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Abstract
Nanoparticle-based therapies are currently being explored for both the imaging and treatment of
primary and metastatic cancers. Effective nanoparticle cancer therapy requires significant
accumulations of nanoparticles within the tumor environment. Various techniques have been used
to improve tumor nanoparticle uptake and biodistribution. Most notable of these techniques are the
use of tumor-specific-peptide-conjugated nanoparticles and chemical modification of the
nanoparticles with immune-evading polymers. Another strategy for improving the tumor uptake of
the nanoparticles is modification of the tumor microenvironment with a goal of enhancing the
enhanced permeability and retention effect inherent to solid tumors. We demonstrate a two-fold
increase in the tumor accumulation of systemically delivered iron oxide nanoparticles following a
single, 15 Gy radiation dose in a syngeneic mouse breast tumor model. This increase in
nanoparticle tumor accumulation correlates with a radiation-induced decrease in tumor interstitial
pressure and a subsequent increase in vascular permeability.
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1. Background
A variety of hyperthermia-based techniques[1], including intratumoral magnetic
nanoparticle (mNP) hyperthermia[2], have been used to treat tumors. The difference in mNP
hyperthermia, as compared to conventional hyperthermia, is the ability tofocally heat
according to mNP uptake and biodistribution in both primary and metastatic tumors. One of
the most significant challenges is delivering an effective concentration ofnanoparticles to
tumor cells. Investigators have relied on increasing nanoparticle circulation time through
evasion of the reticuloendothelial system (RES)[2] by modifying nanoparticle surface
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coating[3], the enhanced permeability and retention (EPR) effect[4] and tumor-specific
peptide conjugates to mNP[5] to increase nanoparticle accumulation in tumors.

High interstitial tumor pressure (ITP) has been shown to hinder diffusion of macromolecules
into tumors[6]. Ionizing radiation has been shown lower ITP at doses above 10 GyI[7].

2. Materials Methods
2.1. Cell Culture

MTG-B mouse mammary adenocarcinoma cells were cultured in 150 cm2 cell culture flasks
(Corning Inc., Lowell, MA) in Alpha MEM medium (10% fetal bovine serum, 1%
penicillin-streptomycin, 1% L-glutamine; all from Thermo Fisher Scientific Inc., Waltham,
MA., USA). Cells were then trypsinized (0.25% trypsin in EDTA, Mediatech, Inc.,
Manassas, Va) and resuspended in serum-free Alpha MEM at 107 cells/ml.

2.2. Murine tumor model
One hundred μL (106 cells) was implanted bilaterally in the flanks 6-8 week old female
C3H mice (Charles River Laboratories, Wilmington, MA, USA). Mice were treated once
tumors reached 150±40 mm3. All animal experimentation was approved by the Dartmouth
Institutional Animal Care and Use Committee, in accordance with all federal, institutional
and AAALAC guidelines.

2.3. Interstitial pressure measurements
Interstitial tumor pressure measurements in ten tumors were accomplished by placing a fiber
optic pressure sensor (0.5 mm diameter FPI-HR, FISO Technologies Inc., Quebec, Canada)
in the centers of thetumors, using a techniquesimilar to others[8].

2.4. Ionizing radiation
Within one hour of establishing a baseline ITP, half of the tumors received a single 15 Gy, 6
MeV electron radiationdose (surfaced based homogeneous dose,100 cm source-skin distance
(SSD), 1.7 cm diameter circular lead cut-out, average tumor depth 0.5 cm and width 0.7 cm)
using a Varian Clinac 2100C linear accelerator (Varian Medical Systems, Inc., Palo Alto,
CA, USA). ITP measurements were repeated daily, for five days.

2.5. Tumor vascular permeability assessment
Three days following irradiation, a vascular permeability assay[9] was performed using
Evans blue (Sigma Aldrich, St. Louis, MO, USA) suspended in phosphate buffered saline
(PBS, Mediatech) at 1.25 mg/ml. The solution was injected into the left jugular vein to 10
mg/kg mouse. Two hours later the mouse was perfused with 20 ml PBS and the tumors
removed, weighed and digested in 10 ml formamide (Sigma Aldrich) per gram of tissue.
Three days following tumor removal, tumor dye concentration was determined using a
Perkin Elmer MBA 2000 spectrophotometer.

2.6. Nanoparticle composition and quantification
Iron oxide nanoparticles (70 and 120 nm diameter, Micromod Partikeltechnologie GmbH,
Rostock, Germany) with various coatings (Table 1) were purchasedsuspended in deionized
water. NaCl (0.9%) was added to ensure an appropriate isotonic balance.

When an individual tumor reached treatment size, it was irradiated with the contralateral
tumor serving as a non-irradiated control. MNPs or PBS (control) were injected into the left
jugular vein at a concentration of 0.2 mg Fe/g mouse three days following irradiation. Six
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days following irradiation, the mice were perfused with 20 ml PBS and tumors removed.
Half of each tumor was fixed in 10% buffered formalin and processed for microscopic
assessment of iron (Prussian blue/non-heme iron) anda subset of these for vascular
endothelium (anti-CD-31). The other half of each tumor was weighed, digested in 3:1 trace
element grade Nitric Acid:HCl (Thermo Fisher Scientific) and analyzed for iron content via
ICP-MS (Agilent 7500cx inductively coupled plasma mass spectrometer) .

2.7. Statistical analysis
Statistical significance was assessed with a two-tailed, two-sample t-test with Matlab
software (The MathWorks, Inc. Natick, MA, USA).

3. Results
Interstitial tumor pressure (ITP) was decreased 3, 4 and 5 days post-15 Gy irradiation
(Figure 1) by up to 40% as compared with controls. Three days post tumor irradiation,
vascular permeability, as assessed by higher Evans blue absorbance, was increased by
approximately 60% (Figure 1).

Three days following mNP administration the concentration of both 70 and 120 nm NPs was
doubled in the irradiated tumors, as compared to controls (Figure 2). The median
concentrations of systemically delivered PEG 200 coated BNF mNPs increased 2.5 fold in
mouse flank tumors, as compared to non-coated mNPs (0.1 mg Fe/g vs 0.25 mg Fe/g).
Prussian blue histology and iron quantification results were confirmed with ICP-MS (Figure
3). Mice receiving PBS instead of mNPs had ICP-MS iron levels less than 5% of the mNP
treatment mice and no histologic iron staining.

4. Discussion
Our results demonstrate tumor irradiation, PEG coating and small size (70 vs. 120 nm)
increase mNP accumulation in a murine flank breast tumor model.This increased deposition
of mNP within tumors due to addition of PEG to the surface is likely due to the increased
circulation time and evasion of the RES which PEG confers to the mNP[10].

These results demonstrate that it is possible to increase accumulation of nanoparticles within
tumors by modification of the tumor microenvironment with clinically relevant ionizing
radiation. While modification of nanoparticles with targeting agents and RES-evading
polymers also assists nanoparticle accumulation in tumors, these effects can be enhanced
through modification of interstitial tumor pressure and tumor vascular permeability with the
use of ionizing radiation.
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Figure 1.
Top:A single 15 Gy fraction of 6 MeV electron radiation significantly decreases interstitial
tumor pressure as compared to non-irradiated controls. Bottom: Three days following
irradiation vascular permeability is correspondingly increased (Evans blue
spectrophotometry assessment). * = p < 0.05 and ** = p < 0.01. Error bars show standard
deviations.
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Figure 2.
This boxplot of ICP-MS-based tumor iron quantification demonstrates that PEG coating
increases nanoparticle accumulation in irradiated tumors. Nanoparticle size was irrelevant
with respect to tumor accumulation when PEG-coated. When not PEG coated, smaller
nanoparticles (SPIO) accumulated in tumors more than larger nanoparticles (BNF). The
numbers in the figure legends (i.e. n=7) refers to number of animals in each group; each
animal had anirradiated (Rad) and non-treated (control) tumor.The top of each box is the
75th percentile, the middle line the median and the bottom of the box the 25th percentile for
each group. The errors bars show the range of data in each group and the filled diamonds
show outliers. The 95% confidence interval for each group is the range between the two
triangles overlaying each box. * = p < 0.05 and ** = p < 0.01.
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Figure 3.
Bilateral flank tumors were excised from the same mouse three days after systemic
administration of BNF PEG200 nanoparticles. Gross and histological analyses demonstrate
an increased level of mNPs (brown in topand bottom, blue in middle) in irradiated tumors.
IHC-stained endothelial cells (anti-CD31) demonstrate the close spatial relationship of
tumor vessels (light brown, arrows) and nanoparticles (dark brown).
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Table 1
Nanoparticle Characteristics

Iron oxide nanoparticles and zeta potential measurements acquired from Micromod. Hydrodynamicdiameters
(core plus coating)were acquired using a Malvern Instruments Ltd. (Westborough, MA) SPIO =
superparamagnetic iron oxide; BNF = bionized nanoferrite ferromagnetic nanoparticles; PEG 200 =
polyethylene glycol polymer(200 Da molecular weight); PEG 6000 = polyethylene glycol polymer (6000 Da);
HES = hydroxyethyl starch.

Nanoparticle
Designation

Average Particle
Hydrodynamic Diameter (nm) Coating Zeta Potential

(mV) at pH 7

SPIO 74 HES −2.6

SPIO PEG 200 72 HES + PEG 200 −7.9

BNF 116 HES −18

BNF PEG 200 125 HES + PEG 200 −6.5

BNF PEG 6000 132 HES + PEG 6000 −3.5
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