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Abstract
Pain is typically assessed by patient self-report. Self-reported pain, however, is difficult to
interpret and may be impaired or in some circumstances (i.e., young children and the severely ill)
not even possible. To circumvent these problems behavioral scientists have identified reliable and
valid facial indicators of pain. Hitherto, these methods have required manual measurement by
highly skilled human observers. In this paper we explore an approach for automatically
recognizing acute pain without the need for human observers. Specifically, our study was
restricted to automatically detecting pain in adult patients with rotator cuff injuries. The system
employed video input of the patients as they moved their affected and unaffected shoulder. Two
types of ground truth were considered. Sequence-level ground truth consisted of Likert-type
ratings by skilled observers. Frame-level ground truth was calculated from presence/absence and
intensity of facial actions previously associated with pain. Active appearance models (AAM) were
used to decouple shape and appearance in the digitized face images. Support vector machines
(SVM) were compared for several representations from the AAM and of ground truth of varying
granularity. We explored two questions pertinent to the construction, design and development of
automatic pain detection systems. First, at what level (i.e., sequence- or frame-level) should
datasets be labeled in order to obtain satisfactory automatic pain detection performance? Second,
how important is it, at both levels of labeling, that we non-rigidly register the face?
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1. Introduction
Pain is difficult to assess and manage. Pain is fundamentally subjective and is typically
measured by patient self-report, either through clinical interview or visual analog scale
(VAS). Using the VAS, patients indicate the intensity of their pain by marking a line on a
horizontal scale, anchored at each end with words such as “no pain” and “the worst pain
imaginable”. This and similar techniques are popular because they are convenient, simple,
satisfy a need to attach a number to the experience of pain, and often yield data that confirm
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expectations. Self-report measures, however, have several limitations [9,16]. These include
idiosyncratic use, inconsistent metric properties across scale dimensions, reactivity to
suggestion, efforts at impression management or deception, and differences between
clinicians' and sufferers' conceptualization of pain [11]. Moreover, self-report measures
cannot be used with young children, with individuals with certain types of neurological
impairment and dementia, with many patients in postoperative care or transient states of
consciousness, and those with severe disorders requiring assisted breathing, among other
conditions.

Significant efforts have been made to identify reliable and valid facial indicators of pain
[10]. These methods require manual labeling of facial action units or other observational
measurements by highly trained observers [6,14]. Most must be performed offline, which
makes them ill-suited for real-time applications in clinical settings. In the past several years,
significant progress has been made in machine learning to automatically recognize facial
expressions related to emotion [20,21]. While much of this effort has used simulated
emotion with little or no head motion, several systems have reported success in facial action
recognition in real-world facial behavior, such as people lying or telling the truth, watching
movie clips intended to elicit emotion, or engaging in social interaction [5,7,22]. In real-
world applications and especially in patients experiencing acute pain, out-of-plane head
motion and rapid changes in head motion and expression are particularly challenging.
Extending the approach of [18], we applied machine learning to the task of automatic pain
detection in a real-world clinical setting involving patients undergoing assessment for pain.

In this paper we will attempt to gain insights into two questions pertinent to automatic pain
recognition: (i) How should we be labeling datasets for learning to automatically detect
pain?, and (ii) Is there an inherent benefit in non-rigidly registering the face and decoupling
the face into shape and appearance components when recognizing pain?

1.1. How should we register the face?
Arguably, the current state-of-the-art system for recognizing expression (specifically for
AUs) is a system reported by Bartlett et al. [4,5], which first detects the fully frontal face
using a Viola and Jones face detector [25], and then rigidly registers the face in 2D using a
similarly designed eye detector. Visual features are then extracted using Gabor filters which
are selected via an AdaBoost feature selection process. The final training is performed using
a support vector machine (SVM). As noted above, this system was adapted recently [2] and
applied to the task of detecting “genuine” versus “faked” pain. Tong et al. [33] also reported
good AU detection performance with their system which uses a dynamic Bayesian Network
(DBN) to account for the temporal nature of the signal as well as the relationship with other
AUs. Pantic and Rothkrantz [26] used a rule-based method for AU recognition. Pantic and
Patras [27] investigated the problem of posed AU recognition on profile images.

A possible limitation of these approaches is that they employ a rigid rather than non-rigid
registration of the face. We refer to non-rigid registration as any shape variation of an object
that cannot be modeled by a 2D rigid warp (i.e. translation, scale and rotation). Non-rigid
registration of the face may be beneficial from two perspectives. One is to normalize
unwanted variations in the face due to out-of-plane head motion. In many real-world
settings, such as clinical pain assessment, out-of-plane head motion may be common. The
other possible advantage is to enable decoupling of the shape and appearance components of
the face, which may be more perceptually important than rigidly registered pixels. We found
in previous work [18,3] that this type of alternative representation based on the non-rigid
registration of the face was useful for expression recognition in a deception-interview
paradigm. In that work we employed an active appearance model [8,19] (AAM) to derive a
number of alternative representations based on a non-rigid registration of the face. In the
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current paper we extend that work. We explore whether such representations are helpful for
classifiers to learn “pain”/“no-pain” in clinical pain assessment, and we compare the relative
efficacy of sequence- and frame-level labeling.

1.2. How should we label data for learning pain?
With near unlimited access to facial video from a multitude of sources (e.g., movies,
Internet, digital TV, laboratories, home video, etc.) and the low cost of digital video storage,
the recording of large facial video datasets suitable for learning to detect expression is
becoming less of an issue. However, video datasets are essentially useless unless we have
some type of labels (i.e., “pain”/“no-pain”) to go with them during learning and testing.

In automatic facial expression recognition applications, the de facto standard is to label
image data at the frame level (i.e., assigning a label to each image frame in a video
sequence). The rationale for this type of labeling stems from the excellent work that has
been conducted with respect to facial action unit (AUs) detection. AUs are the smallest
visibly discriminable changes in facial expression. Within the FACS (Facial Action Coding
System: [13,14]) framework, 44 distinctive AUs are defined. Even though this represents a
rather small lexicon in terms of individual building blocks, over 7000 different AU
combinations have been observed [15]. From these frame-by-frame AU labels, it has been
demonstrated that good frame-by-frame labels of “pain”/“no-pain” can be inferred by the
absence and presence of specific AUs (i.e., brow lowering, orbit tightening, levator
contraction and eye closing) [10,31].

The cost and effort, however, associated with doing such frame-by-frame labeling by human
experts can be extremely large, which is a rate limiter in making labeled data available for
learning and testing. If systems could use more coarsely labeled image data, larger datasets
could be labeled without increasing labor costs. In this paper we present a modest study to
investigate the ability of an automatic system for “pain”/“no-pain” detection trained from
sequence- rather than frame-level labels. In sequence level labeling one label is given to all
the frames in the video sequence (i.e., pain present or not present), rather than labels for
every frame in the sequence. We compare the performance of pain/no-pain detectors trained
from both frame- and sequence-level labels. This work differs considerably from our own
previous work in the area [3] in which only sequence-level labels for learning/evaluation
were considered. To our knowledge no previous study has compared algorithms trained in
both ways.

One other study of automatic pain detection can be found in [2]. Little wort and colleagues
pursued an approach based on their previous work to AU recognition [4,5]. Their interest
was specifically in the detection of “genuine” versus “faked” pain. Genuine pain was
elicited by having naïve subjects submerge their arm in ice water. In the faked-pain
condition, the same subjects simulated pain prior to the ice-water condition. To discriminate
between conditions, the authors rigidly registered the face and extracted a vector of
confidence scores corresponding to different AU recognizers at each frame. These AU
recognizers were learnt from frame-based labels of AU and the corresponding facial image
data. Based on these scores the authors studied which AU outputs contained information
about genuine versus faked pain condtions. A secondary SVM was then learnt to
differentiate the binary pain conditions based on the vector of AU output-scores. Thus,
frame-level labels were used to classify pain- and no-pain conditions, or in our terminology
pain- and no-pain sequences.

To summarize, previous work in pain and related expression detection has used rigid
representation of face appearance and frame-level labels to train classifiers. We investigated
both rigid and non-rigid registration of appearance and shape and compared use of both
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frame- and sequence-level labels. In addition, previous work in pain detection is limited to
sequence-level detection. We report results for both sequence- and frame-level detection.

2. Image and meta data
2.1. Image data

Image data for our experiments was obtained from the UNBC-McMaster shoulder pain
expression archive. One hundred twenty-nine subjects with rotator-cuff injury (63 male, 66
female) were video-recorded in “active” and “passive” conditions. In the active condition,
subjects initiated shoulder rotation on their own; in passive, a physiotherapist was
responsible for the movement. Camera angle for active tests was approximately frontal to
start; camera angle for passive tests was approximately 70 degrees to start. Out-of-plane
head motion in both conditions was common. Images were captured at a resolution of
320×240 pixels. The face area spanned an average of approximately 140×200 (28000)
pixels. For comparability with previous literature, in which initial camera orientation has
typically varied from frontal to about 15 degrees, we focused on the active condition in the
experiments reported below. Sample pain sequences are shown in Figure 1.

2.2. Metadata
Pain was measured at the sequence- and frame-level.

2.2.1. Sequence-level measures of pain—Pain ratings were collected using subject
and observer report. Subjects completed a 10-cm Visual Analog Scale (VAS) after each
movement to indicate their level of subjective pain. The VAS was presented on paper, with
anchors of “no pain” and “worst pain imaginable”. Subsequently, observed pain intensity
(OPI) rating was rated from video by an independent observer with considerable training in
the identification of pain expression. Observer ratings were performed on a 6-point Likert-
type scale that ranged from 0 (no pain) to 5 (strong pain).

To assess inter-observer reliability of the OPI pain ratings, 210 randomly selected trials were
independently rated by a second rater. The Pearson correlation between the observers' OPI
was 0.80, p<0.001, which represents high inter-observer reliability [28]. Correlation between
the observer's rating on the OPI and subject's self-reported pain on the VAS was 0.74,
p<0.001 for the trials used in the current study. A value of 0.70 is considered a large effect
[29] and is commonly taken as indicating high concurrent validity. Thus, the inter-method
correlation found here suggests moderate to high concurrent validity for pain intensity.

2.2.2. Frame-level measures of pain—In addition to pain ratings for each sequence,
facial actions associated with pain were annotated for each video frame using FACS [14].
Each action was coded on a 6-level intensity dimension (0 = absent, 1 = trace …
5=maximum). Because there is considerable literature in which FACS has been applied to
pain expression [10,24,30,31], we restricted our attention to those actions that have been
implicated in previous studies as possibly related to pain (See [24] for complete list).

To assess inter-observer agreement, 1738 frames selected from one affected-side trial and
one unaffected-side trial of 20 participants were randomly sampled and independently
coded. Intercoder percent agreement as calculated by the Ekman-Friesen formula [14] was
95%, which compares favourably with other research in the FACS literature. Following
previous literature in the psychology of pain, a composite pain score was calculated for each
frame, representing the accumulated intensity scores of four facial actions: brow lowering,
orbit tightening, levator contraction and eye closing (See [24] for construction of this index).
For the sequences evaluated in these experiments, pain scores ranged from 0 to 12.
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2.2.3. Subject selection—Subjects were included if they had a minimum of one trial
with an OPI rating of 0 (i.e. no pain) and one trial with an OPI rating of 3, 4, or 5 (defined as
pain). To maximize experimental variance and minimize error variance [31] movements
with intermediate ratings of 1 or 2 were omitted. Forty-four subjects had both pain- and
without-pain rated movements. Of these subjects, 23 were excluded for technical errors (8),
maximum head rotation greater than about 70 degrees (1), and glasses (7) or facial hair (7).
The final sample consisted of 21 subjects with 69 movements, 27 with pain and 42 without
pain.

3. Active Appearance Models
Active appearance models (AAMs) provide a compact statistical representation of the shape
and appearance variation of the face as measured in 2D images. This representation
decouples the shape and appearance of a face image. Given a pre-defined linear shape model
with linear appearance variation, AAMs align the shape model to an unseen image
containing the face and facial expression of interest. In general, AAMs fit their shape and
appearance components through a gradient descent search, although other optimization
methods have been employed with similar results [8]. In our implementation, keyframes
within each video sequence were manually labeled, while the remaining frames were
automatically aligned using a gradient-descent AAM fit described in [19].

3.1. AAM derived representations
The shape s of an AAM [8] is described by a 2D triangulated mesh. In particular, the
coordinates of the mesh vertices define the shape s (see row 1, column (a), of Figure 2 for
examples of this mesh). These vertex locations correspond to a source appearance image,
from which the shape is aligned (see row 2, column (a), of Figure 2). Since AAMs allow
linear shape variation, the shape s can be expressed as a base shape s0 plus a linear
combination of m shape vectors si:

(1)

where the coefficients p = (p1,…,pm)T are the shape parameters. These shape parameters are
typically divided into similarity parameters ps and object-specific parameters po, such that

We shall refer to ps and po herein as the rigid and non-rigid shape vectors of the
face respectively. Rigid parameters are associated with the geometric similarity transform
(i.e., translation, rotation and scale). Non-rigid parameters are associated with residual shape
variations such as mouth opening, eyes shutting, etc. Procrustes alignment [8] is employed
to estimate the base shape s0. Once we have estimated the base shape and shape parameters,
we can normalize for various variables to achieve different representations as outlined in the
following subsections.

3.1.1. Rigid normalized shape, sn—As the name suggests, this representation gives the
vertex locations after all rigid geometric variation (i.e., translation, rotation and scale),
relative to the base shape, has been removed. The similarity normalized shape sn can be
obtained by synthesizing a shape instance of s, using Equation 1, that ignores the similarity
parameters of p. An example of this similarity normalized mesh can be seen in row 1,
column (b), of Figure 2.

3.1.2. Rigid normalized appearance, an—This representation contains appearance
from which rigid geometric variation has been removed. Once we have rigid normalized
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shape sn, as computed in Section 3.1.1, the rigid normalized appearance an can be produced
by warping the pixels in the source image with respect to the required translation, rotation,
and scale (see row 2, column (b), of Figure 2). This representation is similar to those
employed in methods like [4,5] where the face is geometrically normalized with respect to
the eye coordinates (i.e., translation, rotation and scale).

3.1.3. Non-rigid normalized appearance, a0—In this representation we can obtain the
appearance of the face from which the non-rigid geometric variation has been normalized
with respect to the base face shape s0. This is accomplished by applying a piece-wise affine
warp on each triangle patch appearance in the source image so that it aligns with the base
face shape. We shall refer to this representation as the face's canonical appearance (see row
2, column (c), of Figure 2 for an example of this canonical appearance image) a0.

If we can remove all shape variation from an appearance, we'll get a representation that can
be called as shape normalized appearance, a0. a0 can be synthesized in a similar fashion as
an was computed in section 3.1.2, but instead ensuring that the appearance contained within
s now aligns with the base shape s0.

3.2. Features
Based on the AAM derived representations in Section 3.1 we define three types of features:

S-PTS: similarity normalized shape sn representation (see Equation 1) of the face and
its facial features. There are 68 vertex points in sn for both x and y coordinates, resulting
in a raw 136 dimensional feature vector.

S-APP: similarity normalized appearance an representation. Due to the number of
pixels in an varying from image to image, we apply a mask based on s0 so that the same
number of pixels (approximately 27, 000) are in an for each image.

C-APP: canonical appearance a0 representation where all shape variation has been
removed from the source appearance except the base shape s0. This results in an
approximately 27,000 dimensional raw feature vector based on the pixel values within
s0.

The naming convention S-PTS, S-APP, and C-APP will be employed throughout the rest of
this paper.

One might reasonably ask, why should C-APP be used as a feature as most of the
expression information has been removed through the removal of the non-rigid geometrical
variation? Inspecting Figure 2 one can see an example of why C-APP might be useful. The
subject is tightly closing his right eye. Even after the application of the non-rigid
normalization procedure one can see there are noticeable visual artifacts (e.g., wrinkles) left
that could be considered important in recognizing the presence/absence of pain. These
appearance features may be critical in distinguishing between similar action units. Eye
closure (AU 43), for instance, results primarily from relaxation of the levator palpebrae
superioris muscle, which in itself produces no wrinkling. The wrinkling shown in Figure 2 is
produced by contraction of the orbicularis oculi (AU 6). The joint occurrence of these two
actions, AU 6+43, is a reliable indicator of pain [10,31]. If AU 6 were ignored, pain
detection would be less reliable. For any individual facial action, shape or appearance may
be more or less important [6]. Thus, the value of appearance features will vary for different
facial actions.

In the AAM, appearance can be represented as either S-APP or C-APP. They differ with
respect to representation (rigid vs. non-rigid alignment, respectively) and whether shape and
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appearance are coupled (S-APP) or decoupled (C-APP). In training a classifier, the joint C-
APP and S-PTS feature could perhaps offer improved performance over S-APP as it can
treat the shape and appearance representations separately and linearly (unlike S-APP).

4. SVM Classifiers
Support vector machines (SVMs) have proven useful in many pattern recognition tasks
including face and facial action recognition. Because they are binary classifiers, they are
well suited to the task of “pain” vs. “no-pain” classification. SVMs attempt to find the
hyper-plane that maximizes the margin between positive and negative observations for a
specified class. A linear SVM classification decision is made for an unlabeled test
observation x∗ by,

(2)

where w is the vector normal to the separating hyperplane and b is the bias. Both w and b
are estimated so that they minimize the structural risk of a train-set, thus avoiding the
possibility of overfitting the training data. Typically w is not defined explicitly but through a
linear sum of support vectors. As a result SVMs offer additional appeal as they allow for the
employment of non-linear combination functions through the use of kernel functions, such.,
as the radial basis function (RBF) and polynomial and sigmoid kernels. A linear kernel was
used in our experiments due to its ability to generalize well to unseen data in many pattern
recognition tasks [17]. Please refer to [17] for additional information on SVM estimation
and kernel selection.

5. Experiments
5.1. Pain model learning

To ascertain the utility of various AAM representations, different classifiers were trained by
using features of Section 3.2 in the following combinations:

S-PTS: similarity normalized shape sn

S-APP: similarity normalized appearance an

C-APP + S-PTS: canonical appearance a0 combined with the similarity normalized
shape sn.

To check for subject generalization, a leave-one-subject-out strategy was employed for cross
validation. Thus, there was no overlap of subjects between the training and testing set. The
number of training frames from all the video sequences was prohibitively large to train an
SVM, as the training time complexity for a SVM is O(m3), where m is the number of
training examples. In order to make the step of model learning practical, while making the
best use of training data, each video sequence was first clustered into a preset number of
clusters. Standard k-means clustering was employed, with k set to a value that reduces the
training set to a manageable size. The value of k was chosen to be a function of the sequence
length, such that the shortest sequence in the dataset had at least 20 clusters. Clustering was
used only in the learning phase. Testing was carried out witout clustering as described in the
following sections.

Linear SVM training models were learned by iteratively leaving one subject out, which
gives rise to N number of models, where N is the number of subjects. SVMs were trained at
both the sequence-and frame-levels. At the sequence-level, a frame was labeled as pain if
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the sequence in which it occurred met criteria by the OPI (See Section 2.2.3). At the frame-
level, following [10], a frame was labeled pain if its FACS-based pain intensity was equal to
1 or higher.

5.2. How important is registration?
At the sequence-level, each sequence was classified as pain present or pain absent. Pain
present was indicated if the observer rating was 3 or greater. Pain absent was indicated if
observer rating was 0. Learning was performed on clustered video frames; testing was
carried out on individual frames. The output for every frame was a score proportional to the
distance of the test-observation from the separating hyperplane. The predicted pain scores
for individual frames across all the test sequences ranged from -2.35 to 3.21. The output
scores for a sample sequence are shown in Figure 3. For the specific sequence shown in
Figure 3, the predicted scores ranged from 0.48 to 1.13. The score values track the pain
expression, with a peak response corresponding to frame 29 shown in Figure 3.

To predict whether a sequence was labeled as “pain” the output scores of individual frames
were summed together to give a cumulative score (normalized for the duration of the
sequence) for the entire sequence,

(3)

where di is the output score for the ith frame and T is the total number of frames in the
sequence.

Having computed the sequence level cumulative score in Equation 3, we seek a decision rule
of the form:

(4)

By varying the threshold in the decision rule of Equation 4 one can generate the Receiver
Operating Characteristic (ROC) of the classifier, which is a plot of the relation between the
false acceptance rate and the hit rate. The false acceptance rate represents the proportion of
no-pain video sequences that are predicted as pain containing sequences. The hit rate
represents the detection of true pain. Often, a detection system is gauged in terms of the
Equal Error Rate (EER). The EER is determined by finding the threshold at which the two
errors, the false acceptance rate, and the false rejection rate, are equal.

In Figure 4, we present the ROC curves for each of the representations discussed in Section
3.2. The EER point is indicated by a cross on the respective curves. The best results (EER =
15.7%) are for canonical appearance combined with similarity normalized shape (C-APP +
S-PTS). This result is consistent with our previous work [18], in which we used AAMs for
facial action unit recognition.

The similarity normalized appearance features (S-APP) performed at close-to-chance levels
despite the fact that this representation can be fully derived from canonical appearance and
similarity normalized shape.
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5.3. How should we label data for learning pain?
A limitation of the approach described in Section 5.2 is that the ground truth was considered
only at the video sequence level. In any given sequence the number of individual frames
actually showing pain could be quite few. A coarse level of ground truth is common in
clinical settings. We were fortunate, however, to have frame-level ground truth available as
well, in the form of FACS annotated action units for each video frame. Following [24], as
described in Section 2.2.2, a composite pain score was calculated for each frame. Composite
pain scores ranged from 0 to 12.

Following [24], for the binary ground truth labels, we considered a pain score greater than
zero to represent pain, and a score of zero to represent no-pain. For model learning, the
previous clustering strategy was altered. Instead of clustering the video sequences as a
whole, positive and negative frames were clustered individually prior to inputting them into
the SVM. As before, clustering was not performed in the testing phase. As a comparison, we
present results for frame-level prediction using an SVM trained on sequence level labels. In
both cases, results are for S-PTS + C-APP features and leave-one-out cross-validation. They
differ only in whether sequence-level or frame-level labels were provided to the SVM. The
SVM based on frame-level ground truth improved the frame-level hit rate from 77.9% to
82.4%, and reduced False Acceptance Rate (FAR) by about a third, from 44% to 30.1%. See
Figure 5.

In Figure 6 we show an example of how the respective SVM outputs compare with one
another for a representative subject. The SVM trained on sequence level ground truth has
consistently higher output in regions in which pain is absent. The SVM trained on frame
level ground truth gives a lower score for the portion of the video sequence in which pain is
absent. Previously, many no-pain frames that were part of pain video sequences were all
forced to have a ground-truth label of ‘pain’. This suggests why the previous SVM model
has much higher FAR and lower correlation with frame-level ground truth. The present
scheme precisely addresses the issue by employing frame-level ground truth and thus leads
to better performance. The range of predicted pain scores for SVMs trained on frame-level
ground truth was -2.45 to 3.29 across all the video sequences, while the range for the video
sequence shown in Figure 6 was-0.33 to 0.78.

Across all subjects, the improvement in performance should not come as a surprise, as the
frame-level approach trains the classifier directly for the task at hand (i.e., frame-level
detection). Whereas the sequence-level SVM was trained for the indirect task of sequence
classification. More interestingly, the classifier trained with coarser (sequence-level) labels
performs significantly better than “random chance” when tested on individual frames. In
Figure 7 we present the ROC curve for frame-level pain detection for classifiers trained with
different groundtruth granularity and the ROC of a random classifier (i.e., applying an
unbiased coin-toss to each frame). As one can see the ROC of the sequence-trained classifier
lies significantly above that of the “random chance” classifier.

This result is especially interesting from a machine learning perspective. Hitherto, a
fundamental barrier in learning and evaluating pain recognition systems is the significant
cost and time associated with frame-based labeling. An interesting question for future
research could be posed if one used the same labeling time and resources at the sequence-
level. For same level of effort, one could ground-truth a much larger sequence-level dataset,
in comparison with frame-level labeling, and as a result employ that larger dataset during
learning. One is then left with the question of which system would do better. Is it
advantageous to have large sequence-level labeled datasets or smaller frame-level labeled
datasets? Or more interestingly, what learning methods could be developed to leverage a
hybrid of the two?
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Because different kinds of expressions involve activities of different facial muscles we
wished to visualize what regions of the face contribute towards effective pain detection. To
accomplish this we formed an intensity image from the weighted combination of the learned
support vectors for pain and no pain classes using their support weights (Figure 8). For pain,
the brighter regions represent more contribution, while for no pain, the darker regions
represent less contribution. These plots highlight that regions around the eyes, eyebrows,
and lips contribute significantly towards pain vs. no pain detection. These are same regions
identified in previous literature as indicative of pain by observers.

6. Discussion
In this paper we explored various face representations derived from AAMs for detecting
pain from the face. We explored two important questions with respect to automatic pain
detection. First, how should one represent the face given that a non-rigid registration of the
face is available? Second, at what level (i.e., sequence- or frame-based) should one label
datasets for learning an automatic pain detector?

With respect to the first question we demonstrated that considerable benefit can be attained
from non-rigid rather than rigid registrations of the face. In particular, we demonstrated that
decoupling a face into separate non-rigid shape and appearance components offers
significant performance improvement over those that just normalize for rigid variation in the
appearance (e.g., just locating the eyes and then normalizing for translation, rotation and
scale). This result is significant as most leading techniques for action unit [4,5] and pain [2]
detection tasks are employing rigid rather than non-rigid registrations of the face.

We did not explore differences among possible appearance features. Relative strengths and
weaknesses among various appearance features is an active area of ongoing research (See,
for instance, [33]). Our findings have implications for work on this topic. Previous studies
with Gabor filter responses, for instance, use rigid registration [2,33]. While rigid
registration may be adequate for some applications (e.g., posed behavior or spontaneous
behavior with little out-of-plane head motion), for others it appears not. We found that rigid
registration of appearance had little information value in video from clinical pain
assessments. Out-of-plane head motion was common in this context. Non-rigid registration
of appearance greatly improved classifier performance. Our findings suggest that type of
registration (rigid vs. non-rigid) may influence the information value and robustness of
appearance features. When evaluating features, it is essential to-consider the issues of out-
of-plane rotation and types of registration.

We also did not consider the relative advantages of first- versus second-order classifiers.
That is, is it better to detect pain directly or to detect action units first and then use the
resulting action unit outputs to detect pain (or other expression of interest). This is an
important topic in its own respect. Littlewort [2], for instance, first detected action units and
then used the (predicted) action units in a classifier to detect pain. In the current study and in
our own previous work [3] we detected pain directly from shape and appearance features
without going through action unit detection first. Research on this topic is just beginning.
Most previous studies in expression detection or recognition have been limited to posed
behavior and descriptions of facial expression (e.g., action units or emotion-specific
expressions, such as happy or sad). The field is just now beginning to address the more
challenging question of detecting subjective states, such as clinical or induced pain. Our
concern with second-order classifiers is that they are vulnerable to error at the initial step of
action unit detection. Human observers have difficulty achieving high levels of reliability
[6]; and classifiers trained on human-observer labeled data will be affected by that source of
error variance. Alternatively, to the extent that specific facial actions are revealing [34,35],
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second-order classifiers may have an advantage. We are pursuing these questions in our
current research.

Our results for the second question demonstrate that unsurprisingly, frame-level labels in
learning are best for frame-level detection of pain. However, sequence-level trained
classifiers do substantially better than chance even though they are being evaluated on a task
they have not been directly trained for. This result raises the interesting question over how
researchers in the automatic pain detection community should be using their resources when
labeling future datasets. Should we still be labeling at the frame-level, ensuring that the
datasets we learn from are modestly sized. Or, should we be employing hybrid labeling
strategies where we label some portions at the frame- and some portions at the sequence-
level allowing for learning from much larger datasets. The answer to these questions shall be
the topic of our continuing research.

In summary, in a study of clinical pain detection, we found that the combination of non-
rigidly registered appearance and similarity normalized shape maximized pain detection at
both the sequence and frame levels. By contrast, rigidly registered appearance was of little
value in sequence- or frame-level pain detection. With respect to granularity of training data,
for frame-level pain detection, use of frame-level labels resulted in hit rate of 82% and false
positive rate of 30%; the corresponding rates for sequence-level labels were 77% and 44%,
respectively. These findings have implications for pain detection and machine learning more
generally. Because sequence-level labeling affords collection of larger data sets, future work
might consider hybrid strategies that combine sequence- and frame-level labels to further
improve pain and expression detection. The current findings in clinical pain subjects suggest
the feasibility of automatic pain detection in medical setting.
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Fig. 1. Examples of temporally subsampled sequences. (a),(c) illustrate Pain and (b),(d) No Pain
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Fig. 2. Example of AAM derived representations (a) Top row: input shape(s), Bottom row: input
image, (b) Top row: Similarity Normalized Shape(sn), Bottom Row: Similarity Normalized
Appearance(an), (c) Top Row: Base Shape(s0), Bottom Row: Shape Normalized Appearance(a0)
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Fig. 3.
Example of video sequence prediction. The x-axis in the above plot represents the frame
index in the video, while the y-axis represents the predicted pain score. The dotted arrows
show the correspondence between the image frames (top-row) and their predicted pain
scores. For intance, Frame 29 in the top row shows an intense pain and corresponds to the
peak in the plot.
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Fig. 4. Sequence-level pain detection results for experiments performed in section 5.2, showing
the ROC for classifiers based on three different representations. The crosses indicate the EER
point. The best results (EER: 15.7%) are achieved by using a combination of canonical-
appearance and similarity normalized shape (C-APP + S-PTS)
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Fig. 5.
Frame-level performance based on experiments performed in Section 5.3. (a) Hit rate and
false-acceptance rates for SVMs trained using different ground-truth granularity. Training
SVMs by using frame-level ground truth improved performance. Frame-level hit rate
increased from 77.9% to 82.4%, and frame-level false acceptance rate (FAR) decreased
from 44% to 30.1%. (b) Confusion matrix for sequence–trained SVM. (c) Confusion matrix
for frame-trained SVM.
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Fig. 6.
Comparison between the SVM scores for sequence-level ground truth and frame-level
ground truth (a) Sample frames from a pain-video sequence with their frame indices, (b)
Scores for individual frames for the two SVM training strategies. Points corresponding to
the frames shown in (a) are highlighted as crossed. Output of SVM trained on frame-level
groundtruth remains lower for frames without pain, and hence leads to a lower false
acceptance rate
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Fig. 7.
Comparison of ROCs for SVMs trained on sequence-and frame-level labels. To demonstrate
the efficacy of the sequence-level trained SVM on the frame-level detection task the ROC
for a “random-chance” classifier is also included. One can see that although the sequence-
level SVM behaves worse than the frame-level SVM it is significantly better than random-
chance demonstrating that coarse-level labeling strategies are effective and useful in
automatic pain recognition tasks.
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Fig. 8.
Weighted combination of support vectors to visualize contribution of different face regions
for pain recognition. (a) For pain, (b) For no pain. For pain, the brighter regions represent
more weightage. For no pain, the darker regions repersent more weightage.
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