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Abstract

Genome-wide association studies (GWAS) of body mass index (BMI) using large samples have
yielded approximately a dozen robustly associated variants and implicated additional loci.
Individually these variants have small effects and in aggregate explain a small proportion of the
variance. As a result, replication attempts have limited power to achieve genome-wide
significance, even with several thousand subjects. Since there is strong prior evidence for genetic
influence on BMI for specific variants, alternative approaches to replication can be applied.
Instead of testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the
total number of risk alleles can be tested. In the current study, GRSS comprising 56 top variants
catalogued from two large meta-analyses was tested for association with BMI in the Molecular
Genetics of Schizophrenia controls (2,653 European-Americans, 973 African-Americans). After
accounting for covariates known to influence BMI (ancestry, sex, age), GRSS was highly
associated with BMI (p value = 3.19E-06) although explained a limited amount of the variance
(0.66%). However, area under receiver operator criteria curve (AUC) estimates indicated that the
GRSS and covariates significantly predicted overweight and obesity classification with maximum
discriminative ability for predicting class 111 obesity (AUC = 0.697). The relative contributions of
the individual loci to GRSS were examined post hoc and the results were not due to a few highly
significant variants, but rather the result of numerous variants of small effect. This study provides
evidence of the utility of a GRSS as an alternative approach to replication of common polygenic
variation in complex traits.

Introduction

Obesity is a general medical condition, defined clinically by a body mass index (BMI)
greater than 30 kg/m? and is associated with increased risk of cardiovascular disease, type Il
diabetes, cancer and poor quality of life (National Center for Health Statistics 2007; Ogden
et al. 2007; Kopelman 2000). The National Center for Health Statistics reports over 34% of
American adults are obese with another 34% meeting criteria for being overweight (National
Center for Health Statistics 2007; Ogden et al. 2006). Although increase in energy intake
with reduced physical activity contributes to the increase in obesity, genetic factors have
consistently been demonstrated to influence individual differences in BMI, with twin and
family studies estimating heritabilities of ~0.70 (Maes et al. 1997; Silventoinen and Kaprio
2009).

Genome-wide association studies (GWAS) have successfully identified polymorphisms that
contribute to disease risk for numerous complex traits and diseases (Wellcome Trust Case
Control Consortium 2007). GWAS for BMI and obesity using sample sizes in the tens of
thousands have yielded many putative risk variants of individually small effect. The first
common single nucleotide polymorphisms (SNPs) associated with BMI and common
obesity were in the fat mass and obesity-associated (FTO) gene and near melanocortin 4
receptor (MC4R) and have been widely replicated (Frayling et al. 2007; Dina et al. 2007;
Herbert et al. 2006; Scuteri et al. 2007; Hinney et al. 2007; Loos et al. 2008; Chambers et al.
2008). Additionally, two large-scale BMI metaanalyses, Thorleifsson et al. (2009) and
Willer et al. (2009), yielded 13 genetic loci reaching genome-wide significance, including
the previously implicated variants in or near FTO and MC4R. These variants were highly
significant but had modest effects with 0.06-0.4 kg/m? per allele change in BMI and modest
obesity (BMI>30 kg/m?) odds ratios ranging 1.03-1.3. Although many loci are expected to
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contribute to a complex trait like BMI, the large number implied by the current result was
unexpected to many (Yang et al. 2005; Maher 2008). Despite the large sample size (r7>000),
Willer et al. (2009) estimated 5-10% power to detect genome-wide significant variants with
effect sizes of 0.06-0.1 BMI units per allele. Therefore, it is likely that many variants
influencing BMI did not reach genome-wide significance in these metaanalyses.

Replication attempts using studies unselected for BMI have limited power to achieve
genome-wide significance, even with thousands of subjects (Sebastiani et al. 2009). Since
there is strong a priori evidence for genome-wide significant and suggestive variants from
the large metaanalyses, alternative approaches to replication can be applied. Instead of
testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the total
number of risk alleles can be constructed and tested. The aggregate risk should be significant
if a sufficient proportion of the variants have real effects. GRSS have been used to test the
total impact of associated variants on complex traits and disease. For example, Aulchenko et
al. (2009) used 54 variants in a GRSS which accounted for ~4% of the phenotypic variance
in height. Risk scores incorporating 18-20 genome-wide significant variants have been
shown to be associated and predictive of type Il diabetes, though algorithms including
family history and additional risk factors perform better (Meigs et al. 2008; Talmud et al.
2010). GRSS have also been applied to BMI and obesity in populations of European and
Chinese descent which incorporated 8-15 variants and accounted for 0.5-1.12% of the
phenotypic variance (Thorleifsson et al. 2009; Willer et al. 2009; Renstrm et al. 2009; Zhao
et al. 2009; Li et al. 2010; Cheung et al. 2010). Presently, BMI GRSS have only
incorporated genome-wide significant variants. However, research by Evans et al.(2009)
suggests that in some cases, including bipolar disorder, coronary heart disease, hypertension
and type Il diabetes, using liberal thresholds (a = 0.5) for SNP selection in GRSS may
improve predictive ability.

The purpose of this study was to test a GRSS comprising replicated genome-wide significant
variants as well as additional variants with suggestive evidence catalogued from large-scale
meta-analyses for association with BMI in 2,653 European-Americans and 973 African
Americans from the Molecular Genetics of Schizophrenia control sample (MGS-C). Based
on the expected BMI effect sizes of 0.05-0.3 kg/m? per allele change in BMI, the MGS-C
sample would have limited power to detect genome-wide significant variants for individual
loci. However, the aggregate risk should be adequate if a sufficient proportion of the
reported variants are real. Therefore, these analyses serve as a replication attempt of top
variants catalogued from large-scale meta-analyses via a sum score approach.

Materials and methods

Participants and phenotypes

The MGS-C sample has been previously described in detail (Sanders et al. 2008; Shi et al.
2009; Sanders et al. 2010). In summary, Knowledge Networks, Inc., a survey research
company, recruited self-identified non-Hispanic European-American and African-
Americans from a nationwide panel of survey participants, which was assembled by random
digit dialing except 772 of the African-Americans were recruited through a subcontract to
Survey Sampling International by internet banner advertisement recruitment. The
institutional review board approval was obtained at NorthShore University HealthSystem
and participants completed an online consent with an identical hard-copy consent signed at
venipuncture. Participants completed an online questionnaire, available at
http://nimhgenetics.org, which included items on height and current weight. BMI was
calculated from respondents’ self-reported height and current weight. Participants were
removed from data analysis if there were missing data on either height or weight or if
calculated BMI was less than 15 or greater than 60 as values not in this range were likely
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data entry errors. There were 2,653 European-Americans and 973 African Americans
included in the present study. Phenotypic details are displayed in Table 1 with full sample
characteristics found in Sanders et al. (2010).

Venipuncture for DNA extraction and establishment of lymphoblastoid cell lines was
completed at Rutgers University Cell and DNA Repository. DNA samples were genotyped
using the Affymetrix 6.0 array at the Broad Institute. There were 3,827 participants
genotyped (n= 2,817 European-American, 7= 1,010 African American) of which 3,626
(95%) passed stringent quality control criteria. Principal component (PC) scores reflecting
continental and within-Europe ancestries of each subject were computed and outliers were
excluded. Genomic control A values for autosomes after quality control procedures were
1.005 for African-American and 0.998 for the European-Americans.

Selection of 56 SNPs

Preliminary SNP selection identified 78 variants meeting criteria for genome-wide or
suggestive significance in either of two large meta-analyses of BMI, 43 from Thorleifsson et
al. (2009) and 35 from Willer et al. (Thorleifsson et al. 2009; Willer et al. 2009).
Thorleifsson and colleagues report genome-wide significant (p < 1.6E-07) associations with
29 SNPs in 11 chromosomal regions, using a discovery sample of 7= 34,416 and replication
sample of 7=5,586. The Willer et al. meta-analysis detected 8 genome-wide significant (p <
5.0E-08) SNPs in first- and second-stage samples of 7= 32,387 and 7= 54,3186,
respectively. Only variants in or near FTO and MC4R were found to be genome-wide
significant in both meta-analyses. The remaining genetic loci were suggestive in the
opposing metaanalyses (p < 0.05) except rs7138803 on 12q13 (p = 0.14). Significance level
for one SNP, rs10938397 on 4p12, could not be compared between meta-analyses because
there was no corresponding proxy SNP. Of the 78 variants catalogued, 29 had matching
SNPs on the Affymetrix 6.0 array. For the 49 SNPs not present, proxies (45 /2> 0.8; 4 /2 >
0.7) were identified using SNP Annotation and Proxy Search V2.1 (Johnson et al. 2008).
Following removal of seven duplicate proxies and six variants from Willer et al. for which
no proxies were available (/2 > 0.7), 65 SNPs remained. Haploview version 4.10 was used to
determine phase and corresponding proxy alleles (Barrett et al. 2005; Barrett 2009). In order
to avoid bias due to correlated effects, SNP pruning (/2 > 0.8) was performed using PLINK
v. 1.07p (Purcell et al. 2007). Of the 56 remaining SNPs, 19 met genome-wide significance
criteria in the two meta-analyses. The additional 37 were included as they were the next top
SNPs reported (p < 0.05). Although our SNP selection threshold was more liberal than the
traditional genome-wide significance threshold, it was more conservative than other models
of complex disease risk prediction (Evans et al. 2009; Purcell et al. 2009). Supplemental
Table 1 details information on the 78 catalogued SNPs.

Genetic risk sum score

Under an additive model, 56 variants were used to construct the GRSS. The use of an
additive model was chosen as specific non-additive effects have yet to be associated and
confirmed in the literature. The GRSS was calculated by summation of the number of risk
alleles across the 56 variants divided by the number of SNPs in the score to obtain an
average number of risk alleles per locus. GRSS were calculated using the profile option in
PLINK. If SNP information was missing in an individual then the scoring routine imputed
expected values based on sample allele frequency. R version 2.20.0 was used to fit linear
regression models using standard covariates and GRSS as predictors with BMI as the
outcome variable. To facilitate interpretation ofeffects in linear models independent
variables were centered.

Hum Genet. Author manuscript; available in PMC 2012 July 24.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Peterson et al.

Page 5

Prediction of obesity

Results

One method to assess diagnostic efficiency is to graph a receiver operator criteria (ROC)
curve, which is a plot of the true positive rate (sensitivity) against the false positive rate (1 —
specificity) and calculate the corresponding area under the curve (AUC). An AUC may
range from 0.5, non-informative, to a maximum of 1.0, perfect discrimination between cases
and controls. An AUC is the probability that the predictor is greater for cases than controls
(Armitage and Colton 2005; Hanley and McNeil 1982). Generally, an AUC of 0.80 is
suitable for screening while 0.99 is acceptable for diagnosis (Janssens et al. 2006). To test
various BMI thresholds, current BMI was dichotomized to create categories of overweight
and obesity class I, 11 and 111 which had corresponding ranges of BMI > 25, 30, 35 and 40
kg/m2, respectively. Binary logistic regression was used to calculate predicted probabilities
of the models and was used as the predictor to generate ROC curves. Discriminative
accuracy of the GRSS and covariates (molecularly derived ancestry, sex, age, ancestry by
sex interactions) to predict BMI category was estimated by calculating the AUC from ROC
curves using PASW Statistics version 17.0.

Phenotypic detail

Descriptive statistics for age and BMI are presented by race and sex in Table 1. The mean
age of participants was 48.8 and ranged from 18 to 90 and as depicted in Supplemental Fig.
1 produced a relatively normal distribution. BMI was not significantly associated with age
(p=0.135; Supplemental Fig. 2). Males were significantly older than females and
European-American females and males were significantly older than African-American
females and males (p < 0.0001). When partitioning the sample by clinically established BMI
(kg/m?) categories, 29.0% was either under or normal weight (BM1<25), 33.4% was
overweight (25 < BMI < 30), 20.4% was obese class 1 (30< B BMI < 35), 9.5% was obese
class Il (35 < BMI < 40) and7.7% was obese class 111 (40 < BMI). There was a significant
ancestry by sex interaction with BMI. As expected, females had significantly greater BMI
than males with African-American females having greater BMI than European-American
females and African-American males having greater BMI than European-American males (p
<0.0001). Phenotypic findings in the MGS-C sample are consistent with cross-sectional data
from the National Center for Health Statistics and National Health and Nutrition
Examination Study (Wang et al. 2008), finding obesity more prevalent in women and
African-Americans. Additional sample characteristics have been previously reported
(Sanders et al. 2010).

Genetic risk sum score

Fifty-six variants catalogued from two large-scale BMI meta-analyses were used to
construct the GRSS (Thorleifsson et al. 2009; Willer et al. 2009). These variants were
summarized in the GRSS which was calculated by summation of the number of risk alleles
across the SNPs for each individual divided by the number of SNPs in the score to achieve
an average allele count. The frequencies of GRSSs are shown in Fig. 1 and produced a
relatively normal distribution. The mean GRSS, or average number of risk alleles present
per locus, was 0.494 (SD = 0.052) with a range from 0.318 to 0.691 which corresponds to an
average of 55 risk alleles per person with a range from 35 to 77.

Results from linear regression analyses are presented in Table 2. Standard covariates known
to influence BMI (ancestry, sex and age) were included in the models. Described previously
(Sanders et al. 2008; Shi et al. 2009), 224 ancestry informative markers were used to
construct 10 PC scores designed to discriminate between European, African, Ameri-Indian
and Asian ancestry. PC1 (distinguishes European from African ancestry) and PC4
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(distinguishes Eastern and Western European ancestry) were significantly associated with
BMI and therefore included as covariates. Interactions between the covariates were tested
and significant interactions were found between PC1 and sex and PC4 and sex. No other
interactions between the covariates were significant. Model 1, the base model, included the
standard covariates and the significant interactions between ancestry PCs and sex and
accounted for 3.5% of the variance in BMI. Model 2, which added the GRSS to the base
model, fits significantly better [ ~(1,3027) = 21.8, p= 3.2E-06] and accounted for an
additional 0.66% of phenotypic variance in BMI for a total of 4.1%. We note that the GRSS
accounted for more of the variance in BMI than either sex or age. Interactions between the
covariates and the GRSS were tested but no significant interactions were found (presented in
Supplemental Table 2). Therefore, our results suggest that GRSS was equally associated
with BMI in men and women, in European- and African-Americans and across all ages.

The relative contributions of the individual loci to the GRSS were examined post hoc by
dropping the most significantly associated SNP from the score iteratively until the score was
no longer statistically associated with BMI. As depicted in Fig. 2, the GRSS reached non-
significance after dropping the top 23 variants.

Prediction of obesity

To test the discriminative accuracy of the GRSS and covariates (molecularly derived
ancestry, sex, age, ancestry by sex interactions) to predict obesity, ROC curves were plotted
and the corresponding AUC were calculated. To test various BMI thresholds, current BMI
was dichotomized to create categories of overweight and obesity class I, 11 and I11. Table 3
displays statistics from ROC curve analysis by BMI category. AUC estimates indicated that
the model significantly predicted overweight and obesity classification with maximum
discriminating ability when predicting class 111 obesity (AUC = 0.697, 95% CI = [0.663,
0.731]). We note that the clinical setting may prefer to use self-identified ancestry as
opposed to molecularly derived ancestry in risk prediction because of genotyping cost. In
the MGS-C data, the use of self-identified ancestry did not greatly change AUC estimates.
For example, when predicting BMI > 30 kg/m?, an AUC = 0.588 was reported when using
molecularly derived ancestry versus an AUC = 0.586 when using self-identified ancestry in
the model (full data not shown).

Discussion

In this paper, we have constructed a GRSS comprising 56 common polygenic variants and
shown its association with BMI in 2,653 European-Americans and 973 African-Americans
from the MGS-C sample. The GRSS was highly associated with BMI (p value = 3.19E-06)
and accounted for 0.66% of phenotypic variance in BMI. The association of the GRSS with
BMI was comparable to sex, a known factor to influence body composition. The average
effect of carrying 10 risk variants was an increase in BMI of 1.1 kg/m2. This corresponds to
a weight increase in an average male (5 feet 9 inches, 180 Ib) of 8 Ib and an average female
(5 feet 4 inches, 155 Ib) of 7 Ib. Further, we have shown the association of the GRSS with
BMI was not the result of the few most significant SNPs but rather the aggregate of many
SNPs of small effect. These results are consistent with the common disease common
variants hypothesis indicating genetic variants common in the population with small effects
contribute to the heritability of common traits and diseases.

ROC curves and the corresponding AUC estimates indicated statistical discriminative ability
to predict obesity (BMI > 30 kg/m2, AUC = 0.588, 95% CI = [0.567, 0.610]). AUC
estimates were similar to those found in previous studies. For example, Renstrom et al.
(2009) used a genetic score of 9 SNPs and reported an AUC estimate of 0.575 in a sample of
353 obese and 1,370 normal weight diabetic and non-diabetic northern Swedes.
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Additionally, a study by Cheung et al. (2010) estimated an AUC of 0.582 with a genetic
score including 13 SNPs in a Chinese sample of 470 obese cases and 700 normal weight
controls. Although these AUC estimates were statistically significant, they were below 0.8,
the threshold used in clinical practice for screening. In the MGS-C sample, however, the
ability to predict morbid obesity (class 111) was notably better and approached clinical
criteria for a screening test (AUC = 0.697, 95% CI = [0.663, 0.731]).

In the MGS-C sample, 4.1% of the phenotypic variance in BMI was accounted for using a
model including sex, ancestry based on molecular derived principal components, age, and a
GRSS comprising 56 SNPs. Despite high heritability of BMI, much variance in BMI
remains unaccounted for. Based on the progress in identifying loci influencing height, it is
likely that a considerable portion of the *missing heritability’ resides in unidentified variants
yet to be discovered by larger sample sizes (Yang et al. 2010). Large-scale international
collaborative groups will be required to identify these additional variants with similar and
smaller effect sizes.

Additionally, predictive models have yet to include other sources of variation known or
hypothesized to influence BMI such as rare variants, gene—gene (GxG) or gene—
environment (GxE) interactions, copy number variation, and epigenetic effects. For
instance, rare variants which were not included in the current genetic risk profiles are likely
to contribute to BMI heritability. For example, in a study by Blakemore et al. (2009), a rare
variant in the visfatin gene was associated (p value = 8.0E-5, minor allele frequency 1.6%
in control and 0.4% in obese subjects) with reduced risk for obesity. There is also evidence
to support the influence of copy number variation (CNV) on BMI. In the Willer et al. (2009)
meta-analysis, when examining CNV by SNP-CNV linkage disequilibrium, they found 10-
kb and 45-kb deletion polymorphisms upstream of NEGR1 with the 45-kb deletion flanked
by their two most associated BMI SNPs. The recent advent of SNP arrays designed for CNV
detection may reveal additional genetic associations with BMI. Epigenetic variation,
although more widely researched in syndromic obesity such as Prader-Willi, may also be
linked to common obesity. Finally, GxG interactions have yet to be included in risk
prediction of body composition. Twin studies support the role of non-additive genetic effects
although most study designs have limited ability to detect them (Maes et al. 1997; Flint and
Mackay 2009).

Since obesity has increased dramatically while the genome has arguably remained stable,
future research needs to address moderation effects of the environment. Known obesogenic
factors such as physical activity and food intake have been shown to account for a
significant portion of the variance in BMI with estimates ranging 5-10% (Chambers and
Swanson 2010; Newby et al. 2006; French et al. 1994; Jebb and Moore 1999). Additionally,
research is beginning to elucidate GXE affecting BMI (Rampersaud et al. 2008; Lappalainen
et al. 2009; Qi et al. 2008; Brandsttter et al. 2009; Razquin et al. 2010). At least two genes
included in the current GRSS show evidence for GxE effects. For example, Rampersaud et
al. (2008), in a study of 704 Old Order Amish, found the effects of FTO variants associated
with elevated body weight were attenuated in subjects with higher physical activity levels.
Additionally, interactions between MCR4 and dietary intake and selection have been shown
in model organisms (Fan et al. 1997; Huszar et al. 1997; Marsh et al. 1999; Chen et al.
2000). For example, mice when given a 3-choice diet and administered a melanocortin
agonist preferentially decreased fat consumption (Samama et al. 2003). Further, variation in
human MCR4 has been associated with binge eating (Branson et al. 2003; Potoczna et al.
2004; Valladares et al. 2010) and with higher total energy intake and selection of foods high
in dietary fat (Qi et al. 2008). BMI prediction models will benefit from incorporating known
obesogenic environmental variables such as physical activity and food selection and intake.
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The purpose of this study was to test a GRSS as an alternative approach to replication of
association of common polygenic variation with BMI. As hypothesized the MGS-C sample
had limited power to replicate individual loci when employing genome-wide significant
thresholds even though there was strong a priori evidence of these variants to influence
BMI. However, by constructing a GRSS summarizing the total number of risk alleles, the
aggregate risk was found to be highly significantly associated with BMI. This study
provides evidence of the utility of GRSS as an alternative approach to replication of
common polygenic variation in complex traits. Furthermore, the results from the AUC
analysis demonstrate meaningful progress towards a screening test that perhaps if used in
conjunction with known obesogenic predictors such as physical activity and food selection
and intake could identify persons for early environmental or medical intervention to prevent
morbid obesity and the associated negative health consequences.
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Fig. 2. Number of SNPs in genetic risk sum score by —log significance of score. GRSS genetic risk

sum score, —log negative logarithm base 10, SNPssingle nucleotide polymorphisms
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Table 1

Descriptive statistics by race and sex

Group n Mean sD
AA males 381
Age 46.59 13.39
BMI 29.62 5.95
AA females 592
Age 4489 1293
BMI 31.90 8.12
EA males 1,269
Age 52.72 16.04
BMI 28.39 5.41
EA females 1,384
Age 4859 16.42
BMI 28.87 7.48

AA African-American, £A European-American, Age age in years, BM/body mass index (kg/m2)
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Linear models predicting BMI

Table 2

Model Estimate

SE

t

p value

Model 1: covariates [Fg 3026) = 19.18, pvalue < 2.2E-16, adj. A2 =0.0347]

Intercept 29.18
PC1 94.78
PC4 -49.19
Sex 1.03
Age 0.01
PC1 x sex 84.31
PC4 x sex -76.07

0.12
11.99
19.05

0.24

0.01
24.00
38.00

238.36
7.90
-2.58
4.16
1.49
3.51
-2.00

<2E-16
3.8E-15
0.009
3.2E-05
0.135
4.5E-04
0.045

Model 2: covariates including GRSS [A(7 3027) = 19.66, p value <2.2E-16, adj. A2 =0.0413]

Intercept 29.18
PC1 110.69
PC4 -51.66
Sex 1.03
Age 0.01
PC1 x sex 85.57
PC4 x sex -74.42
GRSS 11.41

0.12
12.43
18.99

0.24

0.01
23.91
37.87

2.44

239.17
8.90
-2.72
4.20
1.50
3.57
-1.96
4.66

<2E-16
<2E-16
0.006
2.7E-05
0.132
3.5E-04
0.049
3.2E-06

Page 17

BMI body mass index (kg/mz), GRSS genetic risk sum score, PCI principal components score distinguishes European from African ancestry, PC2

principal components score distinguishes Eastern from Western European ancestry, adj. R adjusted R2.
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Table 3
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Discriminative accuracy of genetic risk sum score and covariates predicting BMI category

Group n (%)

AUC [CI]

Asy. Sig.

Overweight 2,157 (71.1)
Obese 1 1,139 (37.5)
Obese 2 519 (17.1)
Obese 3 232 (7.6)

0.613 [0.591,0.635]
0.588 [0.567,0.610]
0.647 [0.621,0.673]
0.697 [0.663,0.731]

1.21E-22
3.11E-16
5.32E-26
1.75E-23

Predictors included in models: molecularly derived ancestry (principal components PC1 and PC4), sex, age, PC1 by sex and PC4 by sex

interactions and genetic risk sum score

BM/body mass index (kg/mz), AUC area under the receiver operator criteria curve, Asy. Sig. asymptotic significance, Overweight BMI > 25 kg/

m2, Obese /BMI > 30 kg/m2, Obese 1/ BMI > 35 kgim2, Obese /1/ BMI > 40 kg/m?
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