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Abstract
This paper presents a novel dimensionality reduction method for classification in medical imaging.
The goal is to transform very high-dimensional input (typically, millions of voxels) to a low-
dimensional representation (small number of constructed features) that preserves discriminative
signal and is clinically interpretable. We formulate the task as a constrained optimization problem
that combines generative and discriminative objectives and show how to extend it to the semi-
supervised learning (SSL) setting. We propose a novel large-scale algorithm to solve the resulting
optimization problem. In the fully supervised case, we demonstrate accuracy rates that are better
than or comparable to state-of-the-art algorithms on several datasets while producing a
representation of the group difference that is consistent with prior clinical reports. Effectiveness of
the proposed algorithm for SSL is evaluated with both benchmark and medical imaging datasets.
In the benchmark datasets, the results are better than or comparable to the state-of-the-art methods
for SSL. For evaluation of the SSL setting in medical datasets, we use images of subjects with
Mild Cognitive Impairment (MCI), which is believed to be a precursor to Alzheimer's disease
(AD), as unlabeled data. AD subjects and Normal Control (NC) subjects are used as labeled data,
and we try to predict conversion from MCI to AD on follow-up. The semi-supervised extension of
this method not only improves the generalization accuracy for the labeled data (AD/NC) slightly
but is also able to predict subjects which are likely to converge to AD.
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I. Introduction
Voxel-based analysis (VBA) has been widely used in the medical imaging community for
group analysis. It typically consists of mapping image data to a standard template space and
then applying voxel-wise linear statistical tests on voxel values. In morphological analysis,
voxel values are typically either: a Jacobian determinant of the deformation [1],
transformation-residuals [2], tissue density maps [3], [4] or voxel intensity (e.g., diffusion
imaging [5]). In functional MRI (fMRI), voxel values are usually an activation map [6].
VBA therefore identifies regions in which two groups differ (e.g., patients and controls [7])
or regions in which other variables (e.g., disease severity [8]) correlate with imaging
measurements. However, VBA has limited ability to identify complex population
differences because it does not take into account multivariate relationships in data [9]–[12].
In other words, values of voxels or Regions of Interest (ROI's) showing significant group
difference are not necessarily good discriminatory factors at the patient-level.
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In order to overcome these limitations, high-dimensional pattern classification methods have
been proposed in recent literature for morphological analysis [13]–[16] and fMRI [9], [17],
[18], which aim to capture multivariate nonlinear relationships in the data and seek to
achieve high classification accuracy at the individual level. A fundamental limitation in
these methods, however, is the lack of sufficient training samples relative to the high
dimensionality of the data. Therefore, a critical step underlying the success of such methods
is effective feature extraction and selection, i.e., dimensionality reduction. Our main
objective in this paper is to propose a dimensionality reduction method that finds a
parsimonious set of image features for the sake of a better representation of group
difference, best differentiates between two or more groups, and generalizes well to new
samples.

Dimensionality reduction methods can be categorized into two groups: generative (typically
unsupervised) and discriminative (typically supervised) methods. One of the most well-
known unsupervised dimensionality reduction methods is Principal Component Analysis
(PCA). PCA results are often hard to interpret since PCA does not specifically attempt to
identify localized brain regions, instead capturing global correlations. More generally,
unsupervised methods often focus on irrelevant variations in the data and do not yield the
best performance if the main objective is discrimination. On the other hand, supervised
methods like Fisher Discriminant Analysis (FDA) and feature selection methods have been
recently applied for medical image analysis [14], [15], [19]. Similar to PCA, FDA may not
be able to identify localized abnormal brain regions; in the medical imaging context, the
ability of a method to provide an interpretable model is important. Feature selection
methods, on the other hand, produce regions that are potentially interpretable. However,
reducing the dimensionality to a small number of features comparable to the typical number
of labeled samples can diminish discriminative ability since individual features are very
noisy.

To address these issues, we propose a method that combines generative and discriminative
approaches and bridges between feature selection and feature construction. Recently, there
has been much interest in the machine learning community in fusing generative and
discriminative perspectives of learning [20]. The computer vision community has adopted
this approach for various purposes ranging from object recognition [21] to image scene
classification [22]. For the hybrid generative-discriminative method proposed here, we have
adopted a constrained matrix factorization framework. The proposed method jointly finds a
matrix decomposition and a classifier that uses the decomposition for feature extraction. The
data matrix is factored into a basis and coefficient matrix, and the classifier uses projection
coefficients of the samples on the basis as new features for prediction. The basis matrix is
encouraged to possess two properties: 1) The basis vectors should be anatomically
meaningful. That is, they should correspond to anatomical regions preferably in areas which
are related to a pathology of interest. 2) The basis vectors must be discriminative: we are
interested in finding features, i.e., projections onto the basis vectors, that construct spatial
patterns that best differentiate between groups. We formulate this decomposition as an
optimization problem that seeks to satisfy the two criteria above. The discriminative
property of the decomposition is enforced by the joint learning of the classifier and
interpretability is encouraged through sparsity and non-negativity. The contributions of the
paper are the following:

• We propose a novel generative-discriminative approach well-suited to medical
imaging applications (Section II-B and II-C). In addition to the non-negativity and
sparsity constraints used in previous work [23], [24], we introduce a new type of
constraint (Group-Sparsity) that allows further anatomical coupling between voxels
defined by a segmentation (II-D).
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• In order to solve our large-scale optimization problem, we propose an efficient,
scalable algorithm using a novel closed-form projection onto the constraints.

• We extend our approach to the semi-supervised learning setting applicable for
group analysis in medical imaging, particularly when images do not have class
labels either because the labels are not provided or are hard to define.

A large numbers of experiments were conducted to evaluate the practical merit of the
proposed method on real and simulated datasets and also to clarify effects of various terms
on the accuracy and clinical interpretability of the proposed method.

The remainder of this paper is organized as follows. In Section II, we detail three important
components of the optimization problem, namely the generative term, discriminative term,
and constraints. We will also describe the proposed algorithm for efficient optimization in
Section II. In Section III, experimental results on some clinical datasets are provided.
Discussions and conclusion are left to Section IV.

II. Method
A. General Framework

We adopt a regularized matrix factorization framework for our purposes. In regularized
matrix factorization, the objective is to decompose a matrix into two or more matrices
subjected to some constraints or priors such that the decomposition describes the matrix as
accurately as possible. Assuming that each column of X = [x1 ···xi···xN] represents an
observation (i.e., a sample image that [notdef]is[notdef] [notdef]vectorized), the columns of
matrix B can be viewed as basis vectors and the i'th column of C contains corresponding
loading coefficients of the basis vectors for the i'th observation:

(1)

in which X is decomposed into two matrices B and C, each of which has its own feasible
set,  and  respectively. This framework will be elaborated in Bthe sequel, but it is
important to note that regularized matrix decomposition is a rich framework and many well-
established methods can be viewed as its variants. Table I represents some examples of well-
known methods that can be described by Eq.(1) (for more examples see [25]). In Table I,

 represents the divergence term between the reconstruction (BC) and the data (X)
which will be explained in II-B and KL denotes Kullback-Leibler divergence [26].

In order to define the feasible sets in Eq.(1), we need to elaborate the requirements that our
model should satisfy: 1) The basis vectors must be anatomically meaningful. This means
that a constructed basis vector should correspond to contiguous anatomical regions
preferably in areas which are biologically related to a pathology of interest. Having local
spatial support can be viewed mathematically as sparsity of a basis vector, i.e., a relatively
small number of non-zero voxel values. 2) The basis must be discriminative: we are
interested in finding features, i.e., projections onto the basis vectors, that construct spatial
patterns which best differentiate between groups, e.g., patients and controls or activation and
baseline. 3) The basis vectors must be representative of the data as much as possible, while
maintaining their discriminatory ability. In order to represent the data, we derive a basis
matrix, the columns of which satisfy aforementioned properties, and loadings of the samples
on those basis vectors (C).

In subsequent sections, we will introduce appropriate priors that encourage the
aforementioned properties, but we first lay out our framework. This framework is
represented in Fig.1 as a graphical model. Let us assume that we collect an image into a
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column of matrix X, therefore a column xi represents one sample image whose label (class)
is represented by yi. For example, xi can be the determinant of Jacobian of a deformation
field that warps a subject to a common template (see Section III), a tissue density map
representing region volume (see [28] and [2]), or fMRI of an activation task. Assuming that
each image consists of D voxels that concatenated together in lexicographical order, each
column of X is a D-dimensional vector. If the dataset includes N samples, matrix X is a D ×
N matrix. xi's are assumed to reside in the positive quadrant (in most cases, images, or
determinant of Jacobian of diffeomorphic transformation derived from them, are non-
negative). The goal is to decompose the data, X, into a matrix B, which is a matrix whose
columns are optimized basis vectors, and a loadings matrix C, which holds corresponding
loadings of the basis vectors, namely X ≈ BC. At the same time the basis representation B is
used to predict the labels y using w as we describe below, thus trading off generative and
discriminative criteria. Without additional constraints, the decomposition is ill-posed and
has infinitely many solutions; hence regularization is necessary. Given conditional
independence depicted in Fig.1, we formulate the problem as a MAP (Maximum a
Posteriori) estimation problem as follows:

(2)

in which w is a vector that parametrizes class-likelihood (p(y|X, B, w)), or, in other words, it
parametrizes a classifier that will be explained later (SectionII-C). Instead of maximizing the
logarithm of the posterior, we can minimize the negative of the logarithm of the posterior
that yields:

(3)

in which the first term is a divergence term that encourages good data approximation, which
will be referred to as the generative term. The second term is a loss function that encourages
good classification, which will be referred to as the discriminative term. The last term in the
objective of Eq.(3) is a combination of prior terms on B, C, and w; due to conditional
independence assumed in our model (Fig. 1), this term can be decomposed into addition of
priors over each of them. Observe that in Eq.(3) feasible sets of B and C are added for future
reference; this perspective is consistent with Eq.(2) because every constraint can be
transformed to a prior by imposing an infinite cost for points outside the feasible set and
zero for points inside the feasible set.

We will describe each term in detail in the subsequent sections, but before that we introduce
some examples of well-known methods in Table I that can be viewed as regularized matrix
decomposition and can be formulated as Eq.(3). Note that the examples in Table I are all
generative methods, hence w, and consequently its feasible set, W, is omitted.

B. Generative Term
In this section, we will explain  (the generative term) that measures the divergence
between the data and its decomposition in the basis vectors (columns of B). Various
divergence choices can model different noise assumptions between the reconstruction by B
and C and observation X. Since we have adopted a matrix decomposition framework, the
reconstruction is performed via matrix multiplication namely Z = BC. We assume Gaussian
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noise between observation (X) and reconstruction (BC), i.e., , the
divergence term becomes:

(4)

Observe that the divergence term is a convex function with respect to B if C is fixed, and
vice-versa, but it is not jointly convex with respect to both B and C. Other assumptions of
noise between observation and reconstruction, e.g., Poisson, can be modeled by various
choices for the divergence term, e.g., Kullback-Leibler (KL) divergence [26].

C. Discriminative Term
The idea behind the discriminative term is to encourage discriminative basis vectors; i.e., if
an image, xi, is projected on basis vectors yielding new features, v, the latter should be
discriminative. In other words, for new features (v), there exists a classifier parametrized by,
say w, that minimizes a loss function, , for an optimal set of parameters w*. In this
paper, we use a linear classifier, namely

where 〈·,·〉 represents inner product and entries of v are new features after projection.

Ideally, v can be written as a projection operator acting on xi to project it on the subspace
spanned by bj's. However, in this paper we set vj = 〈x, bj〉 or, in matrix notation, v = BTx. It
is not a proper projection unless the basis vectors are orthonormal; nevertheless, as it will
become clear in the next section, due to the positivity constraint and the fact that basis
vectors act like indicator functions, 〈x, bj〉 is proportional to the weighted sum of features in
a non-zero area of a basis vector, which is the quantity we are interested in using as new
features. Therefore, the classifier function is:

(5)

in which x is an image concatenated into a D-dimensional vector and  is a vector
with same dimensionality as the number of basis vectors. In fact, BTx reduces the
dimensionality from D to K. w is linearly related to the classifier, hw(·), because of
computational reasons; more specifically,  becomes convex with respect to B when w is
fixed.

The loss term  penalizes misclassification of data by comparing estimated classification
with class labels, y. Many choices are possible for the loss function in SVM; in this paper,
we choose the squared hinge loss function, namely

. This loss function is chosen due to
differentiability. Therefore, the loss function of all samples can be written as follows:

(6)

Other possibilities for the loss function (e.g., logistic, hinge, etc.) are not investigated in this
paper. For more diverse choices of the loss function, please see [29] and references therein.
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D. Priors

In this section, we discuss regularization terms for w, B, and C. We choose a simple  for

w, namely  similar to  [30]. The rationale behind using this type of
regularization for w is similar to that of . It can be shown [30] that adding this
regularization for SVM encourages a linear classifier in the feature space that maximizes the
margin between two classes and the decision boundary while minimizing the loss function.
Another common option for regularization of w is  [29] that favors a sparser w (or
fewer features). However, given that the basis vectors, B, have already reduced the
dimensionality significantly from D to K, a sparse w is not preferable in this paper.

For C, we simply impose a non-negativity constraint. Lee et al. [23] demonstrated that Non-
negative Matrix Factorization (NMF) is able to learn parts of faces and semantic features of
text. NMF is distinguished from the other factorization methods, e.g., PCA and Vector
Quantization (VQ) which learn holistic but not parts-based representations, by its use of
nonnegativity constraints that leads to a parts-based representation because it allows only
additive, not subtractive, combinations (this idea is intuitively represented in Fig.21).
Donoho et al. [32] showed that under certain conditions, basically requiring that some of the
samples are spread across the faces of the positive orthant, result in a unique decomposition.

For B, we define two types of regularizations: Boxed-Sparsity and Group-Sparsity.

Boxed-Sparsity—We would like to encourage basis vectors that act like indicator
functions. Mathematically speaking, we would like the elements of bj to be either 0 or 1,
namely bj ∈ {0,1}D. In addition, we are interested in finding localized basis vectors for two
reasons: it increases robustness and interpretability of basis vectors. The sparsity constraint
promotes the indicator functions that select subsets of voxels. The , which counts
number of nonzero entities in a vector, can be used as a regularization or constraint in order
to encourage or bound sparsity. In this paper, we prefer to use sparsity as a constraint.
Hence, a basis vector should reside in the intersection of two sets: the set of indicator
functions and the set of sparse vectors, which can be written mathematically as follows:

where λ is a constant that defines the level of sparseness and K is the number of basis
vectors. However, this constraint is combinatorial in nature, hence difficult to optimize. In
the context of machine learning [33] and optimization [34], the integer ({0, 1}D) and 
constraints are relaxed with their convex surrogates:

(7)

where ⇝ denotes a relaxation and ≡ shows equivalence, ||.||1 is the  of a vector
which is a convex relaxation of its  and ≤ is an element-wise inequality constraint.
Geometrically, each basis vector, bj, dwells in the intersection of the  ball of radius
λ with unit  ball (box) in the positive orthant, which is shown graphically in Fig.3
for  for sake of illustration. We call the feasible set the Boxed-Sparsity set, in contrast
to a feasible set to be defined subsequently.

1Pictures of parts of the boat shown in the figure are borrowed from presentation of a paper by Biggs et al. [31].
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Group-Sparsity—Another interesting prior on B arises when a partition is available and
needs to be taken into account. We assume a common coordinate system by warping all
images to a template and an image partitioning (image segmentation) is available for the
template image (e.g., an anatomical parcellation in a template space). It is possible to
consider sparsity constraint/regularization on the group-level rather than voxel level which
promotes that a few groups (e.g., brain structures) are involved in group difference rather
than a few voxels. In order to encourage this property, we can enforce an  on groups
instead of voxels. Before defining the idea precisely, we need a few definitions. Assuming 
is a segmentation of an image into sets (gi's), we can define two group-norms as follows (the
idea is graphically shown in Fig.4):

(8)

where b|g is a D-dimensional vector such that its voxels not belonging to the group g are set
to zero, ρg is a positive constant that in this paper compensates for a group-size, namely

 where |·| is cardinality of a set. Notice that in the definition of ||·||1,2, the  is

used instead of  because the squared norm does not have the sparsifying properties. This
kind of regularization is called Group regularization or Mixed-Norm regularization and have
received much attention in recent years in machine learning [35], [36].

Given the new norm definitions in Eq.(8), we can define the Group-Sparsity constraint
mathematically as follows:

(9)

For the rest of the paper, we will refer to ||b||1,2 subject to the constraints as Group-Sparsity.
Observe the correspondence between Boxed- and Group-Sparsity; in Eq.(9) ||·||1,2 replaced ||
·||1 and ||·||∞,2 exchanged for ||·||∞.

E. Optimization
Given the generative term (Eq.(4)), the discriminative term (Eq.(6)), and the regularization

on , on C(C≥0), and B (Eq.(7) or Eq.(9)), we form an optimization problem as
follows:

(10)

where  and  are given in Eq.(4) and Eq.(6) respectively and  is either the
Boxed-Sparsity constraint in Eq.(7) or the Group-Sparsity in Eq.(9); λ1 and λ2 are relative
weights to control importance of the three terms in the objective function;  depends on
the definition of sparsity, i.e., if the Boxed-Sparsity is chosen λ3 replaces λ in Eq.(7) or if

the Group-Sparsity is selected it substitutes λ in Eq.(8). The ratio  controls the
discriminative power vs. the generative power of the model: the higher the ratio, the more
discriminative the model. Throughout the experiments, λ1 and λ2 are normalized by the
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number of samples (i.e., λ1 λ2 ∝ ) and λ3 is normalized by the dimensionality of the

images (i.e., λ3 ∝ ). Therefore, we report λ3 as a percentage value that means  is some
percentage of voxels. Note that the objective in Eq.(10), is comprised of three terms; thus,
two regularization weights suffice to control the relative ratio of the terms.

Although this optimization is not jointly convex with respect to all variables, it is a block-
wise convex program; i.e., if any pair of blocks of variables is fixed, it is a convex
optimization problem with respect to the other block. For example, if w and C are fixed, it is
a convex optimization problem with respect to B. Therefore, we propose a block-wise
optimization scheme shown in Alg.1 that converges to a local minimum. Proof of the
convergence to a local minimum follows from the fact that the optimization problem is
convex with respect to each block of variables, the objective is lower-bounded and
continuous on the domain, and non-differentiable constraints can be added as separable
terms to the objective (ref. [37] Prop. 5.1 for more detail).

The optimization is straightforward with respect to two of the blocks (C and w) but
challenging with respect to the others (B) that will be discussed in detail subsequently.

1) Optimization w.r.t. w—We start with the most straightforward block. In the k'th
iteration, fixing B and C, the optimization should find the global minimum of the following
convex function:

(11)

in which  is the loss function defined in Eq.(6). Solving this optimization problem with

respect to w is not challenging because it is basically a linear SVM classifier with 
regularization applied on new features, namely BTxi. Any off-the-shelf solver for a linear
SVM can solve Eq.(11) efficiently in a reasonable time because computational complexity
of such a solver is bounded by the number of new features (K) and number of samples (N),
which are not large in our application. In this paper, we use LIBLINEAR [29] as the solver.

2) Optimization w.r.t. C—Fixing B and w in the k'th iteration, we need to find the global
optimum of the following objective with respect to C:

(12)

This problem can be easily formulated as a non-negative least squared problem with K × N
variables. Given that N is not typically large in medical imaging applications and K is also
not large, any off-the-shelf least squared solver can solve this problem. There is an abundant
supply of options for nonnegative least squared solvers. We used MOSEK [38] to solve this
problem.

3) Optimization w.r.t. B—Fixing C and w in the k'th iteration, a constrained convex
programming problem needs to be solved to find optimal B. In the case of Boxed-Sparsity,
the following problem needs to be solved:
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(13)

In case of Group-Sparsity, the objective of the optimization problem is as follows:

(14)

where ||b||∞,2 was defined earlier in Eq.(8).

While Eq.(13) is a constrained quadratic programming, Eq.(14) is a Second Order Cone
Programming (SOCP) [34]; nevertheless, solving either case poses a challenge due two
reasons: 1) high-dimensionality: for both cases, the number of variables is at least D × K
(number of voxels by number of basis vectors) plus [notdef]variables introduced by the non-
differentiability of the constraints or objective, and 2) constrained programming subject to a
non-smooth feasible set. In general, constrained optimization is more expensive to solve
than unconstrained optimization problem.

Projected Gradient (PG) [39] is a first order method that can be used for a constrained
problem. However, PG can be slow particularly for non-smooth feasible sets. The newton
method is used to accelerate first-order solvers [39]. The Interior Point (IP) method is a
variant of the Newton method for a constrained problem [34]. However, the IP method
implemented naively fails to solve Eq.(13) or Eq.(14) because IP involves computation and
inversion of a Hessian matrix which is prohibitive in term of computation and memory
costs. In our experiments, more sophisticated implementations like MOSEK [38] fail to find
a point in the feasible set in a reasonable time. Our chosen alternative is use to use Spectral
Projected Gradient (SPG) [40] that is a modification of the classical PG method which
differs in two essential ways: 1) It uses a non-monotone line search that measures descent
with respect to a fixed number of previous iterations instead of just the last iteration. This
may lead to a temporary increase in the objective while ensuring overall convergence. 2) It
uses spectral step length introduced by Barzilai-Borwein (BB) [41] that gives an initial step
length. In the BB approach, the step length (αt) in t'th iteration is chosen such that αt

—1 I
mimics the Hessian of the objective over the most recent step. Similar approaches have been
taken recently by Schmidt et al. [42] and Wright et al. [43] for large-scale non-smooth
problems. There are several choices for BB step length [44], in this paper, we choose the
following method to compute it [45]:

(15)

where vec(.) is an operator that reorders elements of a matrix into a vector. We omitted the
detail of computation of the gradient of the objective here, for more detail, see Appendix A.

Our proposed algorithm is shown in Alg.(2). It is conceivable that the bottleneck of the
algorithm is the projection  because it should be performed in each iteration. One of
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the technical contributions of this paper is to suggest an efficient way to perform the
projection; see Appendix B for more detail.

F. An Extension: Semi-Supervised Learning
Semi-supervised learning refers to a class of machine learning techniques that
simultaneously use both labeled and unlabeled data for training in settings in which a small
amount of labeled data and a large amount of unlabeled data are available. Semi-supervised
learning combines elements of unsupervised and supervised learning.

In many medical imaging applications, such situations arise either due to the availability of
abundant sample images with no labels, or more importantly due to uncertainty about the
labels. For example, recent studies have shown that individuals with Mild Cognitive
Impairment (MCI2) tend to progress to Alzheimer's disease (AD) [47]; but not all MCI
subjects converge to AD. Recently, several methods have been proposed to address this
issue. Sabuncu et al. [48] and Blezek et al. [49] proposed different frameworks for joint
image registration and clustering that can exploit unlabeled images. Ribbens et al. [50]
suggested a probabilistic method that can incorporate prior clinical information.

In case of semi-supervised learning in our method, some subjects have certain labels
(denoted by XL) and some subjects do not have labels (denoted by XU). In other words, the
data matrix (X) can be partitioned into two sub-matrices, namely X = [XL XU]. Our
generative-discriminative framework can easily handle such cases. Recall the objective
function of the optimization problem in Eq.(10); it was decomposed into three terms:
generative term , discriminative term , and regularization term (recall that the
constraint can be written as regularization). XL contributes in both generative and
discriminative terms while XU only contributes in the generative term, namely:

(16)

in which Θ is introduced to simplify the notation by grouping all parameters into Θ, 
denotes the objective function,  stands for the regularization terms. Eq.(16) shows that
unlabeled samples are not penalized in the discriminative term (the second term) because the
true labels are not available for them. This setting will be investigated in Section III.

G. On Selection of the Regularization Parameters
To set values of the parameters (i.e., λ's and r), two strategies are available: first, to embed
searching for the best parameters as a part of the training of the algorithm. This strategy is
chosen to show the results in this paper; second, to set values of the parameters to pre-
defined values which are presumed to perform well. Ideally, the first option is preferred
because it potentially yields better performance than setting parameters to pre-defined
values, however, the large optimization with respect to (B, C, w) renders searching an
expensive task. Although the latter strategy is not investigated in this paper, we will give
intuition on how to select parameters to some fixed values.

Parameters of the proposed algorithm are as follows: K number of basis vectors; λ1, the
weight for the generative term; λ2, the weight for the discriminative term; λ3, the sparsity
ratio for the basis vectors. We propose to choose the parameters in the following order:

2MCI is viewed as an intermediate stage between normal aging and Alzheimer's disease (AD).
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1.
λ2: Given Eq.11 and Eq.6, it can be readily derived that  defines the weight for

the second term in Eq.11 . One suggestion is to run the algorithm for a small-
scale dataset for a few iterations and choose λ2 such that it produces a reasonable
classification rate. One can even run the algorithm for a few iterations without the
discriminative term and extracts feature (i.e., BTxi) in order to have a sense of an
appropriate range for λ2.

2.
K and λ3: Selection of λ3 can be inspired by our clinical hypothesis; 
approximately sets the non-zero ratio of each basis vector. Depending on our
clinical expectations regarding portion of an anatomy (e.g., brain) affected by the
disease of interest, we can choose a range for λ3. However, if sparseness is set to a
high value (low λ3/D), the generative term may not be able to represent the data
well because it may not be able to cover the whole domain of images; hence,
optimal basis vectors may stay away from the boundaries of the feasible set (where
basis vectors achieve 0-1 values) while the model may try to compensate with C to
reconstruct the data. In fact, there is a limited budget to reconstruct the data. In
order to increase the budget, one can increase the number of basis vectors (K).
However, a very large value of K increases the computational cost significantly, so
one needs to trade off between excessive sparsity and computational cost. There are
also other factors involved in choosing the sparsity ratio that will be discussed in
Section III-B.

3.
λ1: Once other parameters are set, we can set a value for λ1. The ratio  decides
the balance between the generative and the discriminative terms; since λ2 is

already set, one needs to choose the ratio of . As it will be shown in Section III-
A, the algorithm is relatively robust with respect to ratio of λ1/λ2 as long as λ1 is
in a reasonable range; hence the value of λ1 should be chosen such that the first
and second terms in Eq.13 have similar magnitude.

III. Experiments
In this section, we conduct several experiments with the proposed method on various data
sets and different settings. In the first set of experiments, we will investigate the effect of
generative-discriminative trade-off on generalization power of features used for
classification. We will also explore the sparsity effect with both definitions of sparsity. The
methods will also be compared to other established methods in the literature. We also briefly
examine the potentials of the proposed method for semi-supervised learning with both
definitions of sparsity for medical imaging datasets. At the end, we investigate effect of the
parameter selection on the accuracy rates on datasets that are held out from previous
experiments.

A. Generative vs. Discriminative trade-off
The images used in this experiment are structural MR brain images (T1 image) obtained
from Alzheimer's Disease Neuroimaging Initiative (ADNI3). 63 normal control (NC)
individuals and 54 AD patients were pre-processed via the same pre-processing pipeline.
The pre-processing pipeline is designed according to previously validated and published
techniques by Goldszal et al. [28]. It includes the following steps: 1) alignment of images to

3www.loni.ucla.edu/ADNI
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the AC-PC plane; 2) removal of extra-cranial material (skull-stripping); 3) tissue
segmentation into gray matter (GM), white matter (WM), and cerebral fluid (CSF), using a
brain tissue segmentation method proposed in Pham et al. [51]; 4) non-rigid image warping
using the method proposed by Shen et al. [52] to a standardized coordinate system, a brain
atlas (template) that was aligned with MNI coordinate space [53]; 5) formation of regional
volumetric maps, named RAVENS maps (see [28] and [2]), using tissue-preserving image
warping [28]. RAVENS maps quantify the regional distribution of a GM, WM, and CSF,
since one RAVENS map is formed for each tissue type. A RAVENS map quantifies an
expansion (or contraction) of the tissue modeled by a transformation that warps the image
from the original space to the template space. Consequently, voxel values of a RAVENS
map in a template space are directly proportional to the volume of the respective structures
in the original brain scan. Although this map can be formed for CSF, WM, and GM, we only
used maps corresponding to the GM tissue type. An example of GM, WM, and ventricle
RAVENS map is shown in Fig.5.

In order to investigate the effect of the hybrid generative-discriminative model, we modified
the λ2/λ1 ratio for various numbers of basis vectors (K). In this experiment, Boxed-Sparsity
was used as the sparsity regularization and λ3 was set to 20% (i.e., λ3/D = 1/5). The number
of basis vectors (K) was chosen from set of {5, 10, 15, 20, 30, 40, 50} to examine robustness
of the algorithm to different numbers of basis vectors. As mentioned earlier in the methods
section, the proposed algorithm can be viewed as a dimensionality reduction from an
original large dimension (D) to smaller but more discriminative and representative
dimensions (K); hence so-called projection BTx can be viewed as feature extraction. While
the original dimension may be too large to apply a non-linear classifier on, we can simply
apply a classifier (in this experiment Logistic Model Trees [54] 4) on the extracted features
(K-dimensional instead of D-dimensional) to boost the performance. For each setting, i.e., a
particular ratio of λ2/λ1 and number of basis vectors (K), data was split into 10-folds;
training including learning (B, C, w) and training a classifier on the extracted features
(BTxi), was conducted on 9-fold and the test was carried on the remaining fold. This process
was repeated 10 times to compute an average classification accuracy; hence, each point in
Fig.7 is the 10-fold cross-validation accuracy. Results are shown in Fig.7. In order to avoid
occlusion of the Fig.7a, error-bars (i.e., standard deviations of the accuracy rates) are added
as a separate figure (Fig.7b).

In Fig.7, as number of basis vector (K) increases, the accuracy rates also increase but they
reach a plateau around K ∈ (20, 40). An excessively discriminative model (yellow and violet
corresponding to λ2/λ1 = 100 and λ2/λ1 = 10 respectively) becomes more unstable as the
number of basis vector increases while the blue graph, in which the generative term
dominates, is quite stable. Increasing the number of basis vectors further, not only increases
computational cost drastically but also degrades generalization of the model because of high
dimensionality, since the number of samples is of the same order of magnitude (in this
experiment N = 117), so we set the maximum number of basis vectors to 50 which is in the
same order magnitude. The best performance is shown by red line (λ2/λ1 = 0.1) that
maintains a balance between the generative and discriminative terms. This graph shows that
having the generative term helps to create more stable classification rates. It also shows that
unless the algorithm is pushed too much toward the discriminative side, it is fairly robust
with respect to choice of parameters; for example for K = 30, perturbations in classification
accuracy rates are about 6% for a reasonable range of λ2/λ1 (i.e., around 0.01 and 0.1 for
this data). Notice that in this cross validation process, every fold contains few samples

4This classifier is called Simple Logistic in Weka [55].
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(between 11 to 13 samples) and 7%-9% missclassification is about one miss classification
per fold.

Fig.6 compares basis vectors learned by the proposed algorithm with those of NMF and
SVD. The basis vectors are overlaid on the corresponding anatomical template on various
slices of sagittal and coronal cuts. In the cases of the proposed algorithm (Fig.6a and Fig.6b)
and NMF (Fig.6c and Fig.6d), voxels of the basis vectors with values less than 0.3 are
shown transparent for the sake of a better visualization; in case of SVD, values of voxels can
be positive or negative, hence only values around zero are set to transparent. Fig.6a and Fig.
6b clearly show Hippocampus and temporal lobe which are associated with memory and
have been frequently reported [56], [57] and [58] to undergo significant shrinkage in course
of the Alzheimer's disease. Hippocampus is also clearly depicted in the basis vector learned
by NMF method (Fig.6c and Fig.6d); however, in the basis vector learned by SVD, almost
all areas have nonzero positive and negative values and hence it does not clearly show which
areas are important.

B. Sparsity Effect
In the previous section (Sec.III-A), the Boxed-Sparsity was used and the ratio of λ3/D was
set to 20%. Given that a large portion of images are dark background, it is a reasonable
value. In this section, we investigate different sparsity types (Boxed-and Group-) for
different values of λ3 while keeping number of the basis vectors to a constant (K = 30) that
shows roughly the best performance in Fig.7. Fig.8 shows a basis vector as in Fig.6a and
Fig.6b but with stronger sparsity constraint (λ3/D = 10%) to illustrate sparsity effect. It
shows more localized areas than those of Fig.6a and Fig.6b. Decreasing λ3 which enforces
stricter sparsity constraint (say λ3/D = 0.1%) may not be helpful for better representation
because as λ3 decreases, the algorithm has a limited budget of voxels (i.e., few voxels can
be selected) to satisfy the generative term ; therefore it prefers to push values of the
voxels away from boundaries (i.e., {0, 1}) to satisfy the generative term. Nevertheless, we
changed λ3/D in range of [0.1..0.6] to examine its effect on the classification accuracy (Fig.
9). The experiment elaborated in Section III-A is repeated but for different values of λ3/D
and λ2/λ1. The settings of the experiment in term of number of samples and pre-processing
is identical with those of the experiments in Section III-A.

Fig.9 shows comparison of different ratios of λ3/D for the Boxed-Sparsity for different rates
of λ2/λ1. Since two types of behaviors are observed, they are shown in two separate graphs
for a sake of illustration. Fig.9a shows cases in which the generative term is dominant or
moderate while Fig.9b shows graphs in which the discriminative term is dominant.

In Fig.9a, increasing λ3 (less sparse) slightly improves level of classification accuracy up to

a certain point (λ3/D ∈ [0.2, 0.4] depending on the ratio ) because it yields better
reconstruction. However from that point on, it decreases because it means less regularization
on the model. Nevertheless, if the generative term is dominant, the algorithm is relatively
robust.

Fig.9b shows similar graph for the cases in which the discriminative term is dominant or has
relatively higher weight than those of Fig.9a. In this case, increasing λ3 (decreasing
sparsity) deteriorates the classification accuracy. When the discriminative term is dominant,
reducing sparsity can approximately be compared to  with small regularization
weight; excessive reduction of the regularization weight in  can worsen
generalization of the classifier.
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Fig. 10 shows an example of a basis vector when Group-Sparsity is used. The feasible set of
the Group-Sparsity is smoother than that of the Boxed-Sparsity (Fig.8); in other words, it
has fewer sharp corners than the Boxed-Sparsity one. This encourages solutions that are
smooth, i.e., voxel values are likely to be in (0, 1) rather than 0 or 1. Nevertheless such
behavior is also affected by  of the samples (i.e., normalization of samples) that are
not discussed in this paper in interest of space.

Fig. 11, depicts the same graphs as Fig.9 but for Group-Sparsity regularization. As in Fig.9,
the graphs are divided into two (generative- or discriminative- dominant) sub-graphs for a
sake of better illustration. In term of maximum accuracy, the Group-Sparsity is comparable
with the Boxed-Sparsity (about 3% improvement) but it is more robust with respect to
change of parameters; Fig. 10a shows perturbation is accuracy that is about 5% across
different settings. In Fig.11b, the Group-Sparsity shows significantly more robust behavior
when the discriminative term is dominant comparing to Fig.9b. Such robustness can be
explained by definition of the Group-Sparsity regularization. Due to the non-linear
relationship within each group, Group-Sparsity imposes fewer degrees of freedom than
those of Boxed-Sparsity, therefore it regularizes the objective further. Fig.11b also shows

that a reasonable range for Group-sparsity is around  which is different that
that of the Boxed-Sparsity; the accuracy rates slightly degrade after this range.

C. Comparison with Other Methods
In this section, we compare performance of the proposed algorithm with other methods but
first we need to clarify some points about parameter selection (λ's). The dataset is divided
into 20 splits, 18 splits are used to learn (B, C, w) and the testing accuracy on one of the two
left-out splits is used to search for the best λ's and finally the classification accuracy is
reported on the other left-out split.

Table II compares the accuracy rates between five different methods (two of them are
variants of the proposed method) on two dataset. Bx and Grp stand for the proposed for
Boxed- and Group-Sparsity constraints respectively. Singular Value Decomposition (SVD)
and Non-negative Matrix Factorization were added to the table in order to have baseline
comparisons. In order to have a fair comparison, number of basis vectors for NMF, SVD,
and both variants of the proposed method are set to the same number which is 30.
COMPARE is a method proposed by Fan et al. [14] and has shown to perform well on
ADNI dataset [59].

While features extracted from NMF and SVD methods were fed to the same procedure as
the proposed method to find the best classifier, COMPARE has it own routine to find an
optimal classifier. AD vs NC dataset is already explained in the Section III-A. Lie vs Truth
contains 22 subjects performing a forced-choice deception and their brain activations were
acquired using BOLD imaging (fMRI). SPM2 software [60] is used to calculate Parameter
Estimate Images (PEIs), i.e., regression coefficients or β, of the HRF regressors for each of
the 50 conditions from the least mean square fit of the model to the time series. The 50
conditions include forty-eight regressors modeled “lie” and “truth” events individually while
two additional regressors modeled the variant distracter and recurrent distracter conditions.

In the Table II, while the Group-sparsity regularization outperforms COMPARE, the Boxed-
sparsity performs almost as well as COMPARE on the AD vs NC dataset. On the Lie vs
Truth dataset, COMPARE outperforms our method although the Boxed-sparsity is in a
reasonable range of the best performance. The Group-Sparsity result for fMRI dataset is
shown as “N/A” because fMRI images which are preprocessed with SPM2 are registered to
SPM2 atlas with affine transformation. Therefore, structural brain regions of the atlas do not
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match well with the corresponding regions on the individual subjects that makes the
definition of the groups in the Group-Sparsity inaccurate.

The values reported in the Table II for the AD vs NC dataset are in the same range as the
accuracy rates reported in [61]; Nevertheless the conditions of the experiments (including
pre-processing, features extraction, samples in the training and testing lists, etc.) are
different, which make the results not one-to-one comparable.

D. Semi-Supervised Extension
In this section, we investigate an extension of our method to semi-supervised learning
proposed in the Section II-F. In order to examine effectiveness of the proposed method for
semi-supervised learning, we performed two sets of experiments. In the first set of
experiments, the proposed method is compared with well-established semi-supervised
methods on a benchmark data published earlier by Schölkopf et al. [62]: in the second sets
of experiments, we apply the method on a real medical images acquired from the ADNI
dataset.

Table III compares accuracy rates of the proposed method with those of three well-
established semi-supervised learning methods on three datasets of a publicly available
benchmark [62]. Although the setting in [62] is not in favor of our method and the proposed
method is designed to address semi-supervised learning for medical image data, the results
can evaluate soundness of the method in a very general context. Full descriptions of the
datasets and pre-processing steps are elaborated in [62] but briefly:

•USPS—It is a dataset consisting of 150 images of each of the ten digits randomly drawn
from the USPS set of handwritten digits. The digits “2” and “5” were assigned to the class
+1, and all the others formed class -1. The images were obscured by application of algorithm
21.1 in [62] to prevent people from exploiting spatial relationship of features in the images
[62]; more specifically for this dataset: D = 241 and N = 1500.

Text—This is the 5 comp.* groups from the Newsgroups dataset and the goal is to classify
the ibm category versus the rest (by Tong et al. [63]); more specifically for this dataset: D =
11, 960 and N = 1500.

BCI—This dataset originates from research toward the development of a brain computer
interface (BCI) (Lal et al. [64]). In each trial, EEG (electroencephalography) was acquired
from a single subject from 39 electrodes. An autoregressive model of order 3 was fitted to
each of the resulting 39 time series. The trail was represented by the total of 117 = 39 × 3
fitted parameters; more specifically for this dataset: D = 117 and N = 400.

In Table III, in the first four rows, number of label samples (Nlabel) are set to 10 and in the
second four rows, it is set to 100. The Table reports error rates for non/linear Transductive
Support Vector Machine (TSVM) [65], Laplacian SVM (lapSVM) [66], which are chosen
due to their good performance on the three datasets, in addition to the error rate for the
proposed method. Entries of the table for lapSVM and non/linear-TSVM are adopted from
[62]. According to [62], hyper-parameters of each of the algorithms are chosen by
minimizing the test error, which is not possible in real applications; however, the results of
this procedure can be useful to judge the potential of a method. To be comparable, similar
procedure was applied to find λ1/λ2, λ3/D and K for our algorithm.

Table III shows that no method consistently outperforms other methods across datasets;
however, the results are consistent on each dataset. It shows that although our method
outperforms others only on the BCI dataset but it is within a reasonable range of the best
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performance. This result motivates us to employ semi-supervised extension of our method
on a real medical image data.

In medical imaging applications, semi-supervised learning arises either due to availability of
abundant of sample images with no labels, or more importantly in case that there is
uncertainty about the labels. For example Mild Cognitive Impairment (MCI) is viewed as an
intermediate stage between normal aging and dementia. It has diverse range of symptoms
but when memory loss is the predominant one, it is considered as a risk factor for the
Alzheimer's disease (AD) [47]. Recent studies have shown that individuals with MCI incline
to progress to the Alzheimer's disease. Grundman et al. [47] estimated an approximate rate
of 10% to 15% per year; nevertheless not all MCI subjects converge to the AD. One
interesting question would be to determine which MCI subjects have higher likelihood to
become AD subject.

In this experiment 238 structural MRI images of MCI subjects were acquired from the
ADNI dataset and used as unlabeled data. All 238 MCI subjects have at least 2 scans cor
responding to 24-36 months follow-ups. Among 238 subjects, 99 patients have converted to
AD at some point by their third year follow ups (MCI-C) and 139 did not convert after three
years MCI-NC). AD and NC subjects explained in the Section III-A were used as labeled
data and the MCI subjects (MCIC/MCI-NC) were used an unlabeled data. RAVENS maps
of the images were computed by the same pre-processing pipeline as those of AD and NC
subjects explained in the Section III-A. Similar to the experiments in the Section III-A,
labeled data (AD/NC) is divided to 20 folds; data from 19 folds plus unlabeled data (MCI
subjects) is used to learn the basis vectors. One fold out of 20 folds of the labeled data plus
the unlabeled data were used for testing. In order to avoid searching for the best parameters,
the most frequently selected parameters in the Section III-C were used as the parameters.

To evaluate the performance of the algorithm, accuracy rates on the labeled data (AD/NC)
and recall rates on the unlabeled data are reported in Table IV for both regularization types.
Since unlabeled data is shared between 20 folds, the recall rates (true positive and true
negative rates depending on the class label) are averaged among 20 folds.

Table IV shows the results for the semi-supervised learning, SSL-Bx/Grp represent semi-
supervised learning for the Boxed- and Group-Sparsity constraints respectively. The
classification accuracy rates for the labeled data have been improved slightly for the Boxed-
Sparsity compared to the Table II meaning that unlabeled data can help improving the
classification accuracy for the labeled data. While the recall rates show high values for the
MCI-C group, they demonstrate low recall rates for the MCI-NC group. Such low value can
partly be described by the fact that the patients in the MCI-NC group have not converted to
the AD group yet but they may convert in the future. In addition, the labeled data anchored
the classifiers to produce valid results for the AD/NC groups and avoid a case in which all
data are assigned to one class. Therefore, Area Under Curve (AUC) of the classifiers should
be investigated for further evaluation of the method. For MCI subjects, since a ground truth
is not available for MCI-NC subjects, we will investigate this measure in the new
experiment.

Observe that for all values reported in Table IV, basis vectors (hence features) extracted in
the semi-supervised way but the classifiers are supervised classifier (Logistic Model Trees
[54]). One question would be whether a semi-supervised classifier can improve the results.
Therefore, we designed an experiment to answer multiple questions: 1) Whether it is helpful
to feed the features extracted using semi-supervised basis learning to a semi-supervised
classifier instead of a supervised classifier, 2) Whether our semi-supervised basis learning is
useful when there are few labeled samples, 3) How the number of labeled samples and
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different configurations of (semi-)supervised basis learning and (semi-)supervised classifiers
affect AUC for MCI subjects.

For computational efficiency, the basis vectors B were learned only from 79 MCI subjects
(as unlabeled data), and 20 AD and 20 NC subjects (as labeled data). The labeled subjects
were divided into five folds for cross validation (4/5 for training and 1/5 for testing) and the
79 MCI subjects were shared as unlabeled data across folds. In order to investigate the effect
of number of labeled data, we performed four basis learning experiments by increasing
number of revealed labels from 4 to 32; each fold has 4/5 × (20 + 20) = 32 AD/NC subjects
and we revealed labels of AD/NC subjects as: {(2, 2), (4, 4), (8, 8), (16, 16)}. Rest of MCI
subjects (i.e., 238—79 = 159) and AD/NC subjects that do not contribute in the basis
learning are added to the testing lists for each fold.

After basis learning, features are extracted by projecting all images on the learned basis
vectors. These features were fed into a supervised-classifier (Logistic Model Trees [54]) and
a semi-supervised classifier (linear Laplacian SVM [67]) to produces labels. To have a
reference point for comparison, we also learned the basis without unlabeled data (supervised
basis learning). Fig. 12 plots accuracy rates of AD/NC with respect to the number labeled
data in different settings. The accuracy rates were computed on the left-out labeled data and
the rest of the labeled data that was not introduced during the basis learning or training of
the classifier. For brevity, SF in Fig. 12 indicates Supervised Features, i.e., using only
labeled data to learn the basis vectors, and SSF denotes Semi-Supervised Features, i.e.,
using the labeled and the unlabeled data to learn the basis vectors. The figure shows
different scenarios for classification: supervised features fed into a supervised classifier (SF
+ SC) and a semi-supervised classifier (SF + SSF) and compares them with with semi-
supervised features fed into a supervised classifier (SSF + SC) and a semi-supervised
classifier (SSF + SSF). Fig.12a and Fig.12b show accuracy rates and AUC for the MCI
respectively when the Boxed-sparsity is used for regularization and Fig.12c and Fig.12d
represent the same quantifies when the Group-sparsity is applied as the sparsity
regularization.

The results shown in Fig. 12 can be summarized as follows:

• semi-supervised classifier helps: in all scenarios in Fig.12 semi-supervised
classifiers (i.e., SF+SSC and SSF+SSC) outperform their corresponding
supervised classifiers for both types of regularizations (Boxed-Sparsity: Fig.
12a-12b, Group-Sparsity: Fig.12c-12d) and both measures (i.e., accuracy and
AUC).

• semi-supervised basis learning helps: in all scenarios semi-supervised features
(SSF) which are extracted by basis vectors learned in presence of unlabeled data
outperform their corresponding supervised features (SF). Significant difference can
be seen when the semi-supervised features are fed into semi-supervised classifier
(i.e., SSF+SSC) which achieves the best performance for both measures
particularly for the Boxed-Sparsity.

Note that semi-supervised features are more stable in terms of performance even if they are
fed into a supervised classifier; for example, compare SF+SC and SSF+SC in Fig.12b and
Fig.12d. Also note that AUC measures are computed for MCINC/MCI-C subjects because
there is no real ground truth for them; hence AUC might be a better measure to show that
the classifiers are not biased toward one of the classes although good performances on the
labeled data (i.e., AD vs NC) already show this fact.
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E. Sensitivity Analysis of the Parameters
In this section, we perform a few experiments to investigate the effect of parameter selection
(λ's) on the classification accuracy rates. In this section, instead of optimizing λ's, we set
λ's to the most frequently chosen ones in the Section III-C. The MCI subjects were not
involved in the experiments of the Section III-C. In addition, we held out 205 AD and NC
subjects (89 AD and 114 NC) from the ADNI dataset. Therefore, optimizing λ's in the
Section III-C is oblivious with respect to the samples used in this section. In addition to the
AD versus NC classification, we have included classification between converter and non-
converter MCI subjects to the Table V which is known to be a difficult classification
problem [61]. In fact, this experiment shows conservative results for the proposed methods.

As the Table V shows, the proposed method outperforms other methods on both datasets.
The classification rates are relatively low on the MCI-C vs MCI-NC dataset as reported in
the literature [61] yet the proposed method shows slightly better performance comparing to
other methods in the Table. This experiment shows that as long as the datasets are similar,
one can reduce the computational cost of optimizing λ's by removing the extra nested loop
for parameter selection (i.e., searching for the best λ's inside of training sets) without
significant degradation in the performance of the classifiers.

IV. Discussion and Conclusion
The experiments in this paper show that the algorithm is robust with respect to choice of
parameters as long as they are chosen within a reasonable range. It also shows that the
generative term is helpful; indeed we have observed in our experiments that in the process of
searching for the best λ's, those settings biased toward the generative terms are selected
quite frequently. The experiments shows that discriminative term is also essential because in
its absence, the formulation becomes more or less similar to NMF [23] formulation which is
shown to underperform in Table II. Nevertheless, for very large sample size experiments
finding optimal parameters might be computationally expensive. Therefore, in Section II-G,
we analyzed the role of each parameter in well-possessedness of the objective function and
introduced an intuitive sequence to pick λ's within a reasonable range. In addition, we
empirically showed in the Section III-E that as long as datasets are similar one can avoid
parameter selection without significant degradation in the accuracy rate.

In Section III-C, we also compared the proposed method with PCA and NMF as baseline
methods and COMPARE [14] as the state-of-the-art algorithm. Both variants of the
proposed method outperformed the baseline methods (i.e., NMF and PCA) and performed
better or almost as well as COMPARE. The Group-sparsity achieved the best performance
in AD vs NC but it was not applicable to Lie vs Truth because we defined the groups for the
Group-sparsity based on a segmentation of an atlas and all fMRI subjects are brought to the
atlas space using only affine registration; it yields inaccurate brain segmentation for each
subject and consequently inaccurate definition for the groups. It is also worth mentioning
that COMPARE achieves such level of accuracy using 150-250 features while our algorithm
uses only 30 basis vectors (i.e., number of features). There is no clear winner between the
Group- and the Box-sparsity.

Combination of the generative and the discriminative terms makes extension to a semi-
supervised learning readily accessible. We showed in Section III-D that the features
extracted in the semi-supervised way are more stable for classification of the the labeled
data than the supervised features in spite of scarce labeled data. Again, there is no clear
winner when it comes to comparison between the Box-Sparsity and the Group-Sparsity
regularization.
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There are still several avenues for improvements and extensions that are left for the future
work. For example, the framework can be extend to multi-channel images (i.e., when each
subject has multiple modalities). Another open field for future research can address
approximate alignment. Groups can be defined approximately by associating probability or
membership values of each voxel to groups. Such definition of groups changes the definition
of unit-ball of the group-sparsity norm and makes the support of the groups to overlap.
Defining overlapping groups imposes a challenge to the optimization problem which needs
to be addressed. Projection on the unit-ball of the group sparsity for overlapping groups has
been recently studied in [68], [69].

This framework can be easily extended to handle multi-class classification. Other
regularization terms that enhance the performance of the semi-supervised basis learning
(e.g., Laplacian regularization [66]) can be incorporated into the framework. We currently
use random initialization but perhaps a multi-scale strategy improves the convergence rate
of the algorithm. A faster algorithm can possibly be achieved if the the basis vectors are
parameterize by other basis vectors from possibly an over-complete dictionary; it may lead
to a convex formulation for the framework instead of the current non-convex formulation.

In summary, we proposed a novel dimensionality reduction that can extract discriminative
yet interpretable features. The proposed framework is a hybrid generative and discriminative
model that provides a flexible structure: it can incorporate prior knowledge through
regularization terms (two variants are proposed in this paper); it can be readily extended to
extract features in a semi-supervised way. We formulated the proposed framework as an
optimization problem and proposed a novel projection-based algorithm to solve such large
scale non-linear problem efficiently. The method was applied on real data in different
scenarios and attained superior or comparable results to the state-of-the-art algorithm; at the
same time it delineated areas of the difference in the brain which are in agreement with
previous clinical studies.
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Appendix A

Computing the Gradient of J3(·)
The objective function consists of two terms: 1) the generative term , 2) and the
discriminative term . Derivative of the generative term with respect to B is:

where φ″ is the second derivative of φ(·) which is set to φ(x) = ½x2 in this paper and ☉ is
element-wise matrix multiplication. It is worth mentioning that if ½x2 is replaced with other
choices of a convex function (e.g. x logx) for φ(·),  yeilds other options for the
divergence term (e.g. KL-divergence) to model other assumptions about noise (e.g.
Poisson).

Derivative of the discriminative term with respect to k'th column of B is:
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in which .

Appendix B

Efficient Projections on the Boxed-Sparsity and Group-Sparsity Balls
Euclidean projection operator on a feasible set can be viewed as an optimization problem:

For Boxed-Sparsity, the problem is a constrained quadratic programming:

(17)

Geometrically, the projection point lies either on the boundary of the box in Fig.13 or inside
of the box, on the inside boundary of the shaded area in Fig.13. To determine which one, we
can simply project the point on the box:

where [u]+ = max{0, u}.

If  still lies outside of the feasible set, it means that the projection point is on the
inside boundary of the shaded area. To find the projection in this case, this problem should
be solved:

(18)

Lagrangian of Eqn.(18) is:
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(19)

where  and  are Lagrangian multipliers. Differentiating it with respect to z and

setting it to zero, yields optimality condition: . By complementary
slackness of KKT condition, we know whenever zi > 0 theζ = 0 and whenever zi < 1 then ηi
= 0. Hence, if 0 < zi < 1 then:

(20)

In order to determine optimal solution, zi, we need to determine θ and indices for which zi's
are zero or one. If indices of ones and zeros of z are given, complementary slackness of
KKT condition and the optimality conditions of Eqn.(18) suffices to find optimal θ:

(21)

where  and  is cardinality of this set.

Following lemmas help us to determine the indices 5:

Lemma 1: [71] Let z be the optimal solution to the minimization in Eqn.(18). Let s and j be
two indices such that us > uj. If zs = 0 then zj must be zero as well.

Proof 1: We will propose a similar lemma for the upper bound:

Lemma 2: Let z be the optimal solution to the minimization in Eqn.(18). Let s and j be two
indices such that us > uj. If zj = 1 then zs must be 1 as well.

Proof 2: The proof is by contradiction, similar to Lemma 1. Assume that z* is optimal

solution and there exist indices j and s such that uj < us and  but . Now, let us

assume that new vector ẑ that is equal to z* except in two indices j and s in which  and

. It can be readily checked that ẑ is also feasible. The difference in objective value for
new vector is:

which contradicts with optimality of z*.

Given the lemmas, we can form an optimization problem similar to Eqn.(18). For a fixed θ,
we solve the following optimization problem:

5Similar approach was adopted by Duchi et al. [70]
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(22)

and then we search over θ such that the solution z satisfies the equality constraint in Eqn.
(18). Observe that the term with θ in Eqn.(19) is absorbed into the quadratic term in Eqn.
(22). However, Eqn.(22) has a closed form solution:

(23)

Since we do not know the appropriate θ, we need to search for it. So far, optimization
problem has simplified from D-dimensional to one dimensional problem. However, the two
lemmas help us to find exact θ in finite number of iterations. The idea is to shrink [θmin,
θmax] with a bisection-type algorithm until number of zeros and ones stay unchanged, then θ
can be found exactly with Eqn.(21). The details of the algorithm are shown in Alg.3.

Given Alg.(3), efficient projection on a Group-Sparsity ball is very simple because it uses
Alg.(3) as a submodule. An algorithm for efficient projection on a Group-Sparsity ball is
shown in Alg.(4). In this case, the following optimization problem should be solved:

(24)

where t is a positive  vector and tg is g'th element of that and ρg is a
constant. Eqn.(24) ia a Second Order Cone Programming (SOCP) and may look
significantly different from Eqn.(17) but a careful inspection reveals that an efficient
algorithm to solve Eqn.(17) (Alg.(3)) can help us to solve Eqn.(24) by defining:

The defined v can be provided as input to Alg.(3) to find a projection in  space. Given
the projected point, simple rescaling yields optimal z. The procedure is explained in Alg.(4).

Recently there have been a few research papers about efficient projection on the group-
sparsity ball for arbitrary definition of the groups. Although it has been shown that
projection on group-sparsity ball for arbitrary group is possible [68], it is an expensive
operation unless some special structures are assumes for the groups [69] (e.g., tree
structure).
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Fig. 1.
(a) Graphical model representing our model: xi is the i'th sample (out of N samples) and yi is
the corresponding class label. bj is the j'th basis vector (out of K basis vectors) and ci is the
loading coefficient for the i'th sample; w parametrizes the class-likelihood, i.e., pw(y|.); in
other words, it parametrizes the classifier. Since samples and corresponding labels are
observed variables, they are shaded with gray while unobserved variables (i.e., bj, ci, and w)
are white. (b) shows the same idea as a matrix factorization; bj, ci, and xi are columns of B,
C, and X respectively.
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Fig. 2.
Due to non-negativity constraints, only the addition operation is allowed. If a part is added
to an image, it cannot be subtracted; thus the algorithm must choose proper basis vectors to
represent an image.
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Fig. 3.
Graphical representation of Boxed-Sparsity for , which is the intersection of  and 
norm balls in the positive orthant. The blue dots are vertices of the feasible set.
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Fig. 4.
This figure shows an example of a 3 × 3 image (hence ) that is segmented into 3
regions . b|g1 and ||b||2,1 shown are as examples. 〈·,·〉, mean inner product

thus .

Batmanghelich et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Examples of RAVENS maps for the tissue types created from the transformation (ϕ) that
warp the template (top, left) to the subject (top, right). The image shows the RAVEN maps
for the tree tissue type: Gray Matter (GM, bottom left), White Matter (WM, bottom middle),
and Cerebral Spinal Fluid (CSF, bottom right).
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Fig. 6.
Three examples of basis vectors with three different methods (λ3/D = 20%): (a) one of the
basis vectors learned by the proposed method on sagittal cuts and; (b) coronal cuts. (c) one
of the basis vectors learned by the NMF method on sagittal cuts and, (d) coronal cuts. (e)
one of the basis vectors learned by the SVD method on sagittal cuts and, (f) coronal cuts.

Batmanghelich et al. Page 32

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.

Average classification rates in 10-fold cross-validation for various ratios of 
(discriminative vs. generative) for different number of basis vectors; i.e., various K. To
avoid occlusion, standard deviations of the accuracy rates are added as a separate figure in
(b). The y-axis, σ(C.V. Accuracy), indicates the standard deviations of the accuracy rates.
The colors are the same as (a).
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Fig. 8.
An example basis vector for a strong sparsity constraint (λ3/D = 10%) in two orthogonal
cuts. Compare it with two examples shown in Fig.6 (λ3/D = 20%) (a) coronal cuts; (b)
sagittal cuts.
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Fig. 9.
Investigation of sparsity level on the classification accuracy for the Boxed-Sparsity when:
(a) the generative term is dominant; (b) the discriminative term is dominant. Standard
deviations of the accuracy rates are added as the bars to the figures.
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Fig. 10.
An example of a basis vector for a case in which Group-Sparsity constraint is used. (a)
coronal cuts; (b) sagittal cuts.
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Fig. 11.
Investigation of sparsity level on the classification accuracy for the Group-Sparsity when:
(a) the generative term is dominant; (b) the discriminative term is dominant. Standard
deviations of the accuracy rates are shown as error bars.
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Fig. 12.
The accuracy rates and Area Under Curve (AUC) versus different number of labeled
samples for different regularizations. SF and SSF stand for supervised and semi-supervised
features respectively i.e., supervised basis learning with or without unlabeled data; SC and
SSC denote supervised classifier (Logistic Model Trees [54]) or semi-supervised classifier
(linear lapSVM) respectively. (a) The accuracy rates of AD/NC when the Boxed-Sparsity is
used as regularization. (b) AUC for MCI-NC/MCI-C subjects when the Boxed-Sparsity is
used as regularization. (c) The accuracy rates of AD/NC when the Group-Sparsity is used as
regularization. (d) AUC for MCI-NC/MCI-C subjects when the Group-Sparsity is used as
regularization.
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Fig. 13.
Presentation of a feasible set  for .
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TABLE I

This table shows examples of well-known methods that can be viewed as matrix factorization: Singular Value
Decomposition (SVD), k-means/medians, Probabilistic Latent Semantic Indexing (pLSI), Non-negative
Matrix Factorization (NMF). In the table,  denotes Frobenius norm and Λ is a diagonal matrix.

Method D(X; BC) B C

SVD X − BC F
2 BT B = I CCT = Λ

k-means X − BC F
2 - CCT = I, cij = {0,1}

k-medians X − BC 1
- CCT = I, cij = {0,1}

pLSI [27] KL(X; BC) 1T B1 = 1 bij ≥ 0 1T C = 1 cij ≥ 0

NMF [23] KL(X; BC) bij ≥ 0 cij ≥ 0

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Batmanghelich et al. Page 41

Algorithm 1

Block-wise Optimization

Require: Data (X), Labels (y), Regularization (λ's)

    initialize B, C, w

    k ← 0

        repeat

        Bk+1 ← argminB J3(B; Ck, wk) (Eq.(13) or (14))

        Ck+1 ← argminC J2(C; Bk, wk) (Eq.(12))

        wk+1 ← argminw J1(w, Bk, Ck) (Eq.(11))

        k ← k + 1

    until some convergence criteria satisfied
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Algorithm 2

Spectral Projected Gradient Solver

Require: Initial point, step-length bounds 0 < αmin < αmax, ν, M

    αk ← min{αmax, max{αmin, αbb}}

        repeat

                d ← PB
(sk − αgk ) − sk

                γ ← 1

        M ← maxk-M≤i≤k{J3(si)}

                while J3
(sk + γd) > M + νγ gk , d do

                Choose γ ∈ (0, 1) with quadratic interpolation [46]

                end while

                sk ← sk + γd

        compute BB step-length (αbb) (Eq.(15))

        k ← k + 1

    until some convergence criteria satisfied
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TABLE II

Comparison of the proposed method with two different constraints Boxed-(Bx) and Group-(Grp) with other
methods: Singular Value Decomposition (SVD), Non-negative Matrix Factorization (NMF) and COMPARE
[14]. AD vs NC is Alzheimer's disease verse Normal Control from ADNI dataset and Lie vs Truth is β-maps
of fMRI study for lie detection. The values inside of the parentheses are the standard deviations of the
accuracy rates.

AD vs NC Lie vs Truth

Bx 86.6%(±14.3%) 84.1%(±20%)

Grp 89.0%(±13.3%) N/A

SVD 74.2%(±19.3%) 72.5%(±21%)

NMF 62.1%(±16.3%) 55.0%(±10%)

COMPARE 86.7%(±15.3%) 88.3%(±16.3%)
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TABLE III

Comparison of classification error rates on a semi-supervised benchmark [62] between the semi-supervised
extension of the proposed method and a few well-established methods. SSL-Bx stands for Boxed-Sparsity
constrained for mulation in the semi-supervised setting (Section II-F)

USPS Text BCI

SSL-Bx 21.6 35.5 47.23

(Nlabel = 10)
Linear TSVM 30.66 28.6 50.04

non-Linear TSVM 25.20 31.21 49.15

lapSVM 19.05 37.28 49.25

SSL-Bx 13.1 24.8 29.19

(Nlabel = 100)
Linear TSVM 21.12 22.31 42.67

non-Linear TSVM 9.77 24.52 33.25

lapSVM 4.7 23.86 32.39
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TABLE IV

This table shows application of the algorithm in a semi-supervised setting on the ADNI. The accuracy and
recall rates (True-Positive and True-Negative rates) for labeled (AD/NC) and unlabeled data (MCI-C/MCI-
NC) are shown in the table. ssl-Bx and ssl-Grp indicate semi-supervised setting of the proposed algorithm
with the Boxed-Sparsity and Group-Sparsity constraints respectively.

Accuracy Recall

AD vs NC MCI-C MCI-NC

SSL-Bx 87.2%(±14.9%) 79.3%(±6.5%) 44.6%(±5.8%)

SSL-Grp 88.9%(±12.3%) 85.4%(±3.6%) 39.9%(±5.9%)
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TABLE V

Comparison of the proposed method with two different constraints the Boxed-(Bx) and Group-(Grp) Sparsity
with other methods: Singular Value Decomposition (SVD), Non-negative Matrix Factorization (NMF) and
COMPARE [14]. AD vs NC is Alzheimer's disease verse Normal Control from ADNI dataset and converter
versus non-converter MCI subjects (MCI–C vs MCI–NC). The values inside of the parenthesis are the
standard deviations of the accuracy rates.

AD vs NC MCI–C vs MCI–NC

Bx 84.2%(±8.3%) 60.7%(±9.4%)

Grp 83.7%(±8.6%) 61.5%(±8.3%)

SVD 70.9%(±14.1%) 57.3%(±2.9%)

NMF 71.8%(±14.7%) 53.5%(±7.8%)

COMPARE 82.2%(±7.4%) 59.4%(±10.5%)
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Algorithm 3

Efficient Projection on Boxed-Sparsity Ball

Require: Input u, λ

    z ← min{1, max{0, u}}

    if z is infeasible then

        θ1 ← 2 maxi zi

        θ2 ← mini zi

        y1 ← min{1, [u – θ11] +}

        y2 ← min{1, [u – θ21] + }

        θ ← θ2 + ½(θ2 –θ1)

        while True do

                z ← min{1, [u – θ1]+}

                if 1Tz > λ then

                                θ2 ← θ

                                θ ← θ2 + ½(θ2 – θ1)

                                y2 ← z

                else if 1Tz < λ then

                                θ1 ← θ

                                θ ← θ2 + ½(θ2 – θ1)

                                y1 ← z

                                else

                                return the z

                                end if

                if numbers of {0,1} of z, y1, and y2 are unchanged

                                then

                                                                I ← { j ∈ D : 0 < zj < 1}

                                                                θ ← 1
∣ I ∣ (∑z=1 1 + ∑i∈I zi − λ)

                                z ← min{1, [u – θ1] +}

                                return z

                                end if

                end while

        else

        return z

        end if
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Algorithm 4

Efficient Projection on Group-Sparsity Ball

Require: Input u, λ

    if ||[u]+||1,2 > λ then

        Form vector v as follows: vg = ρg|| [u|g] + ||2

        t ← ProjectBoxedSparsity(v, λ) (Alg.(3))

                for all g ∈ G do

                                z∣g ←
zg
vg

u∣g

                end for

        return z

        else

        return z

        end if
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