 nt length for smRNA sequencing, of TamS and TamR cell

lines, respectively

NGS mapping and expression
Fifty bp and thirty-five bp reads (for WT and smRNA,

respecitively) were assessed for quality and mapped to the

reference human genome (hg18) by the software Maq: Mapping

and Assembly of Qualities. Whole transcriptomes for the two cell

lines were constructed and compared for their gene expression.

One hundred and forty million total reads were produced by

sequencing, and ,50% of them mapped to the genome after

initial quality control measures. Applied Biosystems WT and

smRNA Analysis Pipelines were used to confirm results and score

expression. Histogram analysis of the log2(# of case reads/# of

control reads) provided gene candidates that were differently

expressed between the tamoxifen sensitive and resistant cells with a

1.7 fold criterion for the traditional model.

qRT-PCR validation
Potential gene candidates were validated using TaqMan Gene

Expression assays. cDNA was made from previously harvested

total RNA of MCF-7, MCF-7 estrogen-independent cells, and

MTR-3 cells (Roche). The products were tested for purity using

spectrophotometry (Aligent Nanodrop). RT-PCR was performed

using TaqMan Gene Expression Assays (Applied Biosystems) on a

Statagene Mx3005P (Aligent Technologies). GAPDH was used to

normalize samples for comparison.

Statistical models
We implemented a novel statistical model for identifying the

patterns and differences in smRNA and mRNA expression in

TamS and TamR cells. Consider m genes are detected in both

TamS and TamR cells. Because of their functional similarities and

differences, these genes can be clustered into different groups. Let

(y1i,y2i) denote the expression data for gene i from these two cell

lines, respectively. We can describe the differential expression of

gene i using the absolute difference (i.e., yi = y1i2y2i) or ratio

(zi = y2i/y1i) of the gene’s expression between the two cell types.

Genes will be clustered into different groups based on the

differences and ratios between individual genes in the TamR and

Tams S cell lines using a mixture-based likelihood model:

L(Hjy)~ P
n

i~1
p1p1(yi)z:::zpJ pJ (yi)½ � for the difference model ð1Þ

L(Vjz)~ P
n

i~1
v1h1(zi)z:::zvLhL(zi)½ � for the ratio model ð2Þ

where (p1,:::,pJ ) and (v1,:::,vL) are a set of proportions that each

correspond to a different gene group under the difference and

ratio model, respectively; pj(yi) and hl(zi) are the discrete probability

distributions of differential expression for group j (j = 1, …, J) for

the difference model and group l (l = 1, …, L) for the ratio model.

The expression reads of genes in each cell type are thought to obey

a Poisson distribution (16), thus the distribution of the read

differences and ratios between the two cell types is modeled by

specific functions.

The EM (expectation maximization) algorithm can be conve-

niently used to estimate the means of gene expression in TamS

(mSj) and TamR cells (mRj) for group j under the difference model.

Similarly, the means of gene expression in TamS (mSl) and TamR

cells (mRl) for group l can also be estimated. The optimal number of

clusters is determined by a model selection criterion, such as

commonly used Akaike information criterion (AIC) [28] or

Bayesian information criterion (BIC) [29]. In this article, both

the AIC and BIC values under different numbers of clusters were

calculated to be the same; thus, only the AIC values were reported.

The optimal number of clusters corresponds to the minimum AIC

value,. After this is determined, our model allows the following

biologically meaningful tests.

Test 1: For a given cluster group, do TamS and TamR cells

differ? This can be done by testing:

H0 : mSj~mRj j~1, . . . ,Jð Þ for the difference model

H0 : mSl~mRl l~1, . . . ,Lð Þ for the ratio model

If the H0 is rejected, this group of genes is expressed differently

between TamS and TamR cells, indicating that they may be

involved in drug resistance and can be viewed as a biomarker of

drug response;

Test 2: For a pair of genes, do they interact with each other to

determine drug resistance? This can be done by testing:;

H0 : mSj1
{mSj2

~mRj1
{mRj2

j~1, . . . , Jð Þ for the difference model
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H0 : mSl1
{mSl2

~mRl1
{mRl2

l~1, . . . , Lð Þ for the ratio model

A rejection means that these two groups of genes have

significant interaction effects on drug response.

Expression Analysis
Gene network and pathway analyses were conducted using the

Ingenuity Pathway Analysis (IPA, IngenuityH Systems) and

GeneGO (Thomson Reuters) software. Functional analysis of the

resistant cell lines was performed using IPA with a 1.7-fold change

criteria and a P value of ,0.01.

Supporting Information

Table S1 Difference in Gene Ontology (GO) terms for
gene signature of significant Tam resistance studies.
(DOCX)
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