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Abstract

Background: Adverse drug events (ADEs) detection and assessment is at the center of pharmacovigilance. Data mining of
systems, such as FDA’s Adverse Event Reporting System (AERS) and more recently, Electronic Health Records (EHRs), can aid
in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be
valuable, it is still crucial to improve the quality of the generated signals.

Objective: To leverage structural similarity by developing molecular fingerprint-based models (MFBMs) to strengthen ADE
signals generated from EHR data.

Methods: A reference standard of drugs known to be causally associated with the adverse event pancreatitis was used to
create a MFBM. Electronic Health Records (EHRs) from the New York Presbyterian Hospital were mined to generate
structured data. Disproportionality Analysis (DPA) was applied to the data, and 278 possible signals related to the ADE
pancreatitis were detected. Candidate drugs associated with these signals were then assessed using the MFBM to find the
most promising candidates based on structural similarity.

Results: The use of MFBM as a means to strengthen or prioritize signals generated from the EHR significantly improved the
detection accuracy of ADEs related to pancreatitis. MFBM also highlights the etiology of the ADE by identifying structurally
similar drugs, which could follow a similar mechanism of action.

Conclusion: The method proposed in this paper provides evidence of being a promising adjunct to existing automated ADE
detection and analysis approaches.
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Introduction

The main objective of pharmacovigilance involves the collec-

tion, monitoring, assessment and evaluation of adverse effects of

medications and other biological products from healthcare

providers and patients. There are different Spontaneous Reporting

System (SRS) databases, such as the FDA’s Adverse Event

Reporting System (AERS) [1], the European Medicines Agency

(EMA) [2] and the World Health Organization (WHO) interna-

tional database [3] that have been designed to collect reports of

suspected adverse drug events (ADEs) for these purposes. Despite

their success and strengths they have some limitations [4]. As an

example, the number of patients at risk who are taking a drug

cannot be determined, adverse reactions are underreported, and

reporting is biased. Clinical information in Electronic Health

Records (EHRs) has emerged as a new source that can provide

important information to complement and improve drug safety

surveillance strategies [5,6]. It is believed that the integration of

diverse information sources can lead to an improved surveillance

system [7,8].

Different data mining algorithms (DMAs) [5,9], based on

disproportionality analysis (DPA) have been developed to assist in

identifying safety signals in pharmacovigilance databases of

potentially novel ADEs that merit further investigation. However,

signals generated through DMAs based on EHR data also have

some limitations and challenges that are different from those

associated with SRS data. EHR data consists of information

associated with the process of care, which is not focused on the

reporting of adverse events, and therefore ADEs are often sparse

in EHR data and occur much less frequently than other types of

clinical information, such as treatments, disorders, and symptoms.

In addition, drug-ADE relations are typically not expressed
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explicitly in EHRs, and DMA methods based on co-occurrence in

a report are used to find associations from a broad variety of

information in the patient reports, such as treatment indications,

co-morbidities, other symptoms or medications. Therefore, the

statistically-based associations between a drug and an adverse

event (AE) represent drug-AE relations that are not necessarily

ADEs, such as treatment relations. Since use of the EHR for

pharmacovigilance is a relatively new area of research, it would be

useful to develop and evaluate new methods to enhance the

accuracy of signals generated through EHR-based DMAs.

In previous work, we demonstrated that molecular similarity

analysis is a valuable tool to improve the accuracy DPA based

ADE detection in AERS [10]. Exploiting the premise widely

accepted in medicinal chemistry that similar molecules can have

similar biological properties [11], the drugs determined by the

model as being structurally similar to an ADE reference standard

set, could cause the same ADE following a similar pharmacolog-

ical mechanism. In this article, we showed that the application of

MFBM can be easily extended to ADE detection based on EHR

data. Our results demonstrate that the integration of both

methodologies facilitates the detection of the ADE pancreatitis.

Materials and Methods

Ethics Statement
New York Presbyterian Hospital Electronic Health Records

were analyzed after obtaining IRB approval from Columbia

University Medical Center committee (consent was given through

waiver of authorization; protocol number: IRB-AAAD6669).

Materials
EHR data. The EHR data included approximately 1.2 mil-

lion narrative patient notes from 2004 to 2010. Admission notes,

discharge summaries and outpatient visits for a total of approx-

imately 178,000 patients at New York Presbyterian Hospital were

analyzed after obtaining IRB approval.

Reference standard dataset. A reference standard of 253

drugs reported to cause the ADE pancreatitis was collected.

Information in the reference standard was compiled from

Micromedex/Drugdex, review articles, case reports, and reliable

websites (the complete dataset and the references are given in

Table S1). Drugs following two inclusion criteria were taken into

account in the reference standard: 1) well-established by Micro-

Figure 1. Flowchart of the ADE detection process for pancreatitis.
doi:10.1371/journal.pone.0041471.g001
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medex (a trusted medical database), or by literature reviews or

reports where the pancreatitis follows a reasonable temporal

sequence from administration of the drug and the ADE is

confirmed by de-challenge/re-challenge (cessation of the drug and

the symptoms and new exposure to the drug and reappearance of

the symptoms); 2) probable/possible where the drug is considered

be responsible for the adverse effect but other possible causes are

not totally excluded (more information is provided in Table S1).

Drug structure. The DrugBank database [12] was used to

obtain the structures of drugs included in this study. Some drugs

whose structures were not available in DrugBank were manually

represented using the Molecular Operating Environment (MOE)

software [13].

Methods
An overview of the different steps is shown in Figure 1, and a

more detailed description is provided below: first, unstructured

narrative and structured laboratory data from the EHR is

processed to generate a set of candidate-drugs associated with

pancreatitis using DPA. The molecular fingerprints are computed

and the similarity of structures of the candidate-drugs are

compared to the structures in our reference standard set through

MFBM providing more evidence of a possible novel ADE that

would be of interest to study further.

EHR data mining. The natural language processing (NLP)

system MedLEE [14] was used to process the unstructured

narrative data, and to extract and normalize relevant clinical

entities, such as medications, diseases, symptoms, and associated

temporal information. In addition, structured data was also

obtained, consisting of abnormal laboratory test results that were

associated with pancreatitis. Determining the pancreatitis outcome

was based on laboratory test values [15,16], which were extracted

from structured EHR data (amylase $300 U/L or lipase

$120 U/L), as these values are standardly used to determine

potential occurrences of pancreatitis. Drug names were standardized

and mapped to UMLS codes using MedLEE [14], and then

generic names were obtained using RXNORM [17]. As an

example, the brand name Videx was extracted from a note and

then mapped to the UMLS code C0592249 by MedLEE, and

subsequently RXNORM was used to map it to the generic name

didanosine (UMLS code C0012133). A detailed process has been

described in previous publications [18,19]. The standard DPA

method using the Odds Ratio (OR) measure was used to generate

signals consisting of statistical associations between drugs and the

event pancreatitis [9,20]. DPA is based on frequency analysis

consisting of 262 contingency tables containing drug-event pairs.

OR is a measure of association between drugs and adverse events

that can be calculated from the contingency table [9,20].

Associations were quantified by the lower 5th percentile of the

Odds Ratio measure (OR05) [9]. To qualify as signals, associations

had to meet two criteria: (1) OR05.1.25; (2) associations must

pass a statistical test of independence P-value ,0.05, based on the

one-sided Fisher exact test and a Bonferroni correction, a

conservative adjustment for multiple comparisons.

Molecular fingerprint-based modeling (MFBM). The

development process of this type of MFBM has been described

in more detail in our previous publication [10]. The structures of

the drugs involved in this study (i.e., the drugs in the reference

standard and the candidate drugs generated by DPA method)

were downloaded from the DrugBank database [12] and subjected

to different preprocessing steps with the module Wash in the

Molecular Operating Environment (MOE) software [13]. In this

module, simple metal salts were disconnected and only the active

ingredient was retained (i.e. the largest molecular fragment), the

protonation state was considered neutral and explicit hydrogen

atoms were added.

In the next step, four different molecular fingerprints were

calculated for the drugs using the software MOE to carry out a

comparative study of their performances: a) MACCS (MACCS

structural keys), b) TGD (Typed Graph Distances), c) TGT (Typed

Graph Triangles) and d) GpiDAPH3 (Graph 3-Point Pharmaco-

phore) [13]. The basic idea is to represent a molecule using a bit

vector that codifies the existence or absence of structural features,

functional groups, pharmacophore features or molecular proper-

ties [21–25]. All the molecular fingerprints were calculated from

the 2D molecular graph. MACCS fingerprints codify 166

structural keys. As an example, using MACCS fingerprints, some

substructures represented in the molecule C7H13-NH2 are: bit 19-

seven membered ring, bit 84-NH2 (amine group). TGD is a 2-

point pharmacophore fingerprint codifying pair of atoms using

graph distance and two atom types (the atom type could be donor,

acceptor, polar, anion, cation, hydrophobe). TGT is a similar

fingerprint but codifies triplets of atoms (3-point pharmacophore).

GpiDAPH3 also codifies 3 pharmacophoric features calculated

from the 2D molecular graph. All triplets of atoms are coded using

graph distances and atom types (there are 8 possible atom types).

The final step consisted of similarity assessments between

fingerprints of pairs of drugs using the Tanimoto coefficient (TC)

measure of similarity. TC, also known as the Jaccard index, is one

of the measurements most widely applied in the scientific literature

for measuring similarity [24]. The range for the TC covers values

from 0 to 1, where 0 means ‘‘minimum similarity’’ and 1 means

‘‘maximum similarity’’. The TC between two fingerprints A and B

is defined as:

TC~
NAB

NAzNB{NAB

where NA is the number of features present in fingerprint A, NB is

the number of features present in fingerprint B, and NAB is the

number of features present in both fingerprints A and B.

To compare a test set of drugs against the reference standard set

of drugs known to cause pancreatitis, a similarity matrix file based

on TC for all the drugs was calculated using the Fingerprint

Cluster module and the sim_matrix2txt.svl script in MOE [13].

Therefore Simij is the similarity score (TC values) between the ith

drug and the jth drug in the matrix. The final similarity scoring

provided by the model for a drug in the test is defined as the

maximum pairwise TC obtained against each drug in the

pancreatitis reference standard set. As an example, the drug entecavir

in the test set was compared through TC to all the drugs in the

reference standard and the maximum TC was considered the final

score pointing out that the most similar drug in the reference

standard was ganciclovir.

Evaluation. Performance evaluation of the method using

DPA by itself [9] was compared to the method that combined

DPA with MFBM. The evaluation centered on the proportion of

true signals identified by each of the approaches based on the

reference standard.

DPA by itself. The evaluation of DPA by itself was based on

comparing the drugs that were selected with OR05 value greater

than the previously established cutoff of 1.25 with the drugs in the

pancreatitis reference standard dataset. Since only associations

above the estimated cut-off were taken into account, the ROC

curve cannot be plotted with all the drugs included in the EHR.

For this reason the precision of the method (TP/TP+FP) was

calculated as a standard comparative measurement of the

performance. The method was compared to random results
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through one-sided Fisher’s exact test using the DrugBank database

[12] as a resource, as explained below in Results.

Combination of DPA and MFBM. All the drug candidates

highlighted using DPA were subjected to MBFM-based analysis.

As described previously, a comparison between molecular

fingerprints from candidates selected by OR05 and the reference

standard set of drugs was carried out through the calculation of the

Tanimoto coefficient (TC). The maximum pairwise TC obtained

against each drug in the pancreatitis reference standard set was

considered to be the final similarity score.

The performance of the MFBM was assessed through a leave-

one-out cross validation method. Each drug included in both sets

(candidates selected through OR05 and already included in the

reference standard set) was taken out and evaluated by the model

in order to compare the performance with the rest of the candidate

drugs selected by OR05. Precision-Recall and Receiver Operating

Characteristic (ROC) curves were plotted, considering as true

positives the drugs included in our reference standard and false

positives the rest of candidate drugs.

When evaluating performance, the false positives according to

our system are drugs not included in our reference standard.

Nevertheless, it is possible that some of the drugs selected and not

included in the reference standard are causally related to

pancreatitis. For this reason, a bibliographic search using Micro-

medex/Drugdex database [26,27] and case reports from the

literature was carried out to confirm whether the drugs found by

the method but not included in the reference standard dataset

could be the cause of the adverse event under study (see Table S2).

A final evaluation of the combined model has been completed for

this test set through Precision-Recall and ROC curves.

Results

Performance of DPA
The EHR from New York Presbyterian Hospital was mined

looking for associations between drugs and the adverse event

pancreatitis, and 278 drugs were found to be associated with the

ADE using the DPA method by itself. Of those, 99 drugs were

already included in the pancreatitis reference standard dataset

established previously (see Tables S1 and S2). The precision of the

method was calculated as the ratio of true positive cases divided by

all the positive cases (Precision = TP/(TP+FP)). The overall

precision of the EHR analysis is 0.36. The method was compared

to random results using the DrugBank database [12], containing

1660 approved drugs (small drugs, biotech and nutraceuticals).

Based on expectation, if a random subset of 278 drugs in

DrugBank was selected, 42 drugs included in the reference

standard would be found. The estimated precision of a method

that randomly selects drug candidates was 0.15. The p-value for

the probability that Disproportionality Analysis (DPA) identified 99

reference standard drugs in the subset of 278 candidates is very

unlikely (p,.001). Table 1 shows the performance of DPA at

different top positions. These results point out the usefulness of the

application of EHR in the detection of adverse events in drugs,

since 99 out of 278 associations were found in the pancreatitis

reference standard database. However, if the Precision-Recall and

Receiver Operating Characteristic (ROC) curves are plotted for

the 278 candidates using OR05 as the scoring function, it is

possible to observe that the precision of the method barely

improves in top positions (see Table 1 and Figure 2). Nevertheless,

as it is explained in the next section, an improvement in ADE

detection is still possible through the combination of DPA with

MFBM techniques.

Performance Improvement by Combining DPA with
MFBM

An improvement of the precision of the method in top

ranking positions can be achieved through the combination of

DPA with MFBM. As described in the Methods section,

different fingerprints were calculated for all the drugs used in

the study. The fingerprints of the set of candidate drugs selected

by Disproportionality Analysis (DPA) were compared to the

fingerprints of drugs in the pancreatitis reference standard dataset

through the Tanimoto coefficient (TC). Drugs included in both

groups (in EHR and already in the reference standard) were

taken out one by one (leave-one-out method) and evaluated by

the MFBM. Precision in different top positions was calculated

for all the MFBMs (see Table 1). The precision of the method

improves when the combined methodology is used. A two-fold

enrichment factor is achieved when a subset of 50 top drug-

candidates are evaluated by MACCS fingerprints (see Table 1).

Within the top 50 drugs selected by MACCS, 37 drugs were

estimated as true positives (TP) and 13 drugs were found false

positives (FP). The probability that the method identified 37

drugs by chance is highly unlikely (p-value,.001; one-sided

Fisher’s exact test). Precision-recall and ROC curves for all 278

drug candidates selected by DPA was also plotted to show the

comparative performance for the different calculated fingerprints

(Figure 2). It is worth noting that although the precision of DPA

is constant within this set of candidates, the method is still very

useful for obtaining this first set of 278 candidate drugs related

to pancreatitis (99 out of 278 drugs were already included in the

pancreatitis reference standard set). However, an improvement of

the precision in top positions was achieved by prioritizing the

candidates generated through DPA with MFBMs.

A second evaluation of the combined model was completed

identifying pancreatitis case reports in the literature and Micro-

medex/Drugdex database [26,27] for the drugs selected in EHR

but not included in the pancreatitis reference standard (see Table

S2). Out of 179 drugs not included in the pancreatitis reference

standard, 21 were considered a possible cause of pancreatitis and

158 were considered negative cases since no consistent information

relating the drugs as the cause of the adverse event was found.

Although further research will be necessary to confirm the ADE

for some cases in this test set, the evaluation according to the

combined method HER + MFBM provides more insights about

the accuracy of the system. The overall precision in this test set is

lower since the drugs included in the reference standard are not

taken into account in the analysis. As shown in Figure 3, through

Precision-recall and ROC plots considering this test set (21 true

positives versus 158 false positives), the curves provided by

MACCS and GpiDAPH3 fingerprints offer the best results in

the precision improvement compared to DPA and alternative

molecular fingerprint representations.

Rationalization of the Signals Generated in EHR
The application of similarity models applied to EHR data

provides a new system to rank scores of the detected associations

based on the maximum similarity to a drug in the reference

standard. In this manner, the drug source in the reference

standard is identified by the model, for which some reports relating

the drug to the adverse event were previously found. This fact

facilitates the ADE evaluation process depending on the available

information for the similar drug in the reference standard. The

model also can help to point out different hypotheses about

possible mechanisms of action. Some examples of pancreatitis

candidate drugs not included in the reference standard identified

by the combined model and with some level of evidence in the

Enhancing Adverse Drug Event Detection
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literature are described in the next section (see Table S2 for a more

detailed description).

Examples of drugs belonging to the same

pharmacological category. An example of a drug not

included in the initial pancreatitis reference standard set is megestrol,

Figure 2. Receiver Operating Characteristic (ROC) (a) and Precision-Recall (b) curves evaluating the set of 278 EHR ADE candidates
with OR05 and different MFBMs. It is worth noting that although OR05 algorithm is very useful to originate the first set of 278 candidate drugs
related to pancreatitis (99 out of 278 drugs were already included in the pancreatitis reference standard set), the precision of the method is constant
within this set. However, an improvement of the precision in top positions can be achieved using MFBM (in the graphic: black-OR05, red-MACCS,
green-GpiDAPH3, yellow-TGT, blue-TGD).
doi:10.1371/journal.pone.0041471.g002
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a progesterone derivative with antineoplastic properties used in the

treatment of carcinoma. According to our MFBM, megestrol is

structurally similar to norethindrone, another progestogen drug used

as oral contraceptive included in the reference standard (see

Table 2 and Table S2). There are some publications that relate the

drug norethindrone as a possible cause of pancreatitis with positive

rechallenge [28]. Although not many reports were found relating

megestrol as the cause of pancreatitis, some information is available

establishing pancreatitis as a possible adverse event due to the use of

contraceptive pills containing megestrol [29,30]. However, further

studies will be necessary to explain the potential adverse event in

the drug.

Entecavir is a nucleoside analog used in clinic as an antiviral for

the treatment of hepatitis B. A possible role of entecavir in the

development of pancreatitis has been discussed previously [31].

Elevations in serum amylase were also reported in patients

receiving entecavir although no clinical pancreatitis was diagnosed

[32]. Our system detected a structural similarity between entecavir

and ganciclovir, another antiviral drug used to treat cytomegalovirus

infections which was included in the reference standard because it

was identified in the literature and in Micromedex causally related

to pancreatitis [26,33].

Another case found in the EHR associated with pancreatitis is the

polyene antifungal antibiotic drug amphotericin B. This drug was

also detected by MFBM as a drug similar to doxorubicin, an

anthracycline antibiotic used in clinic in the treatment of different

types of cancer (see Table 2). Although amphotericin B could be the

treatment for fungal infections associated to pancreatitis, there are

some reports in the literature that confirm the potential risk of this

drug. A report describes an increased serum lipase levels with

clinical signs of pancreatitis in some patients treated with liposomal

amphotericin B therapy [34]. Another report describes a case of

pancreatitis in an HIV patient possibly due to amphotericin B [35].

Examples of drugs belonging to different

pharmacological categories. The combination of the DPA

and MFBM can also detect drugs that belong to different

pharmacological classes (see Table 2). An interesting example of

drug pointed out by MFBM is loperamide, a piperidine derivative

opioid-receptor agonist that is very effective for the treatment of

diarrhea. The structure of loperamide is similar to haloperidol, a drug

in the reference standard with different pharmacological category

since haloperidol is a butyrophenone belonging to antipsychotic

medications and used in the treatment of schizophrenia. There are

some reports in the literature that confirm the potential adverse

effect of lopiramide probably due to a spasm at the sphincter of Oddi

or inhibition of the release of pancreatic polypeptide [36–38]. On

the other hand, haloperidol was reported to cause pancreatitis in a

study of antipsychotic drugs inducing pancreatitis [27,39]. The

temporal relationship between the adverse event and the

beginning of the therapy could indicate a causal relationship.

Another example of similar drugs belonging to different

pharmacological classes is pyrimethamine and lamotrigine (drug

included in the reference standard). Pyrimethamine, an antiparasitic

drug used in the treatment of malaria and toxoplasmosis, is selected

by MFBM as a drug structurally related to lamotrigine (both drugs

present a chloro substituted phenyl with a diamine azine ring), an

anticonvulsant used to treat epilepsy, bipolar disorders and

depression. Pancreatitis is described as a possible ADE for the

combination pyrimethamine/sulfadoxine [40]. However, more

studies will be necessary to confirm the ADE.

An interesting case to study further is micafungin, an antifungal

drug indicated for the treatment of candidiasis by inhibiting the

production of 1,3-beta-D-glucan, an important component of the

fungal cell walls. Although fungi infections can occur to patients

with pancreatitis, and therefore the prescription of an antifungal

drug is necessary in some cases [41], there is also a report in the

literature describing a case of acute pancreatitis probably caused by

micafungin [42]. Our model detected that micafungin resembles the

peptidic structure of ceruletide (see Table 2), a drug included in our

reference standard and used in experimental animal models to

induce pancreatitis [43]. Further studies will be necessary to shed

some light about the relationship between micafungin and pancre-

atitis.

Cosyntropin, a derivative of adrenocorticotropic hormone used to

diagnose cortisol disorders, is another case selected by DPA and

MFBM as a drug related to pancreatitis. In this case, the information

gathered in Micromedex database clearly indicates that pancreatitis

is an ADE associated to the drug [26]. Cosyntropin presents some

structural similarity regardless to caspofungin, an antifungal drug

included in the reference standard set.

Table 1. Performance of DPA compared to DPA+MFBM (DPA
combined with MACCS, GpiDAPH3, TGD and TGT molecular
fingerprints) in different TOP positions.

Number of reference standard drugs in different TOP positions

DPA+MACCS DPA+GpiDAPH3 DPA+TGD DPA+TGT DPA

TOP-10 9 8 5 6 4

TOP-25 20 20 14 16 10

TOP-50 37 30 23 28 20

TOP-75 47 44 34 36 31

TOP-100 52 51 48 46 38

TOP-125 62 60 56 59 46

TOP-150 66 67 63 63 55

Precision in different TOP positions

DPA+MACCS DPA+GpiDAPH3 DPA+TGD DPA+TGT DPA

TOP-10 0.90 0.80 0.50 0.60 0.40

TOP-25 0.80 0.80 0.56 0.64 0.40

TOP-50 0.74 0.60 0.46 0.56 0.40

TOP-75 0.63 0.59 0.45 0.48 0.41

TOP-100 0.52 0.51 0.48 0.46 0.38

TOP-125 0.50 0.48 0.45 0.47 0.37

TOP-150 0.44 0.45 0.42 0.42 0.37

Enrichment factor in different TOP positions

DPA+MACCS DPA+GpiDAPH3 DPA+TGD DPA+TGT DPA

TOP-10 2.53 2.25 1.40 1.68 1.12

TOP-25 2.25 2.25 1.57 1.80 1.12

TOP-50 2.08 1.68 1.29 1.57 1.12

TOP-75 1.76 1.65 1.27 1.35 1.16

TOP-100 1.46 1.43 1.35 1.29 1.07

TOP-125 1.39 1.35 1.26 1.33 1.03

TOP-150 1.24 1.25 1.18 1.18 1.03

doi:10.1371/journal.pone.0041471.t001

Enhancing Adverse Drug Event Detection

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e41471



Discussion

This main goal of this study is to demonstrate the usefulness of

the analysis of the molecular structure to improve the precision

and rationalization in the detection of drug-pancreatitis associations

found in EHR. Although structure similarity analysis was applied

to the EHR in this study, the method could be applied to other

pharmacovigilance databases created to analyze postmarketing

drug safety information, such as AERS, WHO or EMA. In fact,

the results shown are in accordance with a previous publication

analyzing the adverse event rhabdomyolysis from the point of view of

AERS and molecular structure similarity [10].

Figure 3. Receiver Operating Characteristic (ROC) (a) and Precision-Recall (b) curves evaluating the test set of EHR pancreatitis
candidates (in the graphic are not included the drugs already in the reference standard: 21 true positives versus 158 false
positives, black-OR05, red-MACCS, green-GpiDAPH3, yellow-TGT, blue-TGD).
doi:10.1371/journal.pone.0041471.g003
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MFBM permits the rationalization of ADE signals detected in

pharmacovigilance databases through the identification of struc-

turally similar drugs by which ADE information has been already

published. This can be useful to estimate the importance of the

signal generated in EHR to make decisions regarding further

follow-up. The system can be used along with other pharmacov-

igilance methods to provide additional information and evaluate

the potential relevance of the signals, such as biological and

pharmacological plausibility.

The nature of the system permits the identification of drugs

belonging to different pharmacological classes than the drugs

included in the reference standard ADE dataset, although it is more

likely the identification of drugs with similar pharmacological

profiles, which can still present utility in the case of researchers not

related to pharmacological backgrounds.

Although MFBM by itself can present some limitations in the

detection of complex clinical adverse events due to the different

biological mechanisms involved in ADEs with high molecular

variability [10], the different nature regarding the databases used

for pharmacovigilance, allows the combination of both methods to

improve ADE detection by generating sets of drugs with enhanced

enrichment factors. Since the model is based on the structural

comparison against a reference standard dataset of drugs

responsible for the ADE under study, the results offered by the

models are directly dependent on the quality of the reference

standard. This dataset should contain a heterogeneous represen-

tation of the different structural drug classes related to the ADE

and be as complete as possible.

Molecular fingerprints have been widely validated in previous

publications and it has been shown that they are very useful to

recognize similar molecules in large databases [21–25]. However,

some molecular fingerprints could recognize as similar two

structurally different molecules when they present the same

substructural or pharmacophoric features differently reorganized

at molecular level. Nevertheless, this case would be interesting

since the same collection of substructures could also determine

similar pharmacological and distribution profiles.

In the current study, the performances of different 2D

fingerprints analyzing the molecular structure from diverse points

of view were described. However, alternative methods using other

types of fingerprints or molecular descriptors could still be

explored [44,45]. Another possibility for further study is the

construction of similar models taking into account the 3D most

stable conformation in drugs [46]. Nevertheless, although 2D

methods are considered more limited than 3D methods, they still

present good results and it is possible to avoid complex steps, such

as the selection of bioactive drug conformations, calculation of the

3D most stable conformers and superimposition of the final

structures to compare their similarity.

Conclusions
The combination of EHR analysis and structural similarity data

led to an improved prioritization of drug candidates related to the

adverse event pancreatitis. A set of drugs was selected using the

combination of both techniques to further study their possible

causal relationship to pancreatitis. The results obtained in this study

are in accordance with a previous publication analyzing the

adverse event rhabdomyolysis [10]. Structural similarity analysis

could be used as a useful tool to analyze and rationalize data

extracted from pharmacovigilance databases. The implementation

of molecular structure data can facilitate adverse drug event

detection.
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Table 2. Examples of candidates selected through the combination of DPA and MFBM (MACCS fingerprints) and similar molecules
in the pancreatitis reference standard, along with OR05 (lower 5th percentile of the Odds Ratio measure of association in DPA
analysis) and TC (Tanimoto coefficient) values.

EHR+MFBM drug candidate
Most similar drug in the pancreatitis reference
standard TC OR05

Same pharmacological category

Megestrol Norethindrone 0.84 1.82

Entecavir Ganciclovir 0.78 2.23

Amphotericin B Doxorubicin 0.75 3.83

Different pharmacological category

Loperamide Haloperidol 0.79 2.60

Pyrimethamine Lamotrigine 0.78 2.31

Micafungin Ceruletide 0.76 3.68

Cosyntropin Caspofungin 0.76 3.39

Different level of pancreatitis-causal information was found for the candidate drugs in the literature.
doi:10.1371/journal.pone.0041471.t002
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