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A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell
wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost
technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and
plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic
biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated
bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme
production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently
available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of

the existing approaches with the development of breakthrough technologies.

1. Introduction

For decades, the biological conversion of plant biomass
into biofuels has been a major focus of research [1]. Plant
biomass is the most abundant renewable carbon source
on Earth, with lignocellulose being its major constituent.
Lignocellulose is a highly heterogeneous substrate composed
of cellulose, hemicellulose, and lignin. Cellulose is a linear
polymer of glucose that is extensively bonded to each other
through strong intramolecular hydrogen bonds forming a
highly recalcitrant and crystalline structure. Hemicellulose
is a complex heteropolymer that comprises a number of
polysaccharides such as xylan, galactan, and mannan. Hemi-
cellulose contributes to the heterogeneity, whereas cellulose
contributes to the recalcitrance of lignocellulose. Lignin
comprises aromatic alcohols and is found to be associated
with cellulose and hemicellulose. Lignin protects cellulose
from hydrolytic enzymes [2]. Conventional approaches to
extract the simple sugars in cellulose involve pretreatment
under harsh conditions followed by enzymatic saccharifica-
tion [3-5]. Simple sugars extracted can then be converted

to advanced biofuels that resemble petroleum-based fuels by
using recombinant microbes [6].

Biomass hydrolysis remains a unique hurdle and an
expensive step in the production of cellulosic fuel. Over
the years, emphasis has been placed on the development of
inexpensive methodologies to produce hydrolytic enzymes.
Cellulolytic microbes isolated from different environmental
niches offered various forms of cellulases, and their identi-
fication has provided a deeper insight into the mechanism
of lignocellulose hydrolysis. Genomic collection has revealed
the distribution of a variety of genes encoding hydrolytic
enzymes on the chromosome of cellulose-utilizing organ-
isms such as Trichoderma reesei, Acidothermus cellulolyticus,
and Clostridium cellulovorans [7-9]. The vast repository
of genomic data has confirmed the need to engineer sev-
eral groups of cellulases (endoglucanase, cellobiohydro-
lases, exoglucanase, and f-glucosidase) and hemicellulases
(xylanase and arabinofuranosidase) with synergistic activity,
into a single recombinant host to favor an efficient, single-
step hydrolysis of the recalcitrant plant biomass into simple
sugars [5]. However, expression of multiple enzymes would
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impose a huge metabolic burden on the engineered host
[4, 10]. Selection of recombinant hosts with a superior ability
to produce higher titers of multiple enzymes is a prerequisite
for efficient bioprocessing of cellulosic biomass. The advent
of recombinant genetic engineering and synthetic biology
has enabled manipulation and development of recombinant
plants and microbes that favor an efficient, single-step
hydrolysis of lignocellulose [4, 11-13]. Many competing
technologies have been developed for heterologous expres-
sion of plant cell wall degrading enzymes (PCDEs) coupled
with simultaneous bioprocessing of cellulosic biomass in
various host organisms (e.g., Escherichia coli, fungus, yeast,
Zymomonas mobilis, and plant). Selection of an ideal host
organism is essential because each host organism not
only has its own unique features but also has advantages
and disadvantages for a specific application. Thus, good
understanding of the unique features of each recombinant
host organism is imperative for the heterologous expres-
sion of PCDEs. To simplify, the consolidated bioprocessing
approach involves the use of recombinant microbes such as
E. coli and Z. mobilis, which are capable of hydrolyzing and
fermenting plant biomass, whereas an in-planta approach
employs plants capable of producing PCDEs, thus allowing
autodegradation of plant biomass. In this paper, not only
will we provide insight into the expression of PCDEs in three
different host organisms, E. coli, Z. mobilis, and plant, but we
will also highlight recent advances in the field.

2. Consolidated Bioprocessing

The consolidated bioprocessing (CBP) approach involves
engineering cellulolytic ability into major industrially used
solventogens such as yeast, E. coli, and Z. mobilis, to
facilitate a single-step conversion of plant biomass to fuels.
As described above, multiple enzymes are required to
depolymerize plant biomass. In addition to the expression of
multiple cellulolytic enzymes, engineering a proper protein-
secretion system in recombinant microbes is necessary to
favor a high titer of extracellular enzyme. Even if an efficient
set of cellulases are engineered together with a proficient
protein-secretion system, a proper enzyme-enzyme and/or
enzyme-microbe synergy should be established to favor
continuous hydrolysis of the substrate [14-16]. With-
out establishing proper synergy between different enzyme
groups, the products obtained would begin to accumulate
and lead to the inhibition of further substrate hydrolysis
[3, 17]. In addition, hydrolysis of plant biomass is highly
favored at a higher temperature, but most recombinant hosts
are mesophilic, and this presents an additional hurdle in
consolidated bioprocessing [8]. It is necessary to coordinate
enzyme production, substrate hydrolysis, and fermentation
process within a single cell in such a way that one does
not lag behind or exceed the other processes. Aided by the
powerful tools offered by synthetic biology, systems biology,
structural biology, and protein engineering, efforts are
underway to eliminate the above-mentioned bottlenecks and
develop efficient microbes for consolidated bioprocessing.
With the advent of surface-display technology, yeast became
an unconquerable host for cellulase expression. However,
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recombinant hosts such as E. coli and Z. mobilis have recently
been considered to have many properties ideal for cellulase
expression. In this paper, we will discuss the efforts and
hurdles in genetic engineering cellulolytic ability into E. coli
and Z. mobilis. Cellulase expression in yeast is reviewed in
depth elsewhere [18].

3. Cellulase Expression and Secretion in E. coli

E. coli is one of the most favored industrial microorganisms
and has a high potential to become a consolidated biopro-
cessor owing to the wealth of knowledge available pertaining
to this organism that allows for easy genetic manipulation.
However, there are some hurdles in the development of E.
coli with cellulolytic ability. While most native cellulolytic
microbes are extremophiles, living either in conditions of
high temperature or low pH, E. coli is a mesophile, and
hence, the cellulase system adopted from extremophiles
may not function efficiently in E. coli. Some anaerobic
mesophiles (Ruminococcus albus and C. cellulovorans) also
possess efficient cellulolytic ability [19]. However, unlike
the extremophiles, anaerobic mesophiles produce complex
cellulases called cellulosomes [20]. Cellulosome consists of
a noncellulolytic scaffolding protein to which free cellulases
are assembled with their dockerin domain and the entire
assembly is displayed on the cell surface. Native proteases
of E. coli cleave the dockerin domain of the cellulosomal
cellulase, thus, disturbing the assembly process [21]. In addi-
tion, the cellulosomal cellulases (e.g., EngB) form inclusion
bodies when overexpressed in E. coli. Solubilization of these
cellulases was enhanced when their dockerin domain was
replaced with the cellulose-binding domain (CBD) from
a free cellulase [22]. Maximizing the portion of a soluble
protein is a key factor for consolidated bioprocessing.

While solubilization of the expressed cellulases is a potent
problem, secretion of the soluble cellulases is another major
prerequisite for CBP. E. coli possess a thick outer membrane
and very limited number of secretion systems capable of tar-
geting protein to the extracellular space (Figure 1). As such,
this thick outer membrane provides an additional hurdle in
engineering a secretable cellulolytic system. Overexpression
of a cellulolytic system without engineering a new protein-
secretion pathway would probably inhibit cell growth due
to obstruction of the native transport pathway [5]. Cellulase
from Bacillus subtilis was cloned into E. coli and detectable
extracellular secretion was achieved without any genetic
modification; however, a larger proportion of the enzyme
was localized in the periplasmic space [23]. The extracellular
secretion may have been caused by the signal peptide of the
B. subtilis cellulase that might have specificity toward native
protein secretion system in E. coli. However, the localization
of a large portion of the protein in the periplasmic space
might be because of the differences in the membrane
architecture of B. subtilis and E. coli. Being a Gram-
positive bacterium, B. subtilis lacks an outer membrane, and,
hence, the protein-secretion system is simpler and more
efficient, whereas E. coli possesses a thick outer membrane
that restricts extracellular transport of periplasmic proteins
(Figure 1). E. coli possess an endogenous cellulase that could
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FiGure 1: Outline of the major difference between the protein secretion system of Gram-positive and Gram-negative bacteria. Presence of
thick outer membrane in Gram-negative bacteria demands for outer membrane permeabilization through the addition of mild detergent,
Ipp deletion, or by fusing the recombination protein with kill or out gene.

be secreted when overexpressed [24]. Fusion of the out
gene of Erwinia chrysanthemi with a gene encoding for
endoglucanase facilitated the secretion of more than 50%
of the cellulase produced [25]. Exoglucanase from C. fimi
was efficiently secreted from E. coli when fused to ompA
sequence and expressed under a weak promoter (Pjcuvs)
[26]. Recombinant cellulase targeted to the periplasmic
region could be secreted into the medium in an Ipp-deleted
strain of E. coli [27]. Even though cloning and secretion
of a few heterologous genes is feasible in E. coli, it is not
sufficient for CBP of plant biomass mainly because of the
lesser substrate specificity of the readily expressible cellulases
of E. coli.

There was an increased search for a new group of cellu-
lase, which is more specific for plant biomass and is readily
expressible in E. coli. However, the lack of complete knowl-
edge about the mechanism of cellulase action limits the use of
arational design of cellulase with desired traits for expression
in E. coli. Metagenomic libraries are considered powerful
tools for the isolation of genes with desired properties. The
growing repository of metagenomic information promises to
provide a better group of cellulase for expression in E. coli.
Novel cellulases were identified in the metagenomic libraries
obtained from the insect gut, termite gut, and cow rumen
[28, 29]. The cellulases identified in the cow rumen were
screened in E. coli and were found to exhibit significant
activity against ionic liquid pretreated-plant biomass [30].

The GH5 and GH9 family of cellulases are readily expressible
in E. coli. The metagenomic library might help identify GH5
and GH9 family of cellulases for E. coli [31].

Maintenance of the large heterologous DNA segment
is rather complex. Despite the availability of several con-
trollable gene expression systems, expression of multiple
genes in a soluble form is technically challenging in E.
coli. Hence, effort was put forth to identify cellulases with
multiple functions. Some hydrolytic enzymes were found to
exhibit a significant level of endoglucanase, exoglucanase,
and xylanase activity. Cellulase isolated from Caldocellum
saccharolyticum was found to have an endoglucanase cat-
alytic domain in the C-terminus and exoglucanase catalytic
domain in the N-terminus [32]. Cellulase with a multifunc-
tional catalytic domain (performing both endoglucanase and
exoglucanase activity) has been isolated from Bacillus sp. D04
[33]. Cellulase isolated from C. cellulovorans was also capable
of functioning as a hemicellulase [34]. A metagenomic
repository would be a very useful tool for the isolation of
multifunctional cellulase with higher activity at mesophilic
conditions.

E. coli is capable of utilizing all monosaccharides that
could be obtained from plant biomass [3]. Cellobiose is a
dimer of glucose and is the major end-product of cellulose
hydrolysis. Accumulated cellobiose inhibits the endo- and
exoglucanases, leading to a discontinuity in the overall pro-
cess. Engineering a cellobiose-uptake system would therefore



be the first step toward CBP, because it would help remove
the potential inhibitory compound (cellobiose) immediately
after it is formed, thus ensuring a continuous hydrolysis
process [35]. The cellobiose metabolic pathway of Klebsiella
oxytoca was successfully expressed in the ethanol-producing
E. coli strain KO11, thus, favoring the growth of this
strain on cellobiose [36]. Surface display of f3-glucosidase
of Thermobifida fusca in E. coli favored direct assimilation
of cellooligosaccharides [37]. Cellobiose assimilation was
achieved by replacing the promoters of endogenous chitin-
(chb-) and salicin- (asc-) utilizing operons of E. coli [35].
Some of the cellobiose-utilizing strains mentioned-above
have a superior capability over the glucose-utilizing counter-
parts to produce significantly higher levels of ethanol when
grown on a model sugar substrate [36], while others can
cometabolize cellobiose concurrently with sugars such as
xylose, galactose, and mannose [38]. Thus, these cellobiose-
metabolizing strains could be used as a platform strain in the
development of cellulolytic E. coli.

Extensive research has helped strengthen the pool of E.
coli biocatalyst with the superior ability to act on a cellulosic
substrate; however, the potential of all of these engineered
strains to grow on plant biomass directly could not be
proved. This is mainly because of the failure of expression
of a complete set of hydrolytic enzymes within a single
host. Hence, coculture strategies have been proposed to
alleviate the metabolic burden of expressing multiple het-
erologous genes within a single cell. Binary culture has
been employed for efficient xylan degradation. Xylan con-
stitutes the major portion of hemicellulose and requires
the concomitant action of six enzymes for its hydrolysis to
xylose. Cocultivation of two strains of E. coli expressing a
different combination of the six major xylanases enhanced
ethanol production from the hemicellulosic portion of plant
biomass. Coculture of E. coli strains capable of expressing
either the cellulolytic or hemicellulolytic enzyme complexes
allowed growth on switchgrass pretreated with ionic liquid
even without the addition of additional hydrolytic enzymes
[33]. These coculture strategies are a promising step toward
successful development of cellulolytic E. coli. The minimal
genome approach [39] and tightly controllable/switchable
gene expression system are well developed for E. coli [40, 41].
Exploitation of these systems to engineer a cellulolytic E. coli
would provide precise, spatiotemporal modulation of gene
expression of multiple cellulases based on the accumulation
of products. A combination of the above-mentioned strate-
gies would help overcome the bottlenecks associated with the
development of cellulolytic E. coli.

4. Heterologous Expression and Secretion of
Cellulases in Z. mobilis

Zymomonas mobilis is a unique Gram-negative microor-
ganism that can metabolize glucose anaerobically through
the Entner-Doudoroff (ED) pathway in contrast to other
Gram-negative organisms (e.g., E. coli) that utilize the
Embden-Meyerhof-Parnas (EMP) pathway. As an important
industrial host organism, Z. mobilis has several advantages
for biofuel applications that include higher sugar-uptake
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ability, a lower cellular biomass yield, and a higher ethanol
yield/tolerance. Another advantage is that controlled addi-
tion/depletion of oxygen is not required during fermenta-
tion, as Z. mobilis can grow microaerobically. However, the
limitation of this bacterium is that it can utilize only
three sugar substrates: glucose, fructose, and sucrose. For
expanding the substrate range, especially for the utilization
of plant biomass-derived polymers, several PCDE genes
have been cloned and expressed in Z. mobilis. However,
similar to other Gram-negative bacteria such as E. coli, the
presence of an outer membrane results in inefficient protein
secretion, which is a major technical challenge in engineering
cellulolytic Z. mobilis (Figure 1).

Previous reports on heterologous expression of PCDE
genes in Z. mobilis are summarized (Table 1). Endoglucanase
genes such as eglX [48], CMCase [43, 45], and celZ [46]
were expressed in Z. mobilis under the control of either the
chloramphenicol acyltransferase (cat) promoter [48] or their
native promoters [43, 45, 46]. In the case of A. xylinum
endoglucanase, approximately 75% of the endoglucanase
activity was found in the periplasmic space in recombinant
Z. mobilis with no detectable activity in the extracellular
fraction. None of the above-described endoglucanases trans-
formed to Z. mobilis could be secreted, mainly because
of the protective outer membrane [45, 48]. In contrast,
approximately 35% of the endoglucanase celZ from E.
chrysanthemi was released into the medium in the absence
of detectable cell lysis [46]. This probably occurred because
of the correct recognition of the secretion signal of E.
chrysanthemi by Z. mobilis. However, whether the secretion
observed was due to active secretion or an increased leakiness
of the outer membrane at the end of the growth phase
was unclear [46]. The -glucosidase gene from Xanthomonas
albilineans or Ruminococcus albus was also expressed in Z.
mobilis [50, 51]. Yanase et al. expressed a -glucosidase gene
from R. albus fused with the Tat (twin arginine translocation)
signal peptide of a periplasmic enzyme, glucose-fructose
oxidoreductase (Gfo), or Sec-dependent secretion signal
peptide of gluconolactonase (GIn) [50]. They found that
the enzyme thus produced was secreted into both the
periplasmic and extracellular space. With the use of Tat and
Sec signal peptides, 4.7% and 11.2% of the f3-glucosidase
activity, respectively, were detected in the extracellular space
of the recombinant Z. mobilis [50]. However, these genes
could not support the growth of recombinant Z. mobilis on
cellobiose as the sole carbon source.

For the hydrolysis of plant biomass, it is desirable to
express multiple PCDE genes in Z. mobilis. Linger et al.
heterologously expressed two cellulolytic enzymes, E1 (endo-
B-1,4-glucanase) and GH12 (broad substrate range endo-
B-1,4-glucanase activity) from an Acidothermus species by
using two different secretion signals of Z. mobilis genes:
phoC gene and ORFZMO0331 [42]. The lack of a secretion
signal in their genes resulted in the localization of 96% of
GHI2 activity within the cytoplasm, whereas the addition
of the phoC secretion signal resulted in the localization of
approximately 26% of the enzyme activity in the periplasmic
space and 13% in the extracellular space. For E1 with the
PhoC secretion signal, approximately 20% of the E1 activity
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TaBLE 1: Summary of expression of plant cell wall degrading enzymes in Z. mobilis.
PCDE SourFe Gene Bank M.W (kDa) Promoter Secretlor} signal Extra.cellular Perlplasmlc Reference
organism ID peptide portion (%) portion (%)
A. cellulolyticus  AAA75477.1 60.7 Py, Z. mobilis PhoC ~20% ~30% [42]
. Z. mobilis ORF
~ 0, ~ 0,
A. cellulolyticus  AAA75477.1 60.7 P M 0331 15% 25% [42]
A. cellulolyticus  ABK52392.1 41.3 P Z. mobilis PhoC 13% 26% [42]
Endo-B-1,4- A. xylinum BAA03797.1 24 Native Native <1% 75% [43]
glucanase B. subtilis NA NA Native Native NA NA (4]
Z. mobilis
C.uda CB4  AAA23090.1 40.7 unidentified Native NA NA [45]
gene
E. chrysanthemi CAA68604.1 46.4 Native Native ~40% ~80% [46]
E. cloacae ABP62583.1 40.3 Native Native ~7.6% ND [47]
cat*gene on .
P. cellulosa NA NA pSUP104 Native NA NA [48]
X. albilineans NA NA Native Native NA NA [49]
R. albus CAA33461.1 042 & mo:’:lle’s &0 4 mobilis Gfo 4.7% 61% [50]
B-Glucosidase 8 »
R. albus CAA33461.1 104.2 Py, Z. mobilis Gln 11.2% 34.3% [50]
X. albilineans NA NA Native Native NA NA [49, 51]

* Chloramphenicol acyltransferase; NA: not available; ND: not detected.

was found in the extracellular medium, 30% in periplasmic
space, and 50% in cytoplasm [42]. To develop Z. mobilis
as a viable platform host organism for cellulosic biofuel
production, more studies are needed to engineer Z. mobilis
that secretes multiple PCDEs into the extracellular space
necessary for the degradation of plant biomass.

5. Plant-Based Expression of Plant Cell Wall
Degrading Enzymes

In-planta expression of PCDEs has several advantages over
other expression systems (e.g., E. coli, fungus, and yeast) as
a means of cost-effective production of cellulosic biofuels.
Since plants can serve as both a host organism and a cellulosic
biomass substrate for sugar fermentation, expression of
PCDEs in plants can lead to self-deconstruction of plant
cell walls to generate monomeric sugars. A combination
of this approach with synthetic cellulolytic microbes would
dramatically improve the economic efficiency of the cellu-
losic biofuel process (Figure 2). This is because the high
production of multiple PCDEs in nonnative cellulolytic
and industrial microbes imposes a huge metabolic burden
that results in decreased biofuel production, whereas an in-
planta approach would favor self-hydrolysable substrate that
would reduce the metabolic cost of expression of multiple
PCDE:s in cellulolytic microbes. Thus, in-planta hydrolysis
of plant cells offers a great opportunity to simplify the
process of enzyme/biomass production and hydrolysis and
minimizes the overall enzyme production cost without
requiring the use of expensive bioreactors or complicated
purification processes. Moreover, plants are also capable of
posttranslational modifications, which may be required for
correct protein folding and thus the functionality of specific

enzymes [52, 53]. For these reasons, the expression of PCDEs
in a plant is gaining increasing popularity. In this paper, we
give a brief outline of the new updates on recent publications
as well as on many factors to consider in this approach
(Table 2). For example, autohydrolysis of plant cells can be
avoided by introduction of thermostable cellulase, which has
negligible enzyme activity at room temperature. An excellent
summary on former studies can be found in previous review
papers [53-55].

Heterologous genes can be expressed stably in transgenic
plants or transiently in wildtype plants. Most early studies
have focused on the generation of stable transformants
wherein foreign genes were integrated into plant chromo-
some or chloroplast genome. Once transgenic plant lines are
developed, minimal efforts are needed for the production
of the enzymes, since expressed enzymes accumulate in
plant organs such as leaves or stems while the plants grow.
Alternatively, PCDEs can be transiently produced in plants
via Agrobacterium-tumefaciens-mediated transient expres-
sion. Compared with stable transformation, the use of a
detached wildtype plant as a host for transient expression is
advantageous, since it minimizes the environmental impact
of genetically modified (GM) crops. In addition, A. tume-
faciens-treated plants can produce enzymes for a period of
several days [56]. It is assumed that most works reviewed
in this paper were performed using transgenic plants unless
otherwise specified as there are a very few reports on the
transient expression of PCDE:s.

For expression of PCDEs, careful selections of host
plants, target genes, and expression vectors are essential not
only to obtain high-level gene expression but also to reduce
the cost of enzyme production, and facilitate pretreatment
and hydrolysis of biomass. Along with a few different
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TasLE 2: Factors to consider in plant-based expression of plant cell wall degrading enzymes.
Category Exemplary factors associated with a common strategy

Expression type

Selection between stable transformation in a transgenic plant and transient expression in a

wildtype plant

Composition of biomass
Ease of DNA cloning

Host plant

Productivity of a plant crop

Selection between monocot and dicot plants

Development of fusion protein

Function and properties of enzyme for example, Thermal stability
Gene Subcellular protein localization using transit peptide

Synthetic gene design for example, Codon/UTR optimization

Use of plant cell wall modifying enzyme

Development of viral expression system for transient gene expression
Easy selection markers for stably transformed plants

Expression vector Optimal promoter

RBS optimization for example, Kozak’s context sequence for monocot
Selection between constitutive and inducible systems

Change of enzyme stability with time

Cleavage of holoenzyme for example, Truncated enzyme

Comparison of plant produced enzyme with E. coli produced enzyme
Effect of plant crude extract on enzyme stability

Functional analysis

Expression of multiple enzymes

Microscopic analysis of protein localization
Physical properties for example, Activity optima, thermal stability
Posttranslational modification for example, Glycosylation

Purification process

Compositional and structural change in transgenic plant

Phenotype analysis of transgenic plant

Deleterious phenotype change for example, Fertile, pale leaves
Location of protein accumulation for example, High level accumulation in leaf or stem

New beneficial traits for example,Resistance to pathogens

Application of enzyme cocktails
Composition and property of cellulosic biomass

Biomass hydrolysis

Induction of in-planta hydrolysis

Optimal combination of enzymes
Resistance of enzymes to pretreatment process

common dicot plants such as tobacco [57-60], and Ara-
bidopsis [61], a few monocot plants such as sugar cane [62],
maize [63, 64], rice [65], and duckweed [66] have been
used for the expression of cellobiohydrolase CBH1/CBH2
[62, 63], endoglucanase [57, 60, 62, 63, 67], exoglucanase
[60, 67], B-glucosidase [60, 67], xylanase [59, 61, 67], f3-
mannanase [9], pectate lyases [67], and cutinase [67].
Considering productivity of plant crops in pounds per acre,
some popular biofuel monocots, such as Miscanthus and
switchgrass, can be a promising host for in-planta expression
of cellulases. However, to date, no reports on in-planta
expression in biofuel monocotyledons has been published.
To avoid self-deconstruction by the expressed PCDEs during
growth and to produce highly stable enzymes, thermophilic
or hyperthermophilic enzymes are commonly produced in
plants [9, 57, 58, 60, 61, 63, 64, 66, 67]. This is perhaps
one of the biggest differences when compared with cellulase
expression in E. coli or Z. mobilis.

For development of expression vectors, the CaMV
(cauliflower mosaic virus) 35S promoter has commonly been

used. However, the use of an enhanced 35S promoter with
5" tobacco etch virus-derived untranslated leader [58] and
maize pepC promoter [62] has been reported. To enhance
heterologous expression of bacterial or fungal genes in
plant, codon optimized synthetic genes might be considered
[61, 63]. As an alternative to nuclear integration of genes,
overexpression was achieved when an expression cassette was
integrated into the chloroplast genome [9, 60, 67].

To increase the level of protein accumulation or maintain
high enzyme activity, a commonly adopted approach might
be protein subcellular localization by incorporation of a
transit peptide into a gene construct. Harrison et al. obtained
a higher level of cellobiohydrolase and endoglucanase
accumulation when they were fused to a vacuole-sorting
determinant rather than an ER retention signal peptide, and
the highest level of the endoglucanase was achieved when
targeted to chloroplasts [62]. Kim et al. examined three
different sources of chloroplast targeting transit peptides
such as the light-harvesting chlorophyll a/b-binding protein,
Rubisco small subunit (RS), and Rubisco activase. They
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FIGURE 2: The combination of in-planta expression of PCDEs and synthetic CBP cellulolytic microbes can provide effective production of

cellulosic biofuels.

found that the RS signal peptide favored the highest level
of accumulation of cellulase, Cel5A, in transgenic tobacco
plants [57]. Jiang et al. directly compared three different
subcellular locations of endoglucanase, E2. They achieved
the highest enzyme activity when E2 was directed to apoplast
by using CLASP (tobacco calreticulin signal peptide) and
the lowest enzyme activity from the cytosolic E2 [58]. The
study by Hood et al. also supported the idea that protein
subcellular localization is a key condition that determines
protein accumulation level [63]. The highest endoglucanase
El accumulation was observed when E1 was targeted to the
ER or vacuoles; on the other hand, the activity of CBH I was
not detected when it was targeted to vacuole.

Despite successful demonstrations of the subcellular tar-
geting approach, further investigations are needed to deter-
mine the best subcellular organs or plant compartments
especially when PCDEs are expressed in a senescing plant
where proteolytic activity is high and cellular constituents
are remobilized. If a large portion of harvested plant biomass
is already senesced, high-level accumulation of PCDEs in
the senesced plant or even in dead woody parts of plant
biomass could be achieved. It is interesting that when the
barley a-amylase signal peptide was used to direct xylanase
to apoplast, the highest accumulation of xylanase was found
in dried stems [61]. As an alternative, Hood et al. expressed
thermostable cellulase enzymes in maize seed [63] and

Llop-Tous et al. reported a new approach for the production
of insoluble aggregates of active xylanase by incorporation of
a proline-rich domain of the maize-storage protein into the
xylanase-coding sequence [59]. Meanwhile, typical protein
accumulation levels of various enzymes in plants ranged
between 0.001% and 26% in total soluble protein [53].
While expressing PCDEs, transgenic plants still tended
to show a normal phenotype and traits. This might be
because of the expression of thermostable enzymes, which
are inactive at room temperature or because the enzymes
were localized in safe subcellular organs or spaces, and the
protein accumulation levels were not sufficient to cause self-
deconstruction. Kim et al. reported no changes in phenotype
in transgenic tobacco plants expressing Cel5A [57], and
Verma et al. observed normal phenotype of Arabidopsis lines
expressing CelD, PelB, or PelD [67]. Xylanase-expressing
Arabidopsis did not show any deleterious effects on pheno-
type when compared with wildtype plants [61]. In contrast,
transplastomic tobacco plants expressing PCDEs from the
chloroplast genome showed a mild phenotypic change in leaf
color [9]. Significant phenotypic changes, such as poor plant
growth and severe pigment deficiency, were more obvious
in homoplasmic plants than in heteroplasmic plants [60].
Interestingly, expression of PCDEs may confer beneficial
traits in transgenic plants. For instance, the expression of
pectate lyase in tobacco plants improved bacterial resistance



to pathogenic E. carotovora probably through induction of
protective immune response in plants [67].

With respect to the properties of heterologous enzymes,
as plants can process posttranslational modifications, appar-
ent molecular masses of enzymes can be increased probably
because of glycosylation and other posttranslational mod-
ifications [59, 62]. If a PCDE has multiple domains such
as carbohydrate-binding domain (CBD), linker peptide, and
catalytic domain, the linker peptide can be cleaved from the
holoenzyme depending on the type of enzyme, host plant,
and expression method. Harrison et al. reported a decrease
in the apparent molecular weights of the expressed CBH
I and CBH II in transgenic sugarcane; on the other hand,
bacterial EG, which has a monodomain without a CBD,
showed the expected molecular mass [62]. Interestingly,
PCDEs produced by plants tended to show stability at higher
temperature and pH than did those produced by E. coli.
Verma et al. directly compared enzyme stability between E.
coli- and plant-chloroplast-derived PelB, PelD, CelD, and f3-
mannanase enzymes at different pH and temperatures. They
found that chloroplast-derived enzymes exhibited better
stability than E. coli-derived enzymes did [9, 67]. They also
showed that when E. coli crude extract containing cell-wall-
degrading enzyme was directly loaded in a reaction medium,
a high protein concentration reduced enzyme activity; on the
other hand, plant extract did not show a reduction in enzyme
activity at high protein loading [67].

Since cellulose pretreatment at high temperature allows
easy mixing, better substrate solubility, high mass transfer
rate, and lowered risk of contamination, the use of plant-
expressing thermostable cellulases in cellulosic biofuel pro-
duction is a promising approach. In addition, due to high
temperature and self-deconstruction, in-planta expression
helps easy access of externally added catalyst (PCDEs)
to inside of plant biomass by loosening cross-linked wall
polymers where difficult diffusion has been a significant
bottleneck during pretreatment and conversion of lignocel-
lulose to simple sugars. Thus, it may be a good combination
between plant-based expression and synthetic CBP for
synergistic effect on the production of advanced biofuel
(Figure 2).

6. Conclusion

For efficient biofuel production, the expression of plant
cell wall degrading enzymes in a host organism requires
extensive coupling with bioprocessing of cellulosic biomass.
Although diverse strategies depending on the unique feature
of each host organism or expression system are available,
as previously described, they all aim to achieve the same
goal: a high-level production of multiple cellulase enzymes
and simultaneous hydrolysis and fermentation of cellulosic
biomass. At the present time, the future of currently available
competing technologies is difficult to predict; moreover,
the most efficient host organism among E. coli, Z. mobilis,
fungus, and plant is difficult to determine. However, it is
likely that a viable platform will be generated through the
integration of multiple existing and future technologies.
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