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Abstract
We consider a Bayesian analysis using WinBUGS to estimate the distribution of usual intake for
episodically consumed foods and energy (calories). The model uses measures of nutrition and energy
intakes via a food frequency questionnaire (FFQ) along with repeated 24 hour recalls and adjusting
covariates. In order to estimate the usual intake of the food, we phrase usual intake in terms of person-
specific random effects, along with day-to-day variability in food and energy consumption. Three
levels are incorporated in the model. The first level incorporates information about whether an
individual in fact reported consumption of a particular food item. The second level incorporates the
amount of intake from those individuals who reported consumption of the food, and the third level
incorporates the energy intake. Estimates of posterior means of parameters and distributions of usual
intakes are obtained by using Markov chain Monte Carlo calculations. This R function reports to
users point estimates and credible intervals for parameters in the model, samples from their posterior
distribution, samples from the distribution of usual intake and usual energy intake, trace plots of
parameters and summary statistics of usual intake, usual energy intake and energy adjusted usual
intake.
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1. Introduction
There are many statistical challenges when modeling food intakes reported on two or more 24
hours recalls. Some of the challenges involve the presence of measurement error because
estimating the distribution of usual intake of nutrients and foods in the population involves
monitoring and measuring such intakes over time and their associated recall biases. In addition,
many consumers report episodically consumed foods, foods that are not typically consumed
every day. For example, fish may be reported in a particular day with a positive intake, but on
a different day fish intake may equal zero. Consequently, it is difficult to estimate nutrition
intake with recall surveys when one of these recalls incorporate excess zero measurements.
Data of this nature is often modeled with measurement error models with zero inflated data.

Recently, in nutritional surveillance (Tooze et al. 2006) and nutritional epidemiology (Kipnis
et al. 2009) two-part methods had been developed for analyzing episodically consumed foods.
In the first part of the model, the probability of an episodically consumed food is estimated
using logistic regression with a person-specific random effect. Then, in the second part of the
model the amount of that episodically consumed food per day is modeled using linear
regression on a transformed scale with also a person-specific effect. These two parts are linked
allowing that the two person-specific effects are correlated as well as by allowing common
covariates in both parts of the model. This method is known as the “NCI
method” (http://riskfactor.cancer.gov/diet/usualintakes/).

An extension into a three-part method that also incorporates the estimation of the amount of
energy intake consumed per day is described in detail by Kipnis et al. (2010). These authors
estimated this three-part method using nonlinear mixed effects models with likelihoods
computed by adaptive Gaussian quadrature in SAS software. However, computationally it was
found to have serious convergence issues within the context of nutritional epidemiology and
nutritional surveillance as indicated by Kipnis et al. (2010) and Zhang et al. (2010).

The goal of this article is to present a function for the implementation of this nonlinear mixed
effects model. The function Intake_epis_food() allows readers to input their data in R (R
Development Core Team 2009) to generate and run the script of the three part model in
WinBUGS (Spiegelhalter et al. 1999) and to run and obtain output simulations to R using the
package R2WinBUGS (Sturtz et al. 2005). While the most important functions of the package
R2WinBUGS are illustrated, we do not provide comprehensive documentation here; instead the
reader is referred to the manual and online documentation with that package available from
the Comprehensive R Archive Network at http://CRAN.R-project.org/package=plink. In the
next sections, the function and corresponding algorithms are explained and an example is
provided.

2. Method and parameter inference
The computational details of the Bayesian approach to fit the three-part model for an
episodically consumed food and energy model (Kipnis et al. 2010) through Markov Chain
Monte Carlo techniques are provided by Zhang et al. (2010) with a brief summary given here.
Our model takes into consideration measures of nutrition and energy intakes via a food
frequency questionnaire (FFQ) along with two repeated 24 hour recalls (24hr) and adjustment
covariates. These two repeated 24hr provide information on the amounts of food and energy
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consumed by each individual. Consequently, an indicator variable of whether the food was
consumed can be generated from the reported amount of food consumed. In addition, because
two or more 24hr require distinguishing between and within person random error (Eckert et
al. 1997), a type of classical measurement error is needed. Generally nutritional data are
skewed, which may require transformations to reach normality and standardization. For person
i = 1, …, n, and for the k = 1, 2 repeats of the 24hr, the data are Ỹik = (Yi1k, …, Yi3k)

T, where

• Yi1k = Indicator of whether the food is consumed.

• Yi2k = Amount of the food consumed as reported by the 24hr, which equals zero if
the food is not consumed.

• Yi3k = Amount of energy consumed as reported by the 24hr.

We will use a Box-Cox transformation to account for the skewness in the data. The Box-Cox
transformation with transformation parameter λ, is h(y, λ) = (yλ −1)/λ if λ ≠ 0, and h(y,
λ) = log(y) if λ = 0. We will allow for the user to specify different transformation parameters
λF and λE for food and energy intake, respectively.

After Box-Cox transformation, we further standardize and center these transformed variables
to have a mean of zero and variance of one. This is useful for making the prior distribution
specifications given below to be sensible and allows rapid convergence of the posterior
samples. Specifically, let μλF and σλF be the mean and standard deviation of the transformed
non-zero food data h(Yi2k, λF), and let μλE and σλE be the mean and standard deviation of
the transformed energy data h(Yi3k, λE). Then, our analysis is performed using the following
transformations:

(1)

(2)

(3)

There are also covariates such as age category, ethnic status and, in many cases the results of
reported intakes from a food frequency questionnaire. In principle, the covariates can differ
based on the three types of data, so we denote them as Vi1, Vi2, Vi3, which are vector-valued.
To improve linearity and homocedasticity of the model, we follow the recommendations of (i)
implementing Box-Cox transformations on all or some covariates like intakes from a food
frequency questionnaire (Kipnis et al. 2009), (ii) centering and (iii) scaling on all covariates.
Without loss of generality, let λc represent a vector containing the Box-Cox transformation
parameter used for covariates. Let μλc and σλc be the vector means and standard deviations
of the transformed covariates. Then, these transformed, center and scaled covariates are
denoted by:

(4)

(5)

(6)
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Let (Ui1, Ui2, Ui3) = Normal(0, Σu) be random effects associated with consumption, amount
(if the food is consumed), and energy. Similarly, for k = 1, 2, (εi1k, εi2k, εi3k) = Normal(0,
Σε) accounts for day-to-day variation. The model for whether there is consumption can be
stated as:

(7)

where Φ(·) is the standard normal distribution function and (Wi1k, Wi2k, Wi3k) represent their
corresponding latent variables as follows. A food being consumed at visit k is equivalent to

(8)

The food when consumed and energy intake are modeled as

(9)

(10)

The prior distribution of parameters β1, β2, β3 is assumed to be multivariate Normal with
vector mean 0 and variance covariance Σu. An inverse Wishart denoted as IW(Ωu, mu) prior
was specified for Σu. We set Ωu to have an exchangeable correlation structure with starting
values with diagonal entries all equal to 1 and correlations 0.5. We have two necessary
restrictions on Σε: (i) εi1k and εi2k are independent; and (ii) var(εi1k) = 1, so that β1 is
identifiable, along with the distribution of Ui1. Furthermore, we constrained this covariance
matrix using a polar coordinate representation with γ ∈ (−1, 1) and θ ∈ (−π, π). With these
considerations Σε can be written as:

(11)

where p1 = γcos(θ) and p2 = γsin (θ). The recommended prior distributions for s22 and s33
are Uniform(0,3), for γ is Uniform(−1,1) and for θ is Uniform(−π, π) (Zhang et al. 2010).

The corresponding inverse of Σu is a Wishart distribution denoted as , and the
inverse of Σε can be written as:

(12)

where .

2.1. Usual intake analysis
Besides the parameters and the random effects (Ui1, Ui2, Ui3) in this context it is vital to also
have the posterior samples of usual intake TFi, usual energy intake TEi, and energy adjusted
usual intake 1000TFi/TEi, all on the original scale. We used the best-power method (Dodd et
al. 2006) for estimating both usual energy intake and usual intake for person i. We first consider
energy:
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(13)

(14)

where

Similarly, a person’s usual intake of the dietary component on the original scale is defined as

(15)

When λ = 0, the back-transformation and second derivative are:

Similarly, when λ ≠ 0, the back-transformation and second derivative are:

3. Using the Intake_epis_food() function in R
Users must install the R2WinBUGS (Sturtz et al. 2005) package in R and WinBUGS (Spiegelhalter
et al. 1999) before running Intake_epis_food() function. This function assumes that there
are no missing observations. Intake_epis_food() loads the libraries R2WinBUGS, stats
and fSeries automatically.

The Intake_epis_food() function incorporates this three-part model, with truncated
normal random variables for generating the latent Wi1k, and Metropolis-Hastings computations
for α1, α2, α3, β1, β2, β3, the elements of Σu, and Σε. This function generates and runs the
script of this model in WinBUGS and returns Markov Chain Monte Carlo (MCMC) computation.
We emphasize that MCMC computation can either be thought of as a strictly Bayesian
computation with ordinary Bayesian inference, or as a means of developing frequentist
estimators of the crucial parameters. These MCMC produces estimates which are known to be
asymptotically equivalent to maximum likelihood estimators, which are difficult to obtain
(Zhang et al. 2010). In Bayesian terms we used the posterior means of the model. Users are
mainly interested in estimates of equations (14), (15) as well as the energy-adjusted usual intake
1000TFi/TEi.

The Intake_epis_food() function produces seven output files. The first output file contains
parameter estimates (posterior means) of α1, α2, α3, β1, β2, β3 from equations (8), (9) and

(10) as well as Σμ, , Σε, and . The second output file contains summary statistics of
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Bayesian estimates of equations (14), (15) and the energy-adjusted usual intake 1000TFi/TEi.
The third output file contains the iterations from the MCMC computations. The fourth output
file contains summary statistics of Bayesian estimates for Ui1, Ui2, Ui3. The fifth output file
contains trace plots of the intercept and coefficients in equations (8), (9) and (10). The sixth

output file contains trace plots of the variance-covariances Σμ, , Σε and . The seventh
output file contains density plots of equations (15) and the energy adjusted usual intake
1000TFi/TEi.

The default input for the Intake_epis_food() function in R is:

Intake_epis_food(data.file.name="data.file.name",
numcov=4, df=5,lambdaf=0.32,lambdae=0.23,lvar1=999, lvar2=999, lvar3=0.33,
lvar4=0, n.iter=11000,n.burnin=1000, n.thin=10, bugs.seed=123456,
working.directory="C:/", file.estimates="estimates.csv",
file.istats="estimates_intake.csv", file.iterations="iterations.csv",
file.uis="uis.csv", file.tracep="trace_plots.pdf",
file.tpvarcov="trace_plot_var_cov_matrices.pdf",
file.densityp="density_plots.pdf",
bugs.directory="c:/Program Files/WinBUGS14/")

with the following arguments:

data.file.name : name of the file containing the data (default=data.file.name) in the
following order:

• the first variable that identifies individuals, e.g. an ID number

• the next two variables are the 24hr variables of food intake, in order

• the next two variables are the 24hr variables of energy intake, in order

• the next variables are the covariates, and cannot have a column of ones. We
limited the number of covariates to four, given that each covariate may have a
different Box-Cox transformation parameter.

numcov : number of covariates in user’s dataset (default=4)

df : number of the degrees of freedom of mu (default=5)

lambdaf : value of λF to be used for transformation of food intake (default=1 indicating
no transformation done)

lambdae : value of λE to be used for transformation of energy intake (default=1 indicating
no transformation done)

lvar1 : value of λc to be used for Box-Cox transformation of first covariable (default=999
indicating no transformation done)

lvar2 : value of λc to be used for Box-Cox transformation of second covariable
(default=999 indicating no transformation done)

lvar3 : value of λc to be used for Box-Cox transformation of third covariable
(default=999 indicating no transformation done)

lvar4 : value of λc to be used for Box-Cox transformation of fourth covariable
(default=999 indicating no transformation done)

n.iter : number of iterations of the MCMC including burning iterations (default=11,000)
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n.burnin : number of burn-in iterations of the MCMC (default=1,000)

n.thin : thinning rate of MCMC (default=10)

bugs.seed : random seed to be use for MCMC (default=123456)

working.directory : drive and folder location for output files (default=”C:”)

file.estimates : name of the file to save posterior summary statistics including mean,
standard deviation as well as percentiles: 2.5th, 25th, 50th, 75th and 97.5th (default =
estimates.csv), of α1, α2, α3, β1, β2, β3 from equations (8), (9) and (10) as well as

Σμ, , Σε, and .

file.istats : name of the file to save summary statistics of usual food intake, (15),
usual energy intake, (14) and usual food intake per 1000 calories (1000TFi/TEi) (default
= estimates intake.csv).

file.iterations : name of the file to save iterations (default=iterations.csv). The
number of iterations saved corresponds to (n.iter − n.burnin)/(n.thin)

file.uis : name of the file to save summary statistics of Bayesian estimates for Ui1,
Ui2, Ui3 including mean, standard deviation as well as percentiles: 2.5th, 25th, 50th, 75th

and 97.5th for person i = 1, …, n. The first variable given in the dataset that identifies
individuals is included as the first variable in this file for linking purposes to users.

file.tracep : name of the file to save trace plots of parameters (default = trace plots.pdf)

file.tpvarcov : name of the file to save trace plots of variance-covariances Σμ, ,
Σε and  (default = trace plot var cov matrices.pdf)

file.densityp : name of the file to save density plots of usual food intake and usual
food intake per 1000 calories. Each one is generated individually and an overlayed plot is
generated as well (default = density plots.pdf)

bugs.directory : drive and folder location of WinBUGS (default=”c:/Program Files /
Win-BUGS14/”)

Once the data is input, Intake_epis_food() invokes WinBUGS from R. WinBUGS requires
a file describing the model in equations (1)–(5) in Section 2. This model is included as file
intake_program.txt and is loaded in R using its bugs() argument. Although, the default
priors of the constrained variance-covariance matrix of random errors are geared to the pre-
standardization of the data as described in Section 2, the user may change those prior entries
within the file intake_program.txt, possibly changing:

Constrained variance-covariance matrix of random errors

Matrix notation Default distribution and range Code in intake_program.txt

s22 Uniform(0,3) tau.e1 ~ dunif(0,3)

s33 Uniform(0,3) tau.e2 ~ dunif(0,3)

γ Uniform (−1,1) a.e1 ~ dunif(−0.99,0.99)

θ Uniform (−1,1) a.e2 ~ dunif(−3.11,3.11)

Users may change any of the defaults of Intake_epis_food() function when the function
is called to run by replacing those arguments in the last sentence of the file accompanied by
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this paper. MCMC posterior means of α1, α2, α3, β1, β2, β3, the elements of Σu, Σε,
 are displayed on the screen of R by Intake_epis_food() and saved

automatically in numeral matrices on file names previously listed. See Section 4 for an example.

4. Application of the Intake_epis_food() function
We simulated data using parameter values identified from the calibration sub-study of the
National Institutes of Health (NIH) and the American Association of Retired Persons (AARP)
Diet and Health Study (Schatzkin et al. 2001). The NIH-AARP study is a cohort composed of
people who resided in one of six states: California, Florida, Pennsylvania, New Jersey, North
Carolina, and Louisiana or in two metropolitan areas: Atlanta, Georgia and Detroit, Michigan.
From 1995 through 1996, 3.5 million questionnaires were mailed to members of the AARP,
aged 50–71 years. The questionnaire included a dietary section as well as some lifestyle
questions. Over 500,000 people returned the questionnaire after three mailing waves. This,
then, is the largest study of diet and health ever conducted in the USA. In 1996–1997, these
participants received a Risk-Factor Questionnaire which asked additional questions about
lifestyle and behavior, and in 2004–2006 these participants received another follow-up
questionnaire (http://dietandhealth.cancer.gov/history.html).

Participants for the calibration study were randomly selected from the 46,970 subjects who
had responded to the first wave as of January 1996. Two thousand participants was the targeted
sample size to attempt recruitment calls for a baseline and 24 hours follow up. The sample
available to us included 920 men. Because the data are not publicly available, we simulated
920 food intakes that are similar in distribution to the men in the NIH-AARP calibration study.

We used as  four covariates: age, body mass index (BMI), consumption of servings of whole
grains from the FFQ, and energy intake from whole grains from the FFQ. Therefore, the degrees
of freedom of the inverse Wishart were setup as mu = 5. The latter two covariates were
transformed by the cube root and the logarithm, respectively.

We present results from Intake_epis_food() for this simulated data example with a sample
size of 920 men, modeling whole grains consumption. We used a burn-in of 1, 000 steps
followed by 10, 000 MCMC iterations; our Intake_epis_food() function took
approximately 6 hours and 16 minutes (Pentium computer (R) D CPU 3.5GHz and 1.99GB of
RAM). We used only every 10th value of the chain. The first output file contains the average
over 10,000 MCMC of posterior mean, posterior standard deviation, posteriors: 2.5th

percentile, 25th percentile, 50th percentile, 75th percentile and 97.5th percentile. The intercepts
of the model are α1, α2, α3 corresponding to each level of the three-part model. Also,
estimates of regression parameters for each covariate appear for each level of the model. This
is the notation used for the output:

alpha_1 : represents the intercept in equation (8).

alpha_2 : represents the intercept in equation (9).

alpha_3 : represents the intercept in equation (10).

beta_1_j : represents the estimated coefficient of the jth covariate in equation (8), j=1,
‥,numcov.

beta_2_j : represents the estimated coefficient of the jth covariate in equation (9), j=1,
‥,numcov.

beta_3_j : represents the estimated coefficient of the jth covariate in equation (10), j=1,
‥,numcov.
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tau_j_p : represents the (j,p) entry estimate of , j=p=1,2,3.

sigma2_j_p : represents the (j,p) entry estimate of Σu, j=p=1,2,3.

a.e1 : represents the estimate of γ

a.e2 : represents the estimate of θ

sigmaemat_j_p : represents the (j,p) entry estimate of Σε, j=p=1,2,3, with Σε11=1 and
Σε12=Σε21=0.

tauemat_j_p : represents the the (j,p) entry estimate of , j=p=1,2,3.

We used λF = 0.32 as the Box-Cox transformation parameter of food intake λE = 0.23 as the
Box-Cox transformation of energy intake. We setup our working directory in R with the
command setwd(’C:’) and using Intake_epis_food() function:

Intake_epis_food(data.file.name="Sim_AARP_wg_Men.csv",
numcov=4, df=5,lambdaf=0.32,lambdae=0.23,lvar1=999, lvar2=999, lvar3=0.33,
lvar4=0, n.iter=11000,n.burnin=1000, n.thin=10, bugs.seed=123456,
working.directory="C:/", file.estimates="estimates.csv",
file.istats="estimates_intake.csv", file.iterations="iterations.csv",
file.uis="uis.csv", file.tracep="trace_plots.pdf",
file.tpvarcov="trace_plot_var_cov_matrices.pdf",
file.densityp="density_plots.pdf",
bugs.directory="c:/Program Files/WinBUGS14/")

After calculations, estimates of α1, α2, α3, β1, β2, β3 from equations (8), (9) and (10),

Σμ, , Σε,  are shown as well as summary statistics using a Bayesian approach for three
variables are provided immediately in the console screen (a) food usual intake, (b) usual food
intake per 1000 calories, and (c) energy usual intake. The following shows the results for whole
grains.

Inference for Bugs model at ' Intake_program.txt ', fit using WinBUGS,
1 chains, each with 11000 iterations (first 1000 discarded)
n.thin= 10 n.sims= 1000 iterations saved
mean sd 2.5% 25% 50% 75% 97.5%
alpha_1 0.89 0.06 0.79 0.85 0.89 0.92 1.00
alpha_2 −0.04 0.05 −0.13 −0.07 −0.04 −0.01 0.05
alpha_3 0.00 0.04 −0.07 −0.03 0.00 0.02 0.07
beta_1_1 0.16 0.05 0.07 0.13 0.16 0.19 0.25
beta_1_2 −0.08 0.05 −0.18 −0.12 −0.08 −0.05 0.00
beta_1_3 0.57 0.05 0.47 0.54 0.57 0.61 0.67
beta_1_4 −0.29 0.05 −0.38 −0.32 −0.29 −0.26 −0.19
beta_2_1 −0.07 0.04 −0.15 −0.09 −0.06 −0.04 0.01
beta_2_2 −0.08 0.04 −0.16 −0.11 −0.08 −0.06 −0.01
beta_2_3 0.42 0.04 0.34 0.40 0.42 0.45 0.50
beta_2_4 −0.11 0.04 −0.18 −0.13 −0.11 −0.08 −0.03
beta_3_1 −0.07 0.04 −0.15 −0.10 −0.07 −0.05 0.00
beta_3_2 −0.06 0.04 −0.14 −0.09 −0.06 −0.04 0.00
beta_3_3 0.00 0.04 −0.07 −0.03 0.00 0.03 0.08
beta_3_4 0.34 0.04 0.27 0.32 0.34 0.37 0.42
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tau_1_1 2.05 0.57 1.26 1.66 1.94 2.31 3.50
tau_1_2 −0.33 0.60 −1.64 −0.66 −0.31 0.04 0.82
tau_1_3 −0.11 0.19 −0.47 −0.23 −0.11 0.01 0.29
tau_2_1 −0.33 0.60 −1.64 −0.66 −0.31 0.04 0.82
tau_2_2 3.29 0.79 2.21 2.77 3.13 3.62 5.31
tau_2_3 −0.57 0.28 −1.21 −0.73 −0.54 −0.38 −0.09
tau_3_1 −0.11 0.19 −0.47 −0.23 −0.11 0.01 0.29
tau_3_2 −0.57 0.28 −1.21 −0.73 −0.54 −0.38 −0.09
tau_3_3 1.53 0.16 1.26 1.42 1.51 1.63 1.89
sigma2_1_1 0.56 0.13 0.33 0.47 0.55 0.64 0.83
sigma2_1_2 0.06 0.09 −0.12 0.00 0.06 0.12 0.22
sigma2_1_3 0.06 0.06 −0.06 0.02 0.06 0.10 0.18
sigma2_2_1 0.06 0.09 −0.12 0.00 0.06 0.12 0.22
sigma2_2_2 0.37 0.07 0.23 0.32 0.36 0.41 0.51
sigma2_2_3 0.13 0.05 0.03 0.10 0.13 0.16 0.23
sigma2_3_1 0.06 0.06 −0.06 0.02 0.06 0.10 0.18
sigma2_3_2 0.13 0.05 0.03 0.10 0.13 0.16 0.23
sigma2_3_3 0.72 0.07 0.60 0.68 0.72 0.77 0.86
a.e1 0.17 0.05 0.09 0.14 0.17 0.20 0.26
a.e2 0.81 0.29 0.28 0.62 0.80 0.99 1.37
sigmaemat_1_3 0.12 0.05 0.03 0.09 0.12 0.16 0.23
sigmaemat_2_2 1.26 0.08 1.11 1.21 1.26 1.31 1.42
sigmaemat_2_3 0.14 0.05 0.04 0.11 0.14 0.18 0.24
sigmaemat_3_1 0.12 0.05 0.03 0.09 0.12 0.16 0.23
sigmaemat_3_2 0.14 0.05 0.04 0.11 0.14 0.18 0.24
sigmaemat_3_3 1.16 0.06 1.06 1.12 1.16 1.19 1.27
tauemat_1_1 1.02 0.01 1.00 1.01 1.01 1.02 1.05
tauemat_1_2 0.01 0.01 0.00 0.01 0.01 0.02 0.03
tauemat_1_3 −0.11 0.05 −0.21 −0.14 −0.11 −0.08 −0.03
tauemat_2_1 0.01 0.01 0.00 0.01 0.01 0.02 0.03
tauemat_2_2 0.81 0.05 0.72 0.78 0.81 0.84 0.91
tauemat_2_3 −0.10 0.04 −0.17 −0.13 −0.10 −0.08 −0.03
tauemat_3_1 −0.11 0.05 −0.21 −0.14 −0.11 −0.08 −0.03
tauemat_3_2 −0.10 0.04 −0.17 −0.13 −0.10 −0.08 −0.03
tauemat_3_3 0.89 0.04 0.81 0.87 0.89 0.92 0.98
Usual food intake Usual food intake per 1000 calories Energy usual intake
Mean 0.9359701 0.4072328 2298.3852
S.d. 0.6947905 0.2849965 446.3253
5th 0.1887330 0.0823138 1636.7102
10th 0.2632069 0.1156591 1755.9317
25th 0.4359173 0.1992969 1982.9681
50th 0.7421419 0.3408097 2267.2364
75th 1.2117088 0.5350990 2568.3280
90th 1.9042402 0.7920862 2891.3676
95th 2.3828280 0.9484864 3088.9744

This is the only output presented in the console screen. These results are saved in
file.estimates and file.istats respectively. Five additional output files are stored as
mentioned before, but examples of these files are not presented here. Instead, we present the
posterior density of the mean of usual whole grains intake plot and the posterior density of the
mean of usual whole grains intake per 1000 calories in figure 1 (file.densityp). We present
trace plots of the intercept and coefficients in equations (8), (9) and (10) in figure 2
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(file.tracep). We present trace plots of entry estimates saved in file.tpvarcov of

variance-covariance matrices (i) for Σμ in figure 3, (ii) for  in figure 4, (iii) for Σε in figure

5 and (iv) for  in figure 6.

5. Discussion
This paper was motivated by the AARP calibration sub-study in nutritional epidemiology. Our
main aim when implementing this function was to help users to estimate this recent nonlinear
mixed three-part model of measurement error for an episodically food consumed in a Bayesian
manner.
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Figure 1.
Posterior density of the mean for whole grains. The solid line is the density estimate for usual
intake from 1000 MCMC. The dashed line is the density estimate for usual intake per 1000
calories.
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Figure 2.
Trace plot from 1000 MCMC of intercepts and estimated coefficients. First row shows trace
plots of parameters for the intercept, age, body mass index, consumption of whole grains and
energy intake from whole grains in equation (8). Second row shows trace plots of parameters
for the intercept, age, body mass index, consumption of whole grains and energy intake from
whole grains in equation (9). Third row shows trace plots of parameters for the intercept, age,
body mass index, consumption of whole grains and energy intake from whole grains in equation
(10).
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Figure 3.
Trace plot from 1000 MCMC for each entry estimate of variance-covariance matrix Σμ
j=p=1,2,3.
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Figure 4.

Trace plot from 1000 MCMC for each entry estimate of variance-covariance matrix 
j=p=1,2,3.
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Figure 5.
Trace plot from 1000 MCMC for each entry estimate of variance-covariance matrix Σε
j=p=1,2,3. The following parameters are neither estimated nor plotted because they are fixed:
Σε11=1 and Σε12=Σε21=0.
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Figure 6.

Trace plot for each entry estimate of variance-covariance matrix  j=p=1,2,3.
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