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Abstract: Given the importance of protein–protein interactions for nearly all biological processes,
the design of protein affinity reagents for use in research, diagnosis or therapy is an important

endeavor. Engineered proteins would ideally have high specificities for their intended targets, but

achieving interaction specificity by design can be challenging. There are two major approaches to
protein design or redesign. Most commonly, proteins and peptides are engineered using

experimental library screening and/or in vitro evolution. An alternative approach involves using

protein structure and computational modeling to rationally choose sequences predicted to have
desirable properties. Computational design has successfully produced novel proteins with

enhanced stability, desired interactions and enzymatic function. Here we review the strengths and

limitations of experimental library screening and computational structure-based design, giving
examples where these methods have been applied to designing protein interaction specificity. We

highlight recent studies that demonstrate strategies for combining computational modeling with

library screening. The computational methods provide focused libraries predicted to be enriched in
sequences with the properties of interest. Such integrated approaches represent a promising way

to increase the efficiency of protein design and to engineer complex functionality such as

interaction specificity.
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Introduction

DNA stores the information needed for life. One of

the ways this one-dimensional information generates

functional complexity is by encoding proteins that

participate in elaborately structured interaction net-

works. Proteins interact with one another to form

macromolecular assemblies, machines and cellular

scaffolds, to relay signals, and to catalyze biochemi-

cal reactions. Correct function and information
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processing require correct physical interactions, indi-

cating a strong evolutionary pressure for protein

association to occur selectively. Indeed, the highly

specific nature of protein–protein interactions has

been demonstrated in vitro and in vivo1 in numerous

studies. Recent efforts to measure protein–protein

interactions comprehensively in selected organisms

have provided a picture of specificity on a large

scale.2–4 And assays of protein–protein interactions

in isolation of their native environment, especially

studies done using purified proteins, have demon-

strated that interaction specificity can be encoded

within proteins themselves.5,6

A key question for protein biochemists is how

protein–protein interaction specificity is achieved. It

is not surprising that proteins with very different

sequences can fold into different structures that

have distinct interaction properties. However, many

recent studies have revealed that proteins (or pro-

tein domains/motifs) highly similar in sequence and/

or structure can participate in different interactions.

These observations indicate that diverse interaction

profiles can be evolved from a common protein

sequence family/structural fold. A major implication is

that interaction networks can be evolved with increas-

ing complexity without the need to reinvent compo-

nents from scratch.7 Examples of recurring structures

with distinct specificities include modular domains

such as the PDZ,6,8–10 Src homology 2 (SH2),11,12 and

Src homology 3 (SH3)13,14 families that are present in

many cell signaling proteins, the coiled-coil motifs of

different bZIP transcription factors,5 the Bcl-2 proteins

involved in apoptosis,15 and cell-adhesion molecules

such as the Drosophila protein Dscam16 (Fig. 1).

Dscam represents a particularly interesting case from

an evolutionary perspective. Dscam consists of 10 im-

munoglobulin-like domains, three of which are vari-

able and play important roles in homodimerization.

Each of these three variable domains is encoded by an

exon block, and mutually exclusive splicing at each

block gives rise to more than 10,000 distinct isoforms.

It was shown that each variable domain is largely spe-

cific for interaction with itself, and the combined action

of the three domains results in high binding specificity

of the full-length Dscam,16 a key property for neurons

to distinguish self from nonself (self-avoidance) in de-

velopment. Evolutionary analysis suggested that each

exon block was evolved by exon duplication followed by

sequence divergence,17 illustrating how selective pres-

sure exerted by the need to maintain self-avoidance

can help shape the remarkable homo-specificity of the

Dscam family.

Interestingly, solved structures of proteins with

similar sequences but distinct interactions have

revealed that often the same binding interface is uti-

lized, and differences in binding preferences can be

attributed to local differences in structures.18–26

Some natural proteins share a similar protein fold

yet differ in their interaction properties through use

of different conformations for loops linking helices

and/or strands that define a basic scaffold. A good

example is the SH2 family, which interacts with pep-

tides that contain a phosphorylated tyrosine

(pTyr).11,12 Specificity of SH2 domains interacting

with different pTyr peptides is crucial for correctly

transmitting signals from protein tyrosine kinases to

downstream pathways. Three main classes of SH2

domains recognize peptides with different sequence

signatures C-terminal to pTyr. Loops flanking the

binding interface confer selectivity toward these 3

types of peptides by opening or blocking binding

pockets for the Pþ2, Pþ3 or Pþ4 residues.19,20 The

SH3 family also utilizes different loop conformations

at the binding interface to provide specificity toward

different peptides that are rich in prolines.19 Anti-

bodies provide another example of using loops to con-

fer different binding properties,23 sharing a common

immunoglobulin scaffold but using variation in 6 sur-

face loops, the complementarity-determining regions

(CDR), to achieve exquisite specificities for antigens.

Although changes in local structures such as

loops present a convenient way to change interaction

properties, examples of more subtle sequence/struc-

tural features providing specificity abound in nature

as well. One example is the interaction between colicin

endonucleases (DNases) and immunity (Im) proteins.

Colicins are stress-induced bacterial bacteriocins. Tox-

icity of colicins against their own producing cells is

neutralized by interaction with cognate Im proteins, so

high interaction specificity is critical. A crystal struc-

ture of a noncognate complex between DNase ColE9

and Im2 was solved recently and comparison was

made to the structure of the cognate complex between

DNase ColE9 and Im9.24 The backbone and side-chain

packing at the core of the two interfaces was highly

similar. However, the presence of unfavorable polar/

charged residue burial and suboptimal hydrogen bond-

ing patterns weakened interaction significantly for the

noncognate complex. For bZIP coiled coils, structural

and mutational analyses have revealed specificity fea-

tures defined by particular patterns of hydrophobic

packing, hydrogen bonding, and electrostatic interac-

tions between different side-chain pairs.25 Interaction

can be encoded through combinations of these fea-

tures, without any significant change in backbone

structure. For the SH2 and SH3 domains discussed in

the previous paragraph, it has also been shown that

structural features similar to the ones described above

are important to further fine-tune the selectivity

obtained from loops.12,14,19

Examining strategies used by nature to achieve

interaction specificity offers the exciting possibility

that we might learn to mimic or devise new strat-

egies to design selective binding. In fact, many

attempts have been made to change interaction spec-

ificity for the different protein systems described
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above by altering loops or simply introducing one or a

few amino acid mutations at binding interfaces.27–30

Given the importance of protein–protein interactions,

an ability to design protein–protein interaction speci-

ficity could find many applications in the study of cell

biology.31 Proteins have already been redesigned to

create dominant negatives and potential therapeutics

specific for a target,32–34 to generate obligate hetero-

dimers,35,36 to test the functional significance of the

many different interactions of an original protein,37,38

and to create novel interactions to rewire cell signal-

ing in synthetic biology applications.39,40 In addition

to these applications, evaluating design successes and

failures can help advance our understanding of how

protein sequence influences interaction specificity.

Traditionally, researchers have attempted

design using general knowledge obtained from struc-

tural and mutational analysis of protein–protein

interactions. For example, the importance of hydro-

gen bonding, favorable electrostatics, and shape

complementarity are well known.41 Nonetheless,

this approach often fails to capture the subtlety of

how sequence influences interaction specificity. Ex-

perimental alanine scanning42,43 and hydrophile

scanning44 have been used to generate proteins/pep-

tides with novel interaction specificities, but the

chemical diversity accessible by such approaches is

limited. Recent technologies, both computational and

experimental, have helped revolutionize the field of

protein design. Below we first introduce computa-

tional protein design and its application to designing

protein–protein interaction specificity. We then sur-

vey the field of experimental library screening, with

particular focus on how the combination of computa-

tional protein design with screening could become a

powerful approach moving forward.

Computational protein design
Computational protein design posits that because

protein sequence determines protein function, it

should be possible to develop a quantitative under-

standing of the relation between sequence and func-

tion.45–47 In the context of a protein–protein interac-

tion,48,49 function refers to the free energy change

(DDG) of a protein interacting with its partner. If

such an energy (or ‘‘score’’) could be computed, one

could perform computational instead of experimental

searches to identify sequences with desired proper-

ties. But capturing the relationship between

sequence and function in a score and searching

through the vast sequence/structure space are both

daunting tasks.

Scoring functions

Different types of scoring models have been devel-

oped to compute energy from sequence. Among

Figure 1. Examples of different types of protein–protein interactions where the protein fold is conserved but the specificity

can be varied. A representative complex is shown for each class of interaction: A: Complex between SH3 domain from the

Abl tyrosine kinase (green) and a proline-rich peptide (red). (PDB ID: 1ABO).169 B: Complex between SH2 domain from the

SAP protein (green) and a phosphotyrosine peptide (red) (PDB ID: 1D4W).170 C: Complex between Erbin PDZ domain (green)

and the C-terminal tail of the ErbB2 receptor (red) (PDB ID: 1MFG).171 D: Complex between the bZIP coiled-coil motifs of

FOS (green) and JUN (red) (PDB ID: 1FOS).172 E: Complex between anti-apoptotic protein Mcl-1 (green) and the BH3 region

of Bim (red) (PDB ID: 2PQK).173 F: Complex of a homodimer formed by the N-terminal domain of a particular Dscam isoform

(PDB ID: 2V5M).174 Figure generated using PyMol (Delano Scientific).
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them, physics-based structural modeling is the most

general.50 In this approach, the structure of a pro-

tein complex is predicted from its sequence, and an

energy is computed from the structure that accounts

for terms such as van der Waals interactions and Cou-

lomb electrostatics.51 Solvation of the protein is often

approximated using a polar and a nonpolar compo-

nent to avoid the computational cost of treating water

molecules explicitly.52 The polar component addresses

the screening of electrostatic interactions within the

protein and the energetic cost of burying and thus

desolvating charged or polar groups. It is often com-

puted using a continuum electrostatics model.53–55

The nonpolar component approximates other effects

resulting from the structure and interactions of

water, which are frequently calculated using terms

that depend on solvent accessible surface area.56–60

The accuracy of physics-based models is limited by

imperfect knowledge of the correct protein structure

and the many approximations made in scoring.

In contrast to physics-based models, statistical

potentials estimate energies using the frequencies of

different interactions in known protein structures.

Such potentials usually approximate the energy as a

sum of terms describing interactions between pairs

of residues61 or atoms62,63 in the structure being

evaluated, although attempts to capture higher

order interactions have been reported.64,65 The score

for a particular residue–residue or atom–atom inter-

action is based on the observed number of such con-

tacts in known structures, corrected by the expected

number of random encounters for the same residue

or atom pair. A contact can be defined simply by dis-

tance,62,63 but more sophisticated potentials take

into account other information such as orienta-

tion66,67 or the environment of the contact as well.68

One advantage of statistical potentials is their speed

compared with physics-based structural models. In

addition, current physics-based models do not

always accurately describe the geometry of interac-

tions in known structures. Examples include certain

packing preferences among hydrophobic sidechains69

and the angle distribution of hydrogen bonds.70 On

the other hand, statistical potentials make approxi-

mations in converting observed statistics into ener-

gies.71 Statistical potentials have been used in multi-

ple prediction and design problems72 including

modeling of protein–protein interactions.73,74 Poten-

tials that include terms from both physics-based

models and statistical potentials have also been

developed (e.g., Rosetta75) and have had success in

many applications.

Design objectives

After choosing a scoring function, one must define

the objective(s) for which a designed sequence will

be optimized. One option is to minimize the interac-

tion energy (DDG), calculated by subtracting the pre-

dicted energy of each protein partner modeled in its

unbound form from the energy of the modeled com-

plex. Approximations such as a rigid–body docking

or even less formal definitions are often employed,

due to the difficulty of modeling the unbound refer-

ence states when experimental structures are not

available.76,77

When designing protein–protein interaction

specificity, it is necessary to consider interactions

with one or more undesired proteins, in addition to

that with the target. Various objectives have been

considered, ranging from simple differences in the

energy between two complexes, for example, S ¼
Edesired_complex – Eundesired_complex, to statistical me-

chanical expressions that capture more states.78–80

It is tempting to pick designed proteins that are pre-

dicted to be highly specific, that is to have a large

predicted energy difference between desired and

undesired states. However, it is known that tradeoffs

can exist between affinity for the target and specific-

ity against undesired proteins.78,79,81 Focusing only

on widening the specificity gap can therefore create

designed proteins that are specific but bind the tar-

get weakly. Depending on the application, it can be

beneficial to explore a range of different designs

with different tradeoffs in affinity and specificity.

Examples of this are presented below.

Search in structure and sequence space
Guided by a scoring function and seeking to opti-

mize one or more design objectives, the next step is

to search for sequences in an immense combinatorial

space. Because evaluating a sequence requires deter-

mining the optimal structure of the protein, this

search is performed in both sequence and structure

space. When redesigning protein–protein interac-

tions, if a crystal structure of the complex being

redesigned is available, it is often assumed that the

backbone conformation of the redesigned complex

will remain invariant as the sequence is changed.

Such a fixed-backbone approach considers only

structural degrees of freedoms for the side chains.

Optimization of side-chain conformations can be sim-

plified by sampling from a predefined rotamer

library.82 Energy minimization can be used to relieve

serious steric clashes that stem from artifacts in dis-

cretizing the side-chain conformers.

Although success has been reported for many

design applications using a fixed-backbone approach,

it is clear that even a small number of mutations

can sometimes lead to significant variations in back-

bone geometry.83,84 Designing on a fixed backbone

therefore risks the elimination of viable sequences.

When designing specificity, an unfavorable interac-

tion modeled for an undesired partner on a fixed

backbone might not represent the lowest energy con-

formation. Different approaches have been proposed

to introduce backbone flexibility on a local or global
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scale.85–91 For example, Fu et al. demonstrated that

designing on an ensemble of helices generated using

normal mode analysis produced binders of the pro-

tein Bcl-xL with more diverse sequences.88 Smith

et al. found that incorporation of ‘‘backrub sam-

pling,’’ a method inspired by examining small, local

structural variations within the PDB, improved per-

formance in predicting binding profiles for different

PDZ domains.90

Both deterministic algorithms (e.g., dead end

elimination, A* and integer linear programming) or

stochastic ones (e.g., Monte Carlo, FASTER and

genetic algorithms) can be used for optimization in

structure/sequence space.92–97 Deterministic algo-

rithms are powerful but can be computationally slow

or memory intensive and can present problems

when the scoring function contains a nonpairwise

decomposable term such as continuum electrostatics,

or when backbone flexibility is treated explicitly.

Strategies have been presented to partially overcome

such difficulties.98–100 In contrast to deterministic

algorithms, stochastic algorithms might not converge

on the optimal solution, but they can be more robust

in accommodating different formulations/objectives

and are sometimes the only viable option when a

search space is too large for deterministic methods.97

Heuristics have been presented to manage the

search problem. For example, search using a fast

but less accurate pair-wise decomposable scoring

function can be performed to narrow down a

sequence space, and a more sophisticated scoring

function can then be used for evaluation.101

Recently, Grigoryan et al. proposed a novel frame-

work, CLASSY, in which a technique called cluster

expansion is first used to approximate a structure-

based scoring function as a linear sequence-based

scoring function102; the optimization algorithm inte-

ger linear programming (ILP) can then be run for

optimization in sequence space only.79 In addition to

dramatically reducing the time spent evaluating

sequences during the optimization, the ILP formula-

tion allows the incorporation of multiple linear con-

straints, making it ideal for exploring different

tradeoffs in specificity design.

Application to designing protein–protein

interaction specificity
Successful examples of the computational design of

protein interaction specificity have been reported.

Many of these consisted of redesigning the sequen-

ces of two interacting partners to create either obli-

gate heterodimers or orthogonal proteins that could

interact with one another but not with the original

interacting pair.78,80,101,103–106 In one of the first

examples of explicitly designing for specificity, Hav-

ranek et al. designed homo and hetero-specific

coiled-coil dimers with novel specificity determinants

not found in native coiled-coil sequences.80 Bolon

et al. redesigned the SspB homodimer into an obli-

gate heterodimer, and demonstrated experimentally

the importance of explicit negative design in this

example.78 Green et al.,101 Kortemme et al.,103 and

Sammond et al.105 also explored the redesign of

native protein interfaces to create designed interfa-

ces that were orthogonal. Potapov et al. presented

an interesting approach for such interface redesign

by considering a protein interface to be made up of

independent modules (sets of interconnected resi-

dues). A module at the interface between TEM1 b-
lactamase and its inhibitor protein BLIP was

replaced with another module from an unrelated

protein interface. The resulting interface was

shown to be orthogonal to the original one and still

retained high affinity.106

Other studies have focused on redesigning pro-

teins to selectively bind a desired target in prefer-

ence to a number of undesired off-targets.33,79,107–110

The protein calmodulin was redesigned to favor

binding to one peptide sequence over another. Inter-

estingly, only positive design for binding the target

was considered, yet several designs were verified

experimentally to have � 150–900-fold increase in

specificity.108 It was suggested that explicit negative

design might not be necessary in this case because

the target and the undesired proteins were signifi-

cantly different from one another.18 In a contrasting

example of a case where explicit consideration of

negative design was important, Grigoryan et al.

designed specific inhibitor peptides against all 20

human bZIP families, and subsequent experimental

testing verified that many of the designed peptides

showed the desired specificity.79

Challenges for computational protein design

Significant challenges remain for computational

design of protein interaction specificity. A fundamen-

tal limitation is that reliably predicting protein–pro-

tein interaction specificity is still difficult. Favorable

electrostatics at the protein interface appears not to

be properly balanced with the energy cost of interfa-

cial charge burial in many cases.111 Insufficient

structural sampling can produce artificial steric

clashes or fail to identify optimal conformations.89,112

These issues can be rather subtle and difficult to

improve upon, and replacing physics-based scoring

with statistical potentials does not solve the prob-

lem. Various modeling suites adjust the relative

weights of physics-based scoring terms, or use differ-

ent approaches for structural sampling, partly

guided and tested by available mutational free

energy change data.91,113–115 Predictions made from

these models show correlation with experimental

data to a certain extent, but the agreement is not

impressive.116 Furthermore, it can be problematic to

use experimental data sets generated using widely

varying protocols.
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The imperfections of scoring functions should

not prevent attempts at computational protein

design. In design, researchers enjoy the advantage

of testing only sequences that are predicted to be

optimal, allowing a greater tolerance of prediction

error. Researchers can also focus on testing designs

generated with strategies that they have higher con-

fidence in. For example, Lippow et al. successfully

improved the affinities of different antibodies by

mainly optimizing energy contributions from electro-

statics.117 Sammond et al. presented a series of fil-

ters, based on general knowledge of protein–protein

interactions, and required that predicted affinity-

enhancing mutations pass these before being

tested.118 However, as design problems become more

challenging, demands on the accuracy of the scoring

functions will increase as well.

One potential strategy to address deficiencies in

physical or statistical structural modeling is to use

information from other sources, such as experimen-

tal data.119,120 This was illustrated in a study by

Grigoryan et al. that compared the performance of

different models for predicting interaction specificity

among �50 human bZIP coiled coils.76 Two empirical

models were tested that each defined a score for a

coiled-coil interaction as a sum of weights corre-

sponding to residue–residue interactions at the

coiled-coil interface. In the first model, the weights

were optimized to reproduce coiled-coil interaction

data from the literature, using a machine learning

technique called a support vector machine (SVM).121

In the second model, the weights were taken from

published experimental double-alanine mutant cycle

coupling energies.122 Both models showed better per-

formance than structure-based models for predicting

specificity. One caveat for experimentally derived

models is that they are unlikely to describe the

entire sequence space of interest. For example, cou-

pling energies for many relevant residue-residue

interactions in coiled coils have not been measured.

Hybrid models that combine physics-based struc-

tural models with experimental data have been

developed to address this. A hybrid model was con-

structed for coiled coils that used available coupling

energies to score certain residue–residue interac-

tions and a physics-based approach to compute the

remaining terms. This model was used in coiled-coil

specificity design by Grigoryan et al.,79 generating

many designed sequences that were experimentally

validated to be specific. It is tempting to generalize

such approaches to other interaction specificity

design applications. However, this requires a large

amount of experimental data for the proteins being

studied. Information encoded in evolutionary his-

tory can also be used to provide insights into pro-

tein–protein interaction specificity,123,124 but such

methods often require extensive sequence align-

ments and at least some knowledge of interaction

patterns across different species for the proteins of

interest.

Experimental library screening

Like computational protein design, experimental

library screening is motivated by the desire to

search among a large number of sequences for those

with desired properties.125 Below we briefly review

key experimental aspects of this approach, including

techniques for generating sequence diversity and dif-

ferent screening or selection platforms. We then dis-

cuss examples of how library screening can be com-

bined with computational protein design to facilitate

the discovery of desired sequences, a promising

strategy for engineering specific protein binders.

Generating sequence diversity
The first task in performing a screen for proteins

with a desired property is to generate an experimen-

tal library. This is typically performed at the DNA

level, with diversity translated to protein sequences

at a later stage. A simple strategy is to use error-

prone PCR or other methods to introduce sequence

changes randomly throughout a gene.126,127 How-

ever, this approach is not well suited for combination

with rational design techniques as discussed below.

Genes with sequence variability introduced at prede-

termined positions can be readily made by

PCR-based assembly procedures using partially

randomized oligonucleotides containing degenerate

codons.128 It is also possible to encode variability at

a position using a mixture of oligonucletides129 or

trinucleotide synthesis,130 ensuring inclusion of only

desired amino acids. Considerations such as the

spacing of positions to be varied and how much di-

versity needs to be introduced at selected positions

determine which assembly procedures can be per-

formed cost-effectively. Sequence diversity can also

be generated by combining fragments from different

native or synthetic genes, mimicking the process of

homologous recombination.131 Different strategies

give different types of sequence spaces. For example,

randomization at selected positions gives a sequence

space that is combinatorial with respect to residues

encoded at those positions, potentially sampling all

possible sequence combinations if a library is large

enough. Recombination among gene fragments, on

the other hand, results in sequences that are combi-

natorial with respect to the fragments. This can be

advantageous if the individual fragments are

thought to be optimal in some way.

Different randomization strategies can be com-

bined. A good example of this in nature is the pro-

cess leading to diversification of human antibod-

ies.132 The variable region of each class of antibody

chain is assembled from different types of gene seg-

ments (the V, D, and J segments) in a site-directed

recombination event known as V-D-J joining. The
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presence of variants for each type of gene segment

leads to a combinatorial diversity estimated to be

greater than 105. Mechanisms such as somatic hyper-

mutation are employed to further increase diversity

and generate antibodies with improved affinities for

their targets (affinity maturation). This process of

generating a preliminary pool of sequence diversity

from which selected sequences are further optimized

can be mimicked in vitro. For example, randomization

can first be introduced in a guided manner by recom-

bining different native or synthetic gene fragments

(analogous to V-D-J joining) or by mutating selected

positions in a combinatorial manner. Promising

sequences can be identified and techniques like error-

prone PCR (analogous to somatic hypermutation) can

be performed to further optimize protein properties.

Screening and selection platforms

The best library screening or selection platform

depends on a number of factors, including the size of

the DNA library and the type of protein property or

function that is sought. Molecular display technolo-

gies133 including phage display,134 bacterial dis-

play,135 yeast display,136 mRNA display,137 and ribo-

some display138 have been widely used to screen for

desired protein–protein interactions. Other plat-

forms such as the yeast two-hybrid assay, or various

protein complementation assays, can be used to

select for interactions in cells.139–142 This provides

the advantage of favoring the design of proteins that

are well behaved in the complex cellular environ-

ment. Cell-free display methods like mRNA and

ribosome display are compatible with much larger

library sizes (>1014) than those afforded by cell-

based display methods (109–1010 for bacterial dis-

play and 107–109 for yeast display). However, for

bacterial and yeast display, fluorescence activated

cell sorting (FACS) can be used to sort cells display-

ing the desired sequences in solution. This bypasses

the need to first immobilize and then elute the

desired clones from a surface, which is often

required in cell-free display technologies, and also

permits real-time observation of changes in the bind-

ing characteristics of the library. This monitoring

can be advantageous when screening for protein–

protein interaction specificity, as conditions for com-

petition or negative selection can be readily tuned

by simply varying the concentrations of target and

competitors.

Application to screening for protein–protein

interaction specificity

Different groups have used experimental library

screening to identify specific protein binders. Using

rounds of mutagenesis by error-prone PCR and

selection for cell survival, Levin et al. obtained var-

iants of the Im9 protein capable of inhibiting the

noncognate ColE7 DNase more strongly than the

cognate ColE9.143 Both positive selection and compe-

tition selection (positive selection in the presence of

undesired off-target competitors) were required to

generate mutants showing a >108-fold increase in

specificity relative to the wild-type Im9 protein.

Structural comparison of Im9 variants obtained dur-

ing various stages of the selection with the Im7 pro-

tein (whose cognate inhibitory target is ColE7) sug-

gested that a selective protein–protein interface was

evolved by maintaining promiscuous interactions

while gradually transiting to alternative selective

configurations stabilized by mutations. In other

work, Mason et al. used a cell-survival based pro-

tein-complementation assay to select for peptides

that bound the leucine-zipper domains of bZIP pro-

teins cFos and cJun.144 They screened a manually

designed degenerate-codon library. As in the study

by Levin et al., it was necessary to include negative

selection, via the inclusion of undesired interaction

competitors, to achieve specific binders. Dutta et al.

screened for BH3 peptides specific for binding the

antiapoptotic protein Bcl-xL in preference to Mcl-1

and vice versa using yeast surface display.145

Explicit negative screening against binding to the

undesired partner was combined with screening for

binding to the desired target. Interestingly, negative

selection was found to be more important for achiev-

ing specificity for Bcl-xL than for Mcl-1. Finally, Abe

et al. developed a strategy to facilitate competitive

screening using phage display.146 Desired target pro-

teins were immobilized on a sensor chip for surface

plasmon resonance (SPR) studies. The influence of

undesired competitor added in solution was quanti-

fied using proteins with known binding affinities for

the target and competitor. The concentration of

undesired competitor required to reach the desired

specificity was calibrated accordingly. Using this

approach, the authors isolated mutants of tumor ne-

crosis factor (TNF) that bound selectively to TNF re-

ceptor 2 (TNFR2) over TNFR1.

In all examples described above, explicit consid-

eration of interaction specificity was necessary and

was addressed in the selection process. Undesired

competitors were either included as ‘‘decoys’’ in

screening or selection, or were directly selected

against. Similar to the computational design of pro-

tein–protein interaction specificity, examples of spe-

cific binders successfully obtained without explicit

consideration of specificity in the screening/selection

process have also been reported. For example, Mas-

tumura et al. identified a BH3 peptide that specifi-

cally bound the anti-apoptotic protein Bcl-xL over

other antiapoptotic proteins using mRNA display

with only positive selection.147 On the other hand,

many examples have been reported where positive

selection leads to nonspecific binders. For example,

engineering of numerous PDZ domains for tight

binding to target peptides using phage display led to
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highly nonspecific domain variants in a study by

Ernst et al.148

Combining computational protein design and

experimental library screening
In experimental screening, desired proteins are iden-

tified directly by their exhibition of a particular fea-

ture or function. This contrasts with the high risk of

computational protein design, where often only a

few proteins are made and tested and it is common

for these not to possess the desired characteristics.

However, relative to computational design, library

screening explores a much smaller sequence space,

limited to �1015 even for the most advanced techni-

ques. This raises concerns about sampling, because

mutations picked randomly are rarely beneficial. It

is therefore tempting to combine the advantages of

these two methods. Instead of computationally

designing a few sequences, a protein engineer can

computationally design a library. Sequences in the

library will not be chosen randomly, but instead will

be selected on the basis of computational structural

modeling. Although the computational models might

not be perfect, they could nevertheless bias the ex-

perimental search to a more productive sequence

space.

The idea of combining computational protein

design and experimental library screening has been

explored by several groups.129,149–167 Computation-

ally designing a library presents distinct challenges

from designing a fixed number of individual sequen-

ces. One is that practical aspects of the experimental

strategy should be considered during the computa-

tional design phase. As described before, for most ex-

perimental library construction protocols, the diver-

sity of library sequences will be combinatorial with

respect to residues or gene fragments. The screening

platform also places a limit on the number of

sequences that can be tested. Another challenge is

that the library design objective is no longer obvious;

a protein designer must decide whether the library

should prioritize inclusion of the predicted best

sequences, the largest number of predicted reason-

able sequences, or the greatest diversity of sequen-

ces. There may be multiple objectives to consider

and optimize, and conflicting tradeoffs could exist

among these. For example, making a library at

lower cost, e.g. by using degenerate codons,

imposes restrictions on the types of sequences that

can be included. Attempts to include more

sequence diversity by screening a larger designed

library should also be balanced with the desire to

ensure adequate coverage of library sequences pre-

dicted to be more favorable. Below we review

approaches that have been used to computationally

design libraries. Although few studies have focused

on designing protein–protein interaction specificity,

the general concepts should have broad relevance

to a variety of challenging design problems includ-

ing this one.

Designing a library with selected positions

randomized
Several approaches have been suggested for design-

ing protein libraries with selected positions random-

ized. In the first, a library score is defined and this

is optimized. Treynor et al. defined the score as the

arithmetic average of the energies of all sequences

in the library, calculated using pair-wise decompos-

able structural models.151 Optimization of this score

is analogous to optimizing the energy of a single

sequence, with the search being performed in the

space of amino acid sets (e.g., amino acids encoded

by a degenerate codon) instead of amino acids. Sin-

gle and pair energies for amino acid sets can be pre-

computed, allowing the same algorithms to be used.

Libraries of green fluorescent protein (GFP) variants

were designed this way, and it was observed that

these contained a greater fraction of proteins that

were functional, as well as a greater diversity of flu-

orescence emission wavelengths, compared to a

library generated using error-prone PCR. In a sepa-

rate study, Parker et al. also defined library quality

to be the average of pair-wise decomposable energies

of all library sequences, but proposed an additional

objective that represented the novelty of the library

sequences when compared with native proteins.160

Optimization was performed using integer program-

ming in the space of degenerate codons and included

a constraint on library size. Parker et al. further

demonstrated for a few protein systems the tradeoff

between predicted quality and novelty. This concept

of tradeoffs among different desirable library proper-

ties is important.

Recently, we implemented a novel library

design strategy that involved library score optimi-

zation and also emphasized retention of diversity

among library sequences (Chen et al., unpublished).

In our scheme, desired residues at each designed

position were first predicted by computational

structure-based modeling. We then defined the

objective to be maximized as the number of unique

library sequences with all designed positions occu-

pied by desired residues. Optimal codon selection,

under a constraint on library size, was formulated

as an integer linear programming problem similar

to that described by Parker et al.160 We applied

this framework to design a library of Bcl-xL protein

variants and screened for those that bound prefer-

entially to a peptide derived from the BH3 motif of

Bad over a BH3 peptide from Bim. We obtained

Bcl-xL variants showing a large increase in specific-

ity. An important feature of our library design pro-

cedure is that we increased diversity not only by

including residues that were predicted to be specific

for Bad BH3 over Bim BH3, but also by including
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residues predicted to simply maintain binding to

Bad. Analysis of the specific binders identified

experimentally suggested that the inclusive

approach was important for success, allowing resi-

dues important for specificity but missed by the

predictions to be included. Interestingly, one of the

sequences we identified was globally specific for

Bad BH3 over many other BH3 peptides not con-

sidered in library design and screening. This raises

the intriguing prospect that libraries designed for a

simpler task (i.e., maintaining binding to a target

while reducing binding to one off-target) can be

screened for more demanding objectives (i.e., speci-

ficity against multiple off-targets).

In a second approach to computational library

design, structure-based computation is first per-

formed to obtain an ensemble of sequences. An

amino-acid profile (i.e., the frequency of different

amino acids at each designed position) is derived

from these sequences, and designed positions in the

library are randomized to match the diversity

observed in the profile. One caveat is that the

library obtained accordingly may not closely resem-

ble the original ensemble of designed sequences.

Hayes et al. used this approach to design a library of

TEM b-lactamase variants to screen for clones with

improved resistance toward the antibiotic cefotax-

ime.129 Randomization was introduced to the active

site, and compatibility with the protein fold (i.e.,

the crystal structure of TEM b-lactamase) was

assessed in designing the sequence ensemble. Var-

iants with a 1280-fold increase in resistance were

identified out of a �200,000 member library. Gun-

tas et al. also used this approach to design a

library of variants of the ubiquitin ligase E6AP to

bind to the NEDD8-conjugating enzyme Ubc12, a

non-natural partner. They obtained multiple tight

binders (Kd < 100 nM) from the screen.155 Degener-

ate codons were selected at each position by consid-

ering their efficiencies in representing the amino-

acid diversity profile from design and the library

size. One interesting observation was that equally

good performance was obtained from a designed

library enriched in predicted binders and one

enriched simply in predicted well-folded sequences.

Both libraries performed better than a random

library.

In the third approach, an amino acid diversity

profile is derived using a probabilistic framework

rather than an ensemble of designed sequences.

Voigt et al. applied mean-field theory to capture the

structural tolerance of each designed position.149

Using this metric as a guide in selecting positions

for randomization, good agreement was observed

with prior experimental directed evolution studies of

subtilisin E and T4 lysozyme. Saven and coworkers

also proposed using a statistical theory for the

design of combinatorial libraries.161,162

Designing a library made by combining different
gene fragments

One challenge in making a library generated by in

vitro recombination among homologous native or

synthetic genes is how to select the cross-over

points. Voigt et al. developed SCHEMA to help

address this.150 Points for cross-over were chosen so

as to minimize disruption of important residue-re-

side interactions observed in the crystal structure.

The underlying hypothesis was that hybrid proteins

generated this way were more likely to be folded

and functional. Correlation between cross-over

points predicted from SCHEMA and prior in vitro

recombination experiments was observed, and

SCHEMA was subsequently applied to a series of

different design problems.163,164

One advantage of making a library by combin-

ing gene fragments is that favorable combinations of

residues within the same fragment can be preserved.

This contrasts with designed libraries that are com-

binatorial in residue substitutions. In an example of

recombining synthetic gene fragments obtained from

computational protein design, Lippow et al. rede-

signed a galactose oxidase enzyme to process glu-

cose.157 A set of > 2000 sequences was designed

computationally. The 12 designed positions were

then grouped into four assembly regions, guided by

proximity in sequence. Each region was encoded by

a mixture of synthetic oligonucleotides, such that

dependencies among different positions in each as-

sembly region were preserved. The library was

assembled from these fragments. Using this

approach, the authors successfully identified a vari-

ant with 400-fold improvement in activity toward

glucose from a 10,000-member library.

Improving computational designs by library
screening

One final approach for combining computational pro-

tein design and experimental library screening is to

use library screening to further improve successful

or moderately successful designs.165–167 Although

computational prediction and design methods can be

used to guide library design, most such tools will

make assumptions, have biases and introduce errors

that prevent discovery of many good sequences. This

is especially true for difficult prediction/design prob-

lems where the desired function, for example cataly-

sis, is hard to model accurately. In this case, a more

random and less guided strategy could prove benefi-

cial in identifying important sequence features

missed by the model. This approach was demon-

strated by Khersonsky et al. to improve the catalytic

activity of an in silico designed Kemp eliminase

enzyme.165,168 Error-prone PCR, gene shuffling and

site directed randomization were all employed to

generate diverse library sequences derived from
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the initial computationally designed sequence.

Mutants with >400-fold improvement in catalytic

activity were identified from the screen. Fleishman

et al. also applied a similar strategy to optimize

the binding affinity of a de novo designed protein

targeting the stem region of influenza hemaggluti-

nin, generating binders with low nanomolar

affinity.167

One observation from the studies described

above is that the metric used for selecting sequen-

ces in design can be different from the final, func-

tional objective. Hayes et al.,129 Treynor et al.,151

Guntas et al.155 and we designed library sequences

to be compatible with a structural fold but then

screened the libraries for function (i.e., improved

enzymatic activity, different photophysical proper-

ties, protein–protein interaction, and interaction

specificity). Although a well-folded sequence is

likely necessary but not sufficient for obtaining

these types of functions, designing for structure

and then screening for additional desired properties

could be much easier and may in fact represent a

more efficient use of current computational predic-

tion models. This could have general implications

for difficult design goals such as protein–protein

interaction specificity.

Conclusions

In this review we discussed both computational and

experimental approaches for designing protein–pro-

tein interaction specificity, especially among proteins

with similar sequence and structure. We conclude by

suggesting that progress in both fields can be highly

synergistic. For example, advances in tri-nucleotide

synthesis and gene synthesis will enable the routine

screening of large libraries with significantly fewer

restrictions on the types of sequences encoded. This

should facilitate the testing of a large number of

diverse design solutions obtained using very differ-

ent specificity strategies. Better predictions of speci-

ficity strategies can in turn be obtained from

improvements in computational sampling and scor-

ing, for example better modeling of protein backbone

flexibility. On the other hand, application of machine

learning algorithms will in the future enhance our

ability to extract information from the ever-growing

amount of experimental data. Resulting models can

then be used to develop more accurate prediction

models for design. We anticipate that such integra-

tion of computation and experiment will greatly

enhance our design capabilities.
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