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Abstract
A central focus of clinical proteomics is to search for biomarkers in plasma for diagnostic and
therapeutic use. We studied a set of plasma proteins accessed from the HIP2 database, a larger set
of curated human proteins, and a subset of inflammatory proteins, for overlap with sets of known
protein biomarkers, drug targets, and secreted proteins. Most inflammatory proteins were found to
occur in plasma, and over three times the level of biomarkers were found in inflammatory plasma
proteins and their interacting protein neighbors compared to the sets of plasma and curated human
proteins. Percentage overlaps with Gene Ontology terms were similar between the curated human
set and plasma protein set, yet the set of inflammatory plasma proteins had a distinct ontology-
based profile. Most of the major hub proteins within protein-protein interaction networks of tissue
specific sets of inflammatory proteins were found to occur in disease pathways. The present study
presents a systematic approach for profiling a plasma subproteome’s relationship to both its
potential range of clinical application and its overlap with complex disease.
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1 Introduction
The identification of protein biomarkers for the early diagnosis, subtyping, and monitoring
of treatment for chronic diseases, including cardiovascular diseases, cancer, arthritis,
Alzheimer’s disease, pulmonary disease, and autoimmune diseases, is now a central research
focus in clinical proteomics [1, 2]. While biomedical researchers have traditionally sought to
study molecular and immunological responses in tissues collected from patients, a recent
trend has been to identify sets of proteins that may respond to changes in disease states or
drug treatments, and be detected in easy-to-access biofluids such as human plasma. For
decades, biomedical researchers and clinicians have used plasma to isolate and measure
proteins that can be useful for the diagnosis or monitoring of disease [3, 4]. With the recent
completion of the human genome and increasing availability of sensitive and reproducible
analytical platforms, e.g., protein microarrays and liquid chromatography coupled tandem
mass spectrometers (LC-MS/MS), researchers can now study hundreds or even thousands of
proteins expressed in patient tissues or biofluids in parallel, therefore creating new
opportunities for developing and managing disease [5–7]. An emerging focus has been to
use panel biomarkers consisting of more than one protein and peptide marker to achieve a
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higher level of sensitivity and specificity [8]. Interpreting patterns of protein expressions in
the human plasma proteome—sometimes very complex due to noisy signals and incomplete
data sets—as a function of disease states often involves high-throughput data management,
non-trivial statistical data analysis, and computational interpretation of data in the context of
physiological and molecular pathways. A general process for biomarker discovery in the
plasma proteome can be viewed in three steps: 1) defining the detectable “human plasma
proteome” based on a specific analytical platform such as mass spectrometry or antibodies;
2) selecting differentially expressed proteins between different experimental conditions; and
3) identifying candidate protein disease biomarker profiles to achieve decent detection
sensitivity and specificity [9].

Understanding the constituents, variability, and detectability of the human plasma proteome
has been an elusive and challenging effort even today. With the release of the Human
Proteome Organization (HUPO) Plasma Proteome Project (PPP) core dataset of 3020
plasma proteins in 2005, annotation of the human plasma proteome was initially performed
by several groups [10–13]. Ping et al. [10] studied the HUPO PPP core datasets of 3020
proteins, and described plasma proteins to be comprised of a diverse group of proteins from
the human proteome, including glycoproteins, DNA binding proteins, coagulation pathway,
cardiovascular, liver, inflammation, and monocular phagocyte proteins. In this study, liver
was the dominant tissue-based source of proteins, although many of the proteins detected are
also expressed in other tissues. Berhane et al. [11] observed 354 proteins of particular
interest for cardiovascular research to be found in the core dataset of HUPO. They classified
these proteins into eight categories: protein markers of inflammation in cardiovascular
disease, vasoactive and coagulation proteins, signal transduction pathway proteins, growth
and differentiation-associated proteins, cytoskeletal proteins, transcription proteins, channel
and receptor proteins, and heart failure and remodeling-related proteins. Muthusamy et al.
[12] identified 3778 gene-based plasma proteins in the literature to generate a plasma
proteome database and GO profile, and compared this set of proteins with the contents of the
HUPO PPM core data set of 3020 proteins (mapping to 2446 genes). Liu et al. [13]
performed a gene ontology annotation of cellular components in the plasma proteome
generated from IMS-MS of 9087 plasma proteins identified by independent study and found
differences between GO annotation percentages of human versus plasma proteomes.
Recently, Saha et al. [14] reported a comprehensive catalogue of plasma proteins from
healthy individuals called HIP2 (Healthy Human Individual’s Integrated Plasma Proteome),
which collected set of 11,588 unique human plasma proteins detectable with different
shotgun mass spectrometry methods [15]. In this study, while each human plasma protein
has peptide-based evidence underlying its identification, only 106 high-abundant proteins
were common among four different shotgun proteomics experiments, revealing an ongoing
challenge in improving reproducibility among low-abundant proteins. Sub-proteomic
analyses of the plasma proteome have also begun to evaluate biological processes of
potential biomedical significance such as inflammatory pathways [10, 11]. Chronic
inflammation is especially of interest for human plasma protein studies, because it is
characterized by a response of tissue destruction by inflammatory cells like macrophages
and plasma cells, and it has been found to be a factor associated with a wide variety of
chronic diseases such as cancer [2, 16–18]. While inflammatory proteins are generally
recognized as being present across many varieties of chronic diseases including cancer [19],
the extent to which inflammatory proteins may be used in disease biomarker studies has not
yet been studied systematically.

In this study, we dissected the human plasma proteome by examining its overlap with other
datasets of interest: especially concerning proteins associated with drug treatment and
biomarkers, and the subset of inflammatory proteins in the plasma proteome. We first
analyzed the prevalence of candidate cancer biomarkers, drug targets and secreted proteins
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in human plasma, inflammatory proteins and expanded inflammatory proteins. Second,
statistical comparisons of Gene Ontology (GO) were performed between the set of human
Uniprot proteins and the plasma proteome, and between the plasma proteome and the set of
inflammatory protein. Third, tissue specific protein-protein interactions (PPIs) of
inflammatory proteins were calculated for each inflammatory protein subset present in each
of five major tissues: brain, heart, lung, kidney and liver. We observed many of the
interacting protein partners to be disease specific. Fourth, the hub proteins (10 or more
interacting protein partners) in the PPIs networks were searched in the pathway database and
found to be related to disease biology pathways.

Our overall objective is to foster within the biomedical research community, for the first-
time, a systematic survey of the human plasma proteome relating to the human proteome for
those interested in plasma proteomics applications. For purpose of application, we further
sought to inspect detail of how the general inflammatory response may differentiate across
tissues, biomolecular interaction networks and pathways to provide insight concerning the
non-trivial dynamics that may be impeding efforts to establish sensitive and specific panels
of biomarkers.

2 Materials and methods
2.1 Datasets

We used different datasets of proteins in our study. The description of each database and
dataset used in our study is below:

HIP2 database—Human plasma proteins were collected from the HIP2 database, which
currently contains 11,588 non-redundant International Protein Index (IPI) number protein
entries [14]. This database is a comprehensive collection of healthy human plasma proteins,
and has protein data mappings of supporting peptide evidence from several high-quality and
high-throughput mass-spectrometry (MS) experimental data sets.

Human Plasma Proteome and Filtered Human Plasma Proteome sets—We
defined the set of 10,138 human plasma proteins as the human plasma proteome, and the
plasma proteins from HIP2 with two or more unique peptide sequences associated with their
identification as the filtered human plasma proteome (n=7817). With peptide count
thresholds of ≥3, ≥5 and ≥10, we defined additional filtered sets of plasma proteins
(respectively, n={5392, 2718, 747}) and further gathered UniProt names corresponding to a
high-confidence plasma protein set reported by States et al. [20]. The high-confidence
plasma protein set was a subset of HUPO, and was based on a confidence level of at least
95% as determined by multiple hypothesis-testing techniques and coding region lengths of
genes.

Curated Human Proteome set—For a comprehensive list of curated human proteins,
17,807 human proteins were extracted from UniProtKB/Swiss-Prot Release 54.6 of 04-
Dec-2007 with the sequence retrieval system (SRS; http://srs.ebi.ac.uk/). We defined the
17,807 human Uniprot proteins as the curated human proteome. We generally considered
the coverage of the plasma proteome compared to the curated human proteome to be
sufficiently high (9995/17,807=56%) and reasonable for an initial analysis. Out of 10,138
human plasma proteins from HIP2, 9995 proteins have distinct Uniprot names; In our set-to
set comparison, we used Uniprot names as identifiers.

Inflammatory protein and inflammatory plasma sets—The inflammatory protein
data set was obtained by using gene ontology queries against the human Uniprot protein
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database. The gene product overlaps to inflammatory response (GO:0006954) and its
descendants in the gene ontology were found with GO::TermFinder [21], and identified as
the set of inflammatory proteins. This set was defined based on presence within both the
human plasma proteome and the curated human proteome to identify 204 and 291 Swiss-
Prot accession number proteins respectively. We defined the set of 291 proteins as the
inflammatory protein set (I), and the set of 204 proteins as the inflammatory plasma protein
set (Ip).

Cancer Biomarker Data set—The cancer biomarker list of 1261 proteins, mapping to
1049 Uniprot names, was from Anderson laboratory [22]. This data was compiled from
literature and other sources and believed to be differentially expressed in human cancer [22].
In this data set, of the 34 biomarkers with more than 1000 citations, 79% were reported to be
plasma proteins and 56% were reported as being used for clinical diagnosis (89% of these
were reported as being plasma proteins). Of the 28 biomarkers with between 500 and 1000
citations, 57% were reported as being plasma proteins, but only 7% were reported as being
used clinically.

DrugBank Data set—A list of 2,396 drug target proteins, mapping to 837 human Uniprot
names, was obtained by parsing entries from the DrugBank database that combines detailed
drug/chemical data with comprehensive drug target or protein information where each entry
contains >80 data fields with half of the information being devoted to drug chemical
structure and the other half devoted to drug target proteins [23]. The drug target protein
source was from different species; in our study we worked on human proteins (837 Uniprot
proteins).

Secreted Protein data set—The human secreted protein list of 1191 proteins, mapping
to 1187 Uniprot names, was obtained from the Secreted Protein Database (SPD), which
consists of a core dataset and a reference dataset. The core dataset of SPD contains 18,152
secreted proteins retrieved from Swiss-Prot/TrEMBL, RefSeq and CBI-Gene of human,
mouse and rat [24]. All the entries of SPD were ranked according to the prediction
confidence, and contain both experimental and computationally predicted secreted proteins.
For our analysis using SPD, we used human proteins coming from Rank0 that consist of the
manually curated set of Swiss-Prot proteins.

2.2 Gene Ontology annotations
We studied the three major GO vocabularies – biological process, molecular function and
cellular component – using GO::TermFinder, a tool for accessing and evaluating GO
annotations, and calculated significance for comparisons between sets of proteins [21]. We
used the Gene Ontology project Open Biomedical Ontologies (OBO) file version 1.2 format
revision 5.640, and the Gene Ontology project human annotation file revision 1.75 [25].
9576 proteins of the 10,138 plasma proteins were observed to have one or more associated
GO terms. Of the 7817 proteins in the filtered human plasma proteome, 7354 had GO
annotations. Of the 17,807 proteins in the curated human proteome, 16,196 had GO
annotations. We defined the filtered subset of 7354 proteins in the human plasma proteome
with GO annotations as P. We defined the filtered subset of 16,196 proteins in the curated
human proteome with GO annotations as H.

To account for the relative differences in sizes of protein sets and frequencies of GO
annotations, we based the significance of annotation frequencies on hypergeometric
calculation of an adjusted p value using a simulation-based correction based on the fraction
(padj) of 1000 independent null-hypothesis simulations (samplings drawn from the larger
data set) having any node with a p value equal or better than the p value for that node in the
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smaller data set, where the node is the GO term to which elements are annotated [21].
Comparisons were conducted between H and P, and between P and Ip. In addition to our
criterion for statistical significance (padj≤0.001), initial selection of Gene Ontology
categories was based on those GO terms whose shortest distance to the root of the GO
hierarchy was 4 (i.e., GO level 4). In general, a GO level is the shortest distance to the root
of the direct acyclic graph GO hierarchy, where level 0 is the root of the hierarchy, level 1
are terms “biological process”, “cellular component” and “molecular function” and higher
number levels relate to increased qualitative specificity.

2.3 Protein-protein interactions (PPIs) study and visualization
A tool for visually exploring biological networks, Cytoscape version 2.5.1 with the
APID2NET plugin, was used to expand and study the interacting proteins associated with
the initial set of 204 proteins [26]. Cytoscape uses a December 2006 release of the
Biomolecular Interaction Network Database (BIND) for protein-protein interactions data.
BIND records are based on interactions as they have been shown experimentally and
published in at least one peer-reviewed journal [27]. Two search filters of APID2NET were
used: i) connection level; and ii) number of experimental methods. A connection level set to
1 collected first neighbors of the initial set of 710 proteins/nodes, and a connection level set
to 2 collected first and second neighbors of the initial set of 2866 proteins/nodes. We set the
number of experimental methods to be 2, meaning that the PPIs have two or more types of
experimental evidence to avoid false positives from single experiments. Network views of
protein interactions were generated with APID2NET [28], and showed proteins as nodes,
and interactions as edges on the network. PPI networks (connection level=1) were built for
five tissues: heart, brain, lung, kidney and liver. Tissue-specificities for inflammatory
proteins were based on UniProtKB/Swiss-Prot entry comments sections as accessed from
the ExPASy Proteomics Server [29].

2.4 Pathway database searching
We conducted a pathway analysis of proteins in the five tissue-based PPIs for those hub
proteins whose degree is ≥10. We studied the presence of these hub proteins in pathways
based on four pathway databases: BioCarta
(http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways/), NCI-Curated
(http://pid.nci.nih.gov), Reactome [30] and ProteinLounge (http://www.proteinlounge.com).

3 Results and discussion
For practical application, an issue for our investigation was to evaluate the plasma proteins
and inflammatory proteins inferred by mass spectrometry for diagnostic and therapeutic use.
We analyzed the presence of cancer biomarkers, drug targets and secreted proteins across
different data sets: i) curated human proteome, ii) human plasma proteome, iii)
inflammatory proteins and inflammatory plasma proteins, and iv) inflammatory plasma
expanded proteins. Extensive GO cross-comparison analyses were performed across these
sets. To check the specificity of inflammatory proteins present in the plasma, tissue specific
PPIs were studied in five major tissues: brain, heart, lung, kidney and liver. The hub proteins
in the network analysis coming from the inflammatory protein seed list were then searched
in four pathway databases: NCI-curated, Reactome, BioCarta, and ProteinLounge.

3.1 Prevalence of Biomarkers, Drug Targets, and Secreted Proteins
Protein biomarkers and drug targets are studied here in the context of curated human
proteome and human plasma proteome, because we believe they indicate a range of clinical
application opportunities. In particular, protein biomarkers in the plasma may have
especially significant utility for clinical diagnosis. Ideally, however, a tissue-specific drug
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target protein should not be present in the plasma in high concentration, because the drug
would then bind to the proteins in the plasma and not reach the specific tissue(s) [31].
Tissue-specific proteins that are secreted outside of the cell membrane may eventually reach
the plasma, so we made an attempt to study the relationship of plasma proteins to secreted
proteins. As a means for studying potential association with chronic disease, we surveyed
both plasma and non-plasma inflammatory proteins of the curated human proteome for
biomarkers, drug targets and secreted proteins.

3.1.1 Curated human proteome, human plasma proteome and filtered human
plasma proteome comparison—We compared the curated human proteome and human
plasma proteome by examining its percentage of overlap in each set for biomarkers, drug
targets and secreted proteins. As shown in Table 1, the human plasma proteome and filtered
human plasma proteome have slightly higher percentages of biomarkers, drug targets and
secreted proteins relative to the curated human proteome. Percentage differences of overlap
with biomarkers and drug targets were <0.5% between the filtered human plasma proteome
and the human plasma proteome. The set of secreted proteins had the smallest percentage-
wise distinction of overlap between the curated human proteome and the human plasma
proteome, and was the only category to decrease in overlap between the unfiltered and
filtered human plasma proteomes. All percentage overlaps were less than 10%, and these
results highlight the need for using additional classifications of protein subsets within these
proteomes to uncover higher amounts of overlap with biomarkers and drug targets. When
adjusting the filter from peptide count ≥2, to thresholds of 3 and 5, changes to the overall
percentage overlaps were within ±2%. With a threshold peptide count ≥10, the changes to
percentage overlaps were also similarly minor for candidate biomarkers and drug targets, but
the percentage overlap more than doubled for secreted proteins. We also conducted the
percentage overlap comparison with a high-confidence set of plasma proteins from States et
al. [20], and found these overlaps to be distinctly different from what was found for each of
the specific peptide count thresholds. Since our study relates primarily to usage of actual
output and performance of existing clinical proteomics technologies, we opted to use the
peptide count threshold ≥2 as reported in [10, 13].

3.1.2 Inflammatory proteins—We next examined inflammatory proteins and their
interacting protein neighbors for overlap with biomarkers, drug targets and secreted proteins.
The examined datasets were the set of 291 inflammatory proteins, the subset of 204
inflammatory plasma proteins, and datasets based on expansions with interacting protein
neighbors. As shown in Table 2, restricting the initial set of 291 inflammatory proteins to the
204 proteins in the plasma proteome produced only marginal changes (≤1%) in percentage
overlap with biomarkers, drug targets and secreted proteins. Overlap with biomarkers
increased by 4% with a first neighbor-based protein interaction expansion on the set of
inflammatory plasma proteins, yet an overall percentage-wise decrease was found for the
second neighbor-based protein interaction expansion. We calculated p-value based on
Fisher’s exact test to test whether inflammatory proteins present in plasma (n=204), first
neighbor expansion proteins (n=710) and second neighbor expansion proteins (n=2866) are
biomarkers or non biomarkers. We got p-value of 0.1977 between inflammatory proteins
present in plasma and first neighbor expansion proteins; p-value of 0.0006 between first
neighbor expansion proteins and second neighbor expansion proteins; p-value of 0.0141
between inflammatory proteins present in plasma and second neighbor expansion proteins
(See Table S1–S3). Protein interaction expansions to the set of inflammatory plasma
proteins produced consecutive reductions in overlap with drug targets and secreted proteins,
most significantly for secreted proteins and the contingency tables of Fisher’s exact test are
shown in Table S4–S9. Based on protein interactions, both first neighbor and second
neighbor expansions were found to be successful in overlapping with higher numbers of
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biomarkers, drug targets and secreted proteins than observed for the curated human
proteome or human plasma proteome.

For an additional survey of biomarkers, drug targets and secreted proteins, we next
distinguished for plasma versus non-plasma proteins in the set of inflammatory proteins and
its related set of expanded proteins. The subsets of non-plasma proteins in the inflammatory
and expanded sets of inflammatory proteins had elevated percentages of overlap for
biomarkers and secreted proteins as shown in Table 3. We found the greatest increases
between plasma and non-plasma protein sets to occur for percentage overlaps with
inflammatory protein biomarkers. We found this trend to be consistent with the presence of
inflammatory protein biomarkers outside of plasma. The inflammatory response proteins
and their interacting protein partners thus implicate possibilities for clinical application
related to cancer detection and therapy. Investigating the relationship of these prospective
sets of proteins with functional annotations, disease biology and pathways may therefore
yield insight on the range and activity of these proteins in cellular and organism physiology.

3.2 Comparative gene functional category analysis
We use gene ontology as a primary tool to annotate and compare protein functions between
the annotated subsets of the curated human proteome (H) and the filtered human plasma
proteome (P) to make comparisons. We conducted two sets of comparisons involving: i) the
annotated subsets of the curated human proteome and filtered human plasma proteome (H vs
P); and ii) the filtered human plasma proteome and inflammatory plasma proteins (P vs Ip).
To account for the relative difference in sizes between protein sets and their frequency
ranges of GO annotations, we determined significance based on an adjusted p-value as
calculated from 1000 null-hypothesis simulations of hypergeometric comparisons based on
random selection (padj≤0.001).

Following our initial selection of statistically significant, level 4 GO terms, we made further
refinements to the set of GO terms to be used for analysis. The set of biological process GO
terms was pruned for general redundancies with inflammatory response resulting in the
removal of 35 GO terms from our analytical comparisons. Calculation of percentages was
based on the sets of proteins annotated to each of three selected sets of GO terms: 11 cellular
component terms, 18 molecular function terms and 14 biological process terms.

3.2.1 Curated human proteome and filtered human plasma proteome—We
studied the annotations of 43 GO terms as they are applied to the curated human proteome
and filtered human plasma proteome. Differences between the GO annotation percentages of
the H and P sets were <2%, and the overall distributions were identical as shown in Figure 1.
Across the three GO vocabularies, for the 13 GO terms in H and P with <2% annotation
frequencies, the P set uniformly had higher percentages except for the indexed P8 category
(response to bacterium, GO:0009617). For the 8 cellular component and 10 molecular
function GO terms in H and P with >2% annotation frequencies, the H set had only a
slightly higher number of GO terms with greater percentages than the P set. For biological
process, the P set had a higher percentage than the H set for 8 of the 12 GO terms with >2%
annotation frequencies. While the differences of percentages between GO annotations in the
H and P sets were low (<2%), 34 of the 43 GO terms were statistically significant for the
overall comparison as presented in Tables 4–6.

Interestingly, our findings show the percentage ontology classifications of the H and P sets
to be much more similar than has been previously reported in studies where the proteome
coverage was low or the data came from a single instrument type [10, 12, 13]. Possible
differences likely arose from our use of a more expansive and up-to-date reference set for
the plasma proteome, our choice of a reference set of human proteins, and our use of more
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recent ontology and annotation files. Another source of variation between our results and the
other proteomic analyses may have been our inclusion of all evidence codes including the
inferred from electronic annotation code (IEA). There was some notable, almost identical,
similarity however between some of the percentages in our study, and percentages from a
study based on a different plasma proteome database [12]. Similarities were found for cell
communication (P7: 24% versus 23.7% respectively), immune response (P14: 4.5% versus
4.3% respectively) and hydrolase activity (F14: 8.8% versus 9% respectively). The
similarities are surprisingly close considering that our percentages are calculated based on a
different overall set of GO terms and, unlike Muthusamy et al. [12], we did not include a
category for proteins without annotation. Significant differences (two-fold) were observed
however for transport (P12) and signal transducer activity (F18). We found consistency of
sorted rankings for percentages of different GO terms, although percentages and proteomic
comparisons between Ping et al. [10], Liu et al. [13], and our study varied. Nucleus (C9) and
protein binding (F11) were the top-ranked GO categories of cellular component and
molecular function for both our study (see Figure 1) and Ping et al. [10]. Nucleus was the
second highest ranking category for Liu et al. [13]. For biological process terms across both
human and plasma protein sets, transport was in the top three GO terms in our study and the
most prevalent GO term in Ping et al. [10]. When comparing the human and plasma protein
sets, Liu et al. [13] found a noticeable increase in extracellular component (+5%) and a
decrease in nuclear proteins (-12%). We found similar directions of change, but of a reduced
magnitude; for extracellular matrix and space (C10 and C11), there was a 1% increase, and
for nucleus (C9), there was a 2% decrease. The biological processes of cell proliferation,
immune response and cell motility in our analysis matched the percentage frequency rank
order of Ping et al., as did the molecular functions of protein binding, ion binding and
nucleotide binding. We did not find a similarly high magnitude of percentage differences
between plasma and human protein sets. In general, our study did not find the many two-
fold or more changes in percentages common to most of Ping et al. (for instance, from a
human protein set to plasma protein set comparison, they found changes of 2% to 4%, and
2% to 6% for extracellular matrix and space respectively). We did however find, consistent
with findings reported in Ping et al., plasma proteins to be increasingly over-represented for
low frequency GO annotations relative to human proteins.

Our findings may also help further resolve proposed interpretations concerning the
percentage differences between the plasma and the entire human proteome. Intriguingly,
with plasma, Liu et al. and Ping et al. report similar percentages for their respective nuclear
and nucleus component categories (18%). Liu et al. find a rise of the percentage (to 30%)
observed in a human protein set, yet Ping et al. find an unexpected reduction (to <14%)
which they suggested may be the result of the secretion of cellular breakdown products into
circulation. We found 40% of the human plasma proteome to consist of nucleus proteins,
with a minor rise in value to 42% for the curated human proteome. Liu et al. suggest that
mimicry of percentages in the human proteome by the plasma map would indicate that it is
composed of random assignments, and they find evidence against random assignment based
on significant differences in percentage. We did not find significant differences in GO term
percentages but our tests for statistical significance would reject a scenario of completely
random assignment.

3.2.2 Filtered human plasma proteome and inflammatory plasma proteins—We
compared GO annotations between the human plasma proteome and inflammatory plasma
proteins. Across the set of comparisons between 43 GO terms shown in Tables 4–6 and
Figure 1, Ip did not have any representative proteins for 3 of the cellular component terms:
lysosomal membrane, myosin complex and collagen (C3, C5 and C6), 6 of the molecular
function terms: structural constituent of cytoskeleton, chromatin binding, helicase activity,
extracellular matrix structural constituent, RNS polymerase II transcription factor activity
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and GTPase regulator activity (F1, F2, F3, F4, F8 and F9) and a single biological process
term: extracellular structure organization and biogenesis (P1). The distribution of GO term
percentages on the Ip set was broadly distinguishable from the P set. Differences between
the GO term percentages of the P and Ip sets were generally >2%. Differences were >10%
for 3 of the 8 GO terms within the P versus Ip cellular component comparison, and 2 of the
GO terms within each of the 12 molecular function and 13 biological process comparisons.
For larger differences among cellular component GO terms (>10%), the Ip set had higher
percentages for plasma membrane part (C7) and extracellular space (C11), and a smaller
percentage for nucleus (C9). For larger differences among molecular function GO terms
(>10%), the Ip set had higher percentages for protein binding (F11) and signal transducer
activity (F18). For larger differences among biological process GO terms (>10%), the Ip set
had a higher percentage for response to stress (P4) and a smaller percentage for transport
(P12). For a percentage difference threshold of >8%, the Ip set also had a higher percentage
for immune response (P14) and a smaller percentage for cell communication (P7).
Statistically significant comparisons between the P and Ip sets were observed for 1 cellular
component GO term : extracellular space (C11), 1 molecular function GO term: signal
transducer activity (F18) and 7 biological process GO terms: response to stress, death, cell
motility, cell communication, response to bacterium, immune system development and
immune response (P4, P5, P6, P7, P8, P13 and P14). Extracellular space and signal
transducer activity were exclusively significant for the P vs Ip comparison. The statistically
significant distinctions of biological process with the inflammatory protein set characterize a
system of cellular communication, motility, immune response and system development,
death, and response to stress. For biological process, the response to bacterium, immune
response and immune system development terms were exclusively significant for the P vs Ip
comparison. The Ip set is based on the biological process GO term of inflammatory
response, and the interdependency among concepts within the biological process GO
vocabulary suggested that over-representation may occur for other biological process GO
terms, as was indeed found.

Overall, we found inflammatory proteins to be annotated with functions, processes and
cellular components in ways that would distinctly separate this class of proteins from the
human plasma proteome in general. Beyond this observed distinction in functional
annotation for inflammatory proteins, objectives for direct clinical application may be
further advanced by investigating the specificity of inflammatory proteins to multiple
aspects of different complex diseases. In particular, we next sought to complement the
findings of our ontology analysis by investigations of tissue specificity, interactions between
proteins, and biological pathways.

3.3 Tissue specific PPIs
Inflammation processes are tissue specific [32], thus we investigated overlap of
inflammatory plasma proteins in tissue. We observed in which tissues those inflammatory
proteins were expressed, and found these proteins to be expressed in heart, brain, lung,
kidney, pancreas, skin, colon, testis and ovary, liver and spleen. For our study, we evaluated
five main organs such as heart, brain, lung, kidney and liver for which the inflammatory
proteins were also present in amounts ≥ 20. The UniProt IDs of the proteins expressed in
these tissues has been shown in Table 7. For the visualization of PPIs, we used plugin
software APID2NET in the Cytoscape with settings described in Section 2.2 of this paper.
All the GO terms mentioned in the tissue PPIs analysis are related to cancer prognosis [33–
35].

3.3.1 Brain—We observed 25 inflammatory proteins expressed in brain tissue, and the
interaction network was expanded to 129 nodes and 278 edges. We found six major hub

Saha et al. Page 9

Proteomics. Author manuscript; available in PMC 2012 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proteins – NMI(17), CXCR4 (26), HDAC (17), AACT (18) and BMP2 (14), STAT3 (103)
as shown in Fig. S1. In the expanded list of 129 proteins, we studied the GO terms of
biological process, and observed that eight proteins are from the JAK-STAT cascade (GO:
7259)- STAT4, SOCS3, CCR2, STAT4, STAT3, STA5A, STA5B, NMI; four proteins are
from the anti-apoptosis (GO:6916)- TF65, SOCS3, NFKB1, HDAC3; two proteins are from
the I-kappaB kinase/NF-kappaB cascade (GO:7249)- STAT1 TLR8; two proteins are from
activation of NF-kappaB-inducing kinase (GO:7250)- TLR4 M3K7. Interestingly, we
observed other proteins to be associated with GO development processes such as a protein in
eye development (GO:1654) - BMR1B; two proteins in nervous system development (GO:
7399) - STAT3, HDAC4; and two proteins in muscle contraction (GO:6936)- LT4R1,
DAG1.

3.3.2 Heart—We observed 29 inflammatory proteins expressed in heart tissue, and the
interaction network was expanded to 116 nodes and 234 edges. We found five major hub
proteins, HDAC9 (17), NOD1 (13), GCR (98), BMP2 (14), CXCR4 (26) as shown in Fig.
S2. In the expanded list of 116 proteins, we studied the GO terms of biological process, and
observed that five proteins are from the JAK-STAT cascade (GO:7259) - STA5A, CCR2,
STAT3, STA5A, STA5B; five proteins are associated with anti-apoptosis (GO:6916)-
HDAC3, BAG1, NFKB1, TF65, SOCS3; one protein is associated with activation of NF-
kappaB transcription factor (GO:51092)- TF65; and one protein is from the I-kappaB
kinase/NF-kappaB cascade(GO:7249)- TLR8.

3.3.3 Lung—We observed 34 inflammatory proteins expressed in lung tissue, and the
interaction network was expanded to 153 nodes and 353 edges. We found eight major hub
proteins – IRAK2 (12), IL1AP (13), CXCR4 (26), NOD1 (13), TLR2 (18), CEBPB (60),
BMP2 (14), STAT3 (103) as shown in Fig. S3. Six proteins are from the JAK-STAT
cascade pathway (GO:7259)- INAR1, SOCS3, STA5A, CCR2, NMI, STAT3; five proteins
are associated with anti-apoptosis (GO:6916)- FOXO1, NFKB1, SOCS3, TF65, ENPL;
three proteins are from the I-kappaB kinase/NF-kappaB cascade pathway (GO:7249)-
IRAK2, STAT1, TLR8; three proteins are from the activation of NF-kappaB-inducing
kinase pathway (GO:7250)- TLR4, M3K7, TRAF6. All the GO terms mentioned were found
to relate to cancer prognosis [33–35].

3.3.4 Kidney—We observed 21 inflammatory proteins expressed in kidney tissue, and the
interaction network was expanded to 106 nodes and 281 edges. We found six major hub
proteins – IRAK2 (12), CXCR4 (26), NOD1 (13), CEBPB (60), BMP2 (14), STAT3 (103)
as shown in Fig. S4. We observed that five proteins are from the JAK-STAT cascade
pathway (GO:7259)- INAR1, SOCS3, STA5A, NMI, STAT3; four proteins are associated
with anti-apoptosis (GO:6916)- SOCS3, NFKB1, TF65, FOXO1; two proteins are from the
I-kappaB kinase/NF-kappaB cascade (GO:7249)- STAT1, IRAK2; and three proteins are
associated with activation of NF-kappaB-inducing kinase (GO:7250)- TLR4, M3K7,
TRAF6.

3.3.5 Liver—We observed 43 inflammatory proteins expressed in liver tissue, and the
interaction network was expanded to 165 nodes and 318 edges. We found fourteen major
hub proteins – IRAK2 (12), NMI (25), IL1AP (13), CXCR4 (26), NOD1 (13), TLR2 (18),
AACT (18), BMP2 (14), THRB (48), FETUA (10), TRFE (20), CFAH (11), A2AP (15),
STAT3 (103) as shown in Fig S5. We observed that eight proteins are from the with JAK-
STAT cascade (GO:7259)- STAT4, STA5B, INAR1, SOCS3, STA5A, CCR2, NMI,
STAT3; four proteins are associated with anti-apoptosis (GO:6916)- NFKB1, SOCS3, TF65,
ENPL; three proteins are from the I-kappaB kinase/NF-kappaB cascade (GO:7249)- IRAK2,
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TLR8, STAT1; three proteins are associated with in activation of NF-kappaB-inducing
kinase (GO:7250) - TLR4, M3K7, TRAF6.

3.4 Pathway database searching for network hub proteins
Seventeen hub proteins expressed in five tissues were analyzed with known pathways as
shown in Table 8. It was observed that many inflammatory proteins were expressed in many
tissues. For example, BMP2_HUMAN protein is expressed in all the five organs studied
(heart, brain, lung, kidney, and liver) and it is secreted protein [24]. NOD1_HUMAN,
AACT_HUMAN, FETUA_HUMAN, TRFE_HUMAN, CFAH_HUMAN, A2AP_HUMAN
were the six hub proteins not found in our set of pathway databases. All of those pathways
containing our proteins related to complex disease. For instance, HDAC9_HUMAN is
expressed in heart, brain, and liver and is associated with pathways of cardiac hypertrophy,
notch signaling, and the p53 signaling pathway. GCR_HUMAN is expressed only in the
heart and is found in chromatin remodelling[36]; defects in the GCR gene cause a
hypertensive, hyperandrogenic disorder characterized by increased serum cortisol
concentrations [37]. AACT_HUMAN is expressed only in brain and liver tissue, and defects
in the AACT gene are a proposed cause of chronic obstructive pulmonary disease [38].
TLR2_HUMAN is expressed in liver and is observed in Toll-like receptors pathway and
TLR-TRIF pathway. THRB_HUMAN is a part of thrombin signalling, thrombopoietin
pathway. Six hub proteins, BMP2_HUMAN, AACT_HUMAN, CXCR4_HUMAN,
FETUA_HUMAN, TRFE_HUMAN and THRB_HUMAN were found in the cancer
biomarker list as reported in [22]. Four hub proteins, GCR_HUMAN, TLR2_HUMAN,
TRFE_HUMAN and THRB_HUMAN were found in the drug target list [23].

4 Conclusions
Characterizing the components of plasma proteome systematically is closely related to
future clinical applications of MS proteomics emerging from a wave of promising new
technologies such as SELDI [39], shotgun proteomics [40], multiple reaction monitoring
(MRM) [41] and glycoprotein-mass spectrometry coupled proteomics [42]. In order to
measure the consequence of these advancements which may add significant quality to the
biomarker discovery process, there is a need for inspecting how current proteomic surveys
generally relate to systems of complex disease. In this work, we examined proteomic and
inflammatory protein sets for clinically important overlaps with biomarkers and drug targets
in the healthy human plasma proteome recently integrated in the HIP2 database [14]. We
analyzed the functional annotations of these protein sets with gene ontology, and
investigated patterns of protein interaction, tissue specificity and overlap with pathways. The
human plasma proteome and filtered human plasma proteome were found to have higher
percentages of biomarkers and drug targets than was found in the curated human proteome.
Plasma is readily accessible and, based on the presence of biomarkers in plasma, this
suggests that it is useful for objectives of clinical diagnosis and prognosis. As we found,
especially for GO level 4, tests for statistical significance identified differences between the
curated human proteome and the filtered human plasma proteome across all three GO
vocabularies. Distinct differences of percentages for GO term overlaps were not observed
however between the curated human proteome and the human plasma proteome, although
we did find higher percentage representations of P compared to H for GO term annotation
percentages <2%. The higher percentage representations for low frequency GO term
annotations in plasma can be generally interpreted to represent how the plasma proteome
specifically deviates from the overall human proteome. Although the inflammatory process
is tissue specific, 70% of inflammatory proteins are also found in plasma, and inflammation
has been found to have some overlap with complex disease. We found inflammatory plasma
proteins to have a higher chance to be biomarkers than the plasma proteome. Additionally,
we found inflammatory plasma protein interacting partners to have a higher chance to be
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biomarkers than the plasma proteome. Compared to the plasma proteome, the inflammatory
plasma protein set also presented a distinctive profile of statistically significant GO terms
and percentages of overlap. Our visualizations of PPI network topologies showed
differences between tissues, most distinctively for the higher centrality observed in brain and
heart PPI networks. Six hub proteins in the PPIs expanded inflammatory network were
found to be potential cancer biomarkers: BMP2_HUMAN, AACT_HUMAN,
CXCR4_HUMAN, FETUA_HUMAN, TRFE_HUMAN and THRB_HUMAN. We
identified a specificity issue in terms of how many inflammatory proteins are expressed in
many tissues, and may thus be difficult to use as biomarkers of tissue specific cancer.
Despite decades of effort, single biomarkers have not been found that can reach the levels of
specificity and sensitivity that are required for routine clinical use for the detection or
monitoring of the most common cancers. Alternative approaches that measure sensitivity
and specificity based on multiple protein and peptide markers may therefore be necessary to
achieve a higher level of diagnostic specificity. Overall, we found that a systematic
evaluation of plasma, inflammatory proteins and interacting protein partners facilitates the
study of complex disease and opportunities for clinical application.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Gene ontology (GO) percentages for the curated human proteome (H), the filtered plasma
proteome (P), and the inflammatory response plasma protein set (I). The indexed labels C1,
…,C11; F1,…,F18; and P1,…,P14 are defined in Tables 4–6, and correspond to cellular
component, molecular function, and biological process vocabularies respectively.
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Table 2

Overlapping analysis between inflammatory proteins/expanded network proteins and different sets of
proteomes of interests.

Inflammatory proteins (%) Inflammatory proteins
present in plasma

proteome (%)

Inflammatory plasma
expanded proteins*

(%)

Inflammatory plasma
expanded proteins**

(%)

Plasma proteome 70 100 80 75

Candidate biomarkers 27 26 30 20

Drug target proteins 14 15 12 8.0

Secreted proteins 39 39 19 8.7

*
 Degree of neighborhood=1

**
Degree of neighborhood=2
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Table 3

Comparison counts with a distinction for plasma proteins between inflammatory-related proteins and
expanded proteins with candidate biomarkers, drug targets and secreted proteins.§

Comparison Set Ip* Ip′* Ep* Ep′*

Candidate biomarkers 54 (26%) 25 (29%) 119 (30%) 40 (31%)

Drug target proteins 31 (15%) 10 (11%) 49 (12%) 10 (7.8%)

Secreted proteins 79 (39%) 35 (40%) 48 (12%) 22 (17%)

§
 Ip∪Ip′ = I; Ep∪Ep′ = E; Ip∩Ep = ∅; Ip′∩Ep′ = ∅;

*
- denotes intersection with comparison set;

Ip: n=204; Ip′: n=87; Ep: n=399; Ep′: n=128;

Ip*: subset of the inflammatory protein set in the plasma proteome that intersects with comparison set;

Ip′*: subset of the inflammatory protein set, not in the plasma proteome, that intersects with comparison set;

Ep*: subset of the expanded inflammatory protein set (degree of neighbor = 1) in the plasma proteome that intersects with comparison set;

Ep′*: subset of the expanded inflammatory protein set (degree of neighbor = 1), not in the plasma proteome, that intersects with comparison set.
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Table 7

Expression of inflammatory proteins (present in plasma) in different tissue organs.

Uniprot name Uniprot
Primary
Accession
number

Protein name Gene name Organs

A1AG1_HUMAN P02763 Alpha-1-acid glycoprotein 1 ORM1 Liver

A1AG2_HUMAN P19652 Alpha-1-acid glycoprotein 2 ORM2 Liver

A2AP_HUMAN P08697 Alpha-2-antiplasmin SERPINF2 Liver

AACT_HUMAN P01011 Alpha-1-antichymotrypsin SERPINA3 Brain, Liver

ADO_HUMAN Q06278 Aldehyde oxidase AOX1 Brain, Heart, Lung, Kidney,
Liver

ADPRH_HUMAN P54922 ADP-ribosylarginine hydrolase ADPRH Heart, Lung, Kidney, Liver

AOC3_HUMAN Q16853 Membrane copper amine oxidase AOC3 Heart, Lung, Kidney

APOL2_HUMAN Q9BQE5 Apolipoprotein-L2 APOL2 Brain, Lung, Kidney, Liver

ATRN_HUMAN O75882 Attractin ATRN Liver

B4GT1_HUMAN P15291 Beta-1,4-galactosyltransferase 1 B4GALT1 Brain

BMP2_HUMAN P12643 Bone morphogenetic protein 2 BMP2 Brain, Heart, Lung, Liver

C163A_HUMAN Q86VB7 Scavenger receptor cysteine-rich type 1 protein
M130

CD163 Liver

C3AR_HUMAN Q16581 C3a anaphylatoxin chemotactic receptor C3AR1 Brain, Heart, Lung

CCL17_HUMAN Q92583 C-C motif chemokine 17 CCL17 Lung

CCL18_HUMAN P55774 C-C motif chemokine 18 CCL18 Lung

CCL21_HUMAN O00585 C-C motif chemokine 21 CCL21 Heart, Liver

CCL23_HUMAN P55773 C-C motif chemokine 23 CCL23 Lung, Liver

CCL26_HUMAN Q9Y258 C-C motif chemokine 26 CCL26 Heart

CCL8_HUMAN P80075 C-C motif chemokine 8 CCL8 Brain, Heart, Lung, Liver

CDO1_HUMAN Q16878 Cysteine dioxygenase type 1 CDO1 Brain, Heart, Liver

CEBPB_HUMAN P17676 CCAAT/enhancer-binding protein beta CEBPB Lung, Kidney

CFAH_HUMAN P08603 Complement factor H CFH Liver

CHST1_HUMAN O43916 Carbohydrate sulfotransferase 1 CHST1 Brain

CP4FB_HUMAN Q9HBI6 Cytochrome P450 4F11 CYP4F11 Heart, Kidney Liver

CXCR4_HUMAN P61073 C-X-C chemokine receptor type 4 CXCR4 Brain, Heart, Lung, Kidney,
Liver

CXL13_HUMAN O43927 C-X-C motif chemokine 13 CXCL13 Liver

EDG3_HUMAN* Q99500 Sphingosine 1-phosphate receptor 3 S1PR3 Heart, Kidney, Liver

EPCR_HUMAN Q9UNN8 Endothelial protein C receptor PROCR Heart, Lung, Kidney, Liver

FETUA_HUMAN P02765 Alpha-2-HS-glycoprotein AHSG Liver

FHR1_HUMAN Q03591 Complement factor H-related protein 1 CFHR1 Liver

FHR5_HUMAN Q9BXR6 Complement factor H-related protein 5 CFHR5 Liver

FPRL1_HUMAN** P25090 N-formyl peptide receptor 2 FPR2 Lung

GCR_HUMAN P04150 Glucocorticoid receptor NR3C1 Heart
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Uniprot name Uniprot
Primary
Accession
number

Protein name Gene name Organs

HDAC9_HUMAN Q9UKV0 Histone deacetylase 9 HDAC9 Brain, Heart

ICBR_HUMAN P57730 Caspase-1 inhibitor Iceberg ICEBERG Heart

IL1AP_HUMAN Q9NPH3 Interleukin-1 receptor accessory protein IL1RAP Lung, Liver

IL1F6_HUMAN Q9UHA7 Interleukin-1 family member 6 IL1F6 Brain

IRAK2_HUMAN O43187 Interleukin-1 receptor-associated kinase- like 2 IRAK2 Lung, Kidney, Liver

LT4R1_HUMAN Q15722 Leukotriene B4 receptor 1 LTB4R Brain, Heart, Liver

MEFV_HUMAN O15553 Pyrin MEFV Brain, Heart, Lung, Kidney,
Liver

MGLL_HUMAN Q99685 Monoglyceride lipase MGLL Brain, Heart, Lung, Kidney,
Liver

MMP25_HUMAN Q9NPA2 Matrix metalloproteinase-25 MMP25 Lung

NDST1_HUMAN P52848 Bifunctional heparan sulfate N- deacetylase/N-
sulfotransferase 1

NDST1 Heart, Liver

NFAC3_HUMAN Q12968 Nuclear factor of activated T-cells, cytoplasmic 3 NFATC3 Heart, Kidney

NFAC4_HUMAN Q14934 Nuclear factor of activated T-cells, cytoplasmic 4 NFATC4 Lung, Kidney

NFAM1_HUMAN Q8NET5 NFAT activation molecule 1 NFAM1 Lung

NMI_HUMAN Q13287 N-myc-interactor NMI Brain, Liver

NOD1_HUMAN Q9Y239 Nucleotide-binding oligomerization domain-
containing protein 1

NOD1 Heart, Lung, Kidney, Liver

NOX4_HUMAN Q9NPH5 NADPH oxidase 4 NOX4 Brain, Heart, Kidney

PA24C_HUMAN Q9UP65 Cytosolic phospholipase A2 gamma PLA2G4C Heart

PTAFR_HUMAN P25105 Platelet-activating factor receptor PTAFR Heart, Lung

SAA_HUMAN P02735 Serum amyloid A protein SAA1 Liver

SAA4_HUMAN P35542 Serum amyloid A-4 protein SAA4 Liver

SN_HUMAN Q9BZZ2 Sialoadhesin SIGLEC1 Brain, Lung, Liver

SPR1_HUMAN Q15743 Sphingosylphosphorylcholine receptor GPR68 Brain, Lung

STAB1_HUMAN Q9NY15 Stabilin-1 STAB1 Liver

STAT3_HUMAN P40763 Signal transducer and activator of transcription 3 STAT3 Brain, Lung, Kidney, Liver

THRB_HUMAN P00734 Prothrombin F2 Liver

TIRAP_HUMAN P58753 Toll/interleukin-1 receptor domain- containing
adapter protein

TIRAP Brain, Heart, Lung, Kidney,
Liver

TLR10_HUMAN Q9BXR5 Toll-like receptor 10 TLR10 Lung

TLR2_HUMAN O60603 Toll-like receptor 2 TLR2 Lung, Liver

TLR7_HUMAN Q9NYK1 Toll-like receptor 7 TLR7 Brain, Lung

TLR8_HUMAN Q9NR97 Toll-like receptor 8 TLR8 Brain, Heart, Lung, Liver

TLR9_HUMAN Q9NR96 Toll-like receptor 9 TLR9 Lung, Liver

TRFE_HUMAN P02787 Serotransferrin TF Liver

VPS45_HUMAN Q9NRW7 Vacuolar protein sorting-associated protein 45 VPS45 Brain, Heart, Lung, Kidney,
Liver

X3CL1_HUMAN P78423 Fractalkine CX3CL1 Brain, Heart, Lung, Kidney
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*
EDG3_HUMAN (associated with primary accession number: Q99500 from release 35.0) was renamed to S1PR3_HUMAN in release 56.0.

**
FPRL1_HUMAN (associated with primary accession number: P25090 from release 46.0) was renamed to FPR2_HUMAN in release 55.5.
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