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Abstract
The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require com-
plex integration and analysis to provide newmolecular variables to better understand the molecular basis of pheno-
type. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in
the development of biomarkers and novel functional targets. This is beginning to change. Network biology
approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for
data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to under-
stand and predict disease phenotypes. In this review, recent advances in network biology approaches and results
are identified. A common theme is the potential for network analysis to provide multiplexed and functionally con-
nected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing andmod-
eling genome- and proteome-wide data.
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INTRODUCTION
Network biology is an emerging field that attempts

to integrate -omics data of various and seemingly

disparate types into a biologically meaningful frame-

work suitable for joint analysis. Biological regulation

is a complex process, and the effects of single genes

and proteins—while potent in the context of model

systems and model organisms—often are diffuse in

the context of a complex background of genetic

variation typical in populations layered on a complex

set of environmental stimuli. Redundancies of

function, driving cooperation or competition be-

tween different genes and proteins, are hallmarks of

population fitness and robust response to the envir-

onment. Network biology approaches take the lo-

gical step beyond both single gene and pathway

analysis, attempting to detect and ultimately model

the complex multi-dimensional interactions of cells,

organs and organisms. In this review, we highlight

several areas where significant progress has been

made in the last 12–18 months in using network

biology to analyze disease phenotypes. These ex-

amples expand and extend network frameworks to

integrate multiple types of biological data to enable

deeper mechanistic and medical insight. In particular

integration of gene expression and protein–protein

interaction (PPI) data remains a potent theme. We

note progress in coupling disease-gene association

data with network analysis methods and we review

explicit modeling of biochemical networks to under-

stand disease and ultimately predict therapeutic

response.
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INTEGRATING DIVERSE DATA
SETSAND IMPLICATIONS FOR
TRANSLATIONAL SCIENCE
In recent years, high-throughput methodologies,

such as the yeast two-hybrid assays (Y2H) [1–3]

and co-immunoprecipitation followed by mass

spectrometry (AP/MS) [4, 5], have been widely

used to identify physical PPIs for a wide range of

organisms. Yeast two-hybrid assays provide a

high-throughout assessment of binding for two

domains or molecular entities and can be carried

out on a genomic scale. AP/MS focuses on the

identification of complexes through engineering of

expressed ‘baits’ and cellular pullout of ‘prey’

interactors, which are identified by mass spectrom-

etry. These methods have evolved such that assess-

ment of sensitivity and specificity of the discovered

interactions and development of sophisticated

databases of the interactions is now commonplace.

In addition to these physical measures of network

connections, ‘genetic’ interactions, which identify

cause and effect relationships without specific

knowledge of whether the interactions are direct,

have been mapped for many organisms [6, 7].

Although these databases of network interactions

currently have not attained full ‘coverage’, e.g.

many interactions are likely to be missing (false nega-

tives) and calculating the rate of false positives is

challenging, such technologies have revolutionized

our understanding of biological function as a net-

work of interactions, enabling analyses on a systems

scale rather than at the level of individual genes or

proteins. It is clear that many prevalent diseases such

as cancer, diabetes and heart disease are not solely

caused by the action of single genes, but rather by

alterations in the functioning of a complex web of

networks and pathways. Meanwhile, genome-wide

measurements of multiple organisms and individuals

made at the genome, transcriptome, metabolome

and proteome level present new opportunities for

both data integration and potential translation of

findings to medical practice. We are now in a pos-

ition to integrate these multiple types of systems level

-omics data sets through various models of network

biology. Such workflows will lead to discovery of

new insights to understand these complex diseases

and the system perturbations accompanying disease

phenotype. As tools such as next-generation sequen-

cing and mass-spectrometry instruments for analyz-

ing the genome, proteome and metabolome keep

improving and new types of -omics data emerge;

developing computational frameworks for the inte-

gration of these different layers of data presents a

challenge. Although pipelines to integrate large and

diverse data sets and narrow them down to con-

nected pathways that have prognostic value are

emerging (Figure 1) (adapted from Ref. [8]) applying

them productively in the context of clinical decision

making has not yet been realized. Nevertheless, these

methods are productive in identifying disease-asso-

ciated pathways or biomarkers. Although bench sci-

entists and clinicians recognize the need to translate

these methods and knowledge to the bedside, the

interdisciplinary nature of these studies and the lack

of easy to use tools are impeding progress. Ideally,

the goal of translational science with respect to diverse

-omics data sets is to allow a scientist/clinician with

limited computational skills to connect multiple

layers of patient specific information to arrive at a

more informed prognosis and, by identification of

patient-specific molecular information, permit the

design of optimal treatment choices, at least in the

context of clinical trials if not in patient care.

Although these ultimate goals are desirable, connect-

ing even the simpler variables of diagnosis, prognosis

or prediction of response to integrated -omics

data is challenging. To overcome these challenges,

we suggest the translational bioinformatics community

consider the following as potential opportunities:

(i) Utilize existing models of biology [e.g. protein–

protein and genetic interaction networks, Gene

Ontology (GO), known pathways] to integrate

diverse -omics data using emerging novel

tools providing multiplexed network biomarkers

of disease. In many cases integration of all available

data sets can be a starting point driving research.

(ii) Based on network biomarkers discovered from

initial studies, develop and apply methods to seg-

regate individual patients or patient classes with

respect toclinicalphenotypesordiseaseoutcomes.

(iii) Develop tools and methods to visualize patient

and disease-specific data from multiple sources

enabling visualization of the disease states of

patients.

(iv) Refine network biology approaches and net-

work biomarkers by comparison of multiple pa-

tient cohorts validating the relationship of the

network modules to phenotype.

These general approaches are outlined in the ex-

amples that follow, providing a model for scientific
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discovery and validation in the new era of network

biology.

SYSTEMS BIOLOGYOF
DIFFERENTIALGENE
EXPRESSION: INTEGRATING
TRANSCRIPTOMICAND
INTERACTOMIC DATA
Whole genome expression data, measured in terms

of the mRNA transcripts present in a given sample

(i.e. the transcriptome), has been valuable in character-

izing cellular perturbations [9]. Identification of

genes or gene sets that are differentially expressed

in various disease states have enabled discovery of

novel biomarkers for such clinical tasks as diagnosis

and prognosis, as well as identifying potential targets

for therapeutic intervention [10]. To this end, inter-

pretation of differential gene expression from a sys-

tems perspective has the potential to shed light into

the molecular mechanisms of complex diseases.

Systems biology approaches to differential expres-

sion analysis can be roughly classified into three cate-

gories: (i) signature-based, (ii) pathway-based and

(iii) network-based analysis of differential gene

expression. Signature-based approaches construct

genome-wide expression signatures for diseases or

drugs by comprehensively integrating multiple

Figure 1: Workflow for high-throughput data integration to help understand themolecular basis of cancer. An inte-
grative -omics signaling network identification process workflow that begins with processing tissue-specific data (in-
strument outputs) is shown. Microarray data is normalized to make comparisons of expression levels and
transformed to select genes for further analysis. Genome-wide genotyping signals are analyzed to identify regions
(and hence regional genes) for both tumor and normal tissue (or non-cancerous cells). Next, genomic regions with
significant aberrations are merged with their corresponding microarray probes to create expression profiles. In this
analysis step, expression profiles are used to calculate Pearson’s coexpression correlations among gene pairs. These
results are fed into the Pathway Analysis Framework. Integrating gene^gene coexpression values, annotations from
GO, known signaling pathways, protein sequence information, PPI networks and protein subcellular co-localization
data, pathways are predicted and filtered. Significant pathway subnetworks are merged to form signaling networks
connecting genes of interest.The networks andgenomic alterations identified are put together to create a descriptive
functional network, creating a molecular basis for the cancer studied. This type of workflow, which we utilized,
can be applied to using integrative systems biology approaches to study cancer and other pathologies [8].
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case-control data sets [11]. They then use these sig-

natures to identify similarities between pairs of dis-

eases, pairs of drugs [12] or disease and drug pairs [13]

based on the similarity of expression signatures under

the respective conditions (e.g. in samples with the

disease or in samples under treatment). Subsequently,

they predict new indications for drugs based on

patterns of similarity between different drugs [13].

Pathway-based approaches mainly focus on rela-

tively well-characterized cellular pathways and aim

to systematically identify pathways that are enriched

in products of differentially expressed genes. Among

these, gene-set enrichment analysis (GSEA) has been

quite popular in the last few years [14]. GSEA takes

as input a set of genes (e.g. genes that code for pro-

teins in a particular pathway) and aims to assess the

overall rank of the genes in the set among all genes in

the gene expression data set in terms of their differ-

ential expression in the disease of interest. If the

genes coding for proteins in a pathway rank signifi-

cantly higher compared to other genes in the entire

genome, then the pathway is considered dysregu-

lated in the disease. GSEA has been applied to the

identification of dysregulated pathways in a large

number of diseases and phenotypes, including

breast cancer and obesity, among others. Following

GSEA, many other methods have been developed

for pathway-based differential expression analysis

with improved statistical procedures [15].

While being quite useful, pathway-based analysis

of differential gene expression has important limita-

tions. In particular, pathway-based approaches re-

strict the functional relationships among genes (and

their products) to well-characterized (and well-stu-

died) pathways. Therefore, these approaches are gen-

erally not able to characterize the differential

expression of relatively less studied genes, discover

novel functional links among genes, or identify

disease-specific crosstalk between different pathways.

Furthermore, these methods rely on the assumption

that genes coding for proteins in an ‘active’ pathway

should show an evident correlation in their expres-

sion levels, which may not be necessarily true. PPI

networks (i.e. the interactome) offer an invaluable re-

source in this regard. Since PPI networks are derived

from high-throughput interaction data (e.g. Y2H

and AP/MS), as well as comprehensive mining of

other biological data sources (e.g. phylogenetic pro-

files, structural similarities, common citations), they

contain potential functional links that are not cap-

tured from the perspective of canonical pathways

that are characterized in detail [16]. Furthermore,

since PPI networks provide a comprehensive map

of functional interactions in the cell, they are also

useful for global analyses that take into account net-

work topology. To this end, network-based analysis

of differential gene expression can effectively dis-

cover multiple interacting markers for disease and

help generate novel hypotheses related to mechan-

isms of disease.

A commonly considered problem in network-

based analysis of differential gene expression is the

identification of sub-networks of the human PPI

network that are significantly dysregulated with

respect to a disease of interest. Here, the term

sub-network refers to a group of proteins that are

functionally linked to each other through PPIs (i.e.

they induce a connected sub-graph of the PPI net-

work). The input to the dysregulated sub-network

discovery problem is genome-wide case–control ex-

pression data for a specific disease and a network of

PPIs. The objective is to discover sub-networks of

the PPI network that exhibit collective dysregulation

with respect to the disease. Two key methodological

challenges in this regard are (i) development of a

scoring scheme to assess the collective dysregulation

of multiple interacting genes and (ii) development of

efficient computational algorithms to search for

sub-networks with significant scores.

Common approaches to sub-network scoring

differ from each other in terms of the order in

which they integrate individual genes. A common

approach is to first score the differential expression

of each gene individually using a standard statistical

test (e.g. t-test), and subsequently compute

sub-network scores as an aggregation of these indi-

vidual differential expression scores [17, 18]. While

these methods are useful in identifying functionally

related genes that are differentially expressed with

respect to disease (‘active’ functional modules), they

provide limited systems level insights since they assess

the differential expression of functionally related

genes individually. In other words, these methods

cannot capture patterns of coordinated dysregulation

at the level of individual samples.

An alternate strategy for scoring sub-networks is to

first integrate expression levels of genes in a

sub-network to construct a representative expression

profile for the sub-network, and subsequently assess

the ability of this representative profile in discrimi-

nating disease and control samples. The discrimina-

tive ability of an expression profile is often quantified
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in terms of its mutual information with phenotype,

i.e. the reduction in the uncertainty of a sample’s

phenotype upon observation of the sub-network’s

expression profile for that sample [19–24]. These

information-theoretic methods differ from each

other in how they compute expression profiles for a

sub-network. In a seminal paper, Chuang et al. [19]

used ‘sub-network activity’ as the expression profile

of a sub-network, which is defined as the aggregate

expression of the genes in the sub-network. As illu-

strated in Figure 2, the concept of sub-network

activity is also applied to integration of proteomic,

transcriptomic and interactomic data to identify

transcriptionally dysregulated sub-networks concen-

trated around post-translationally dysregulated

proteins in colon cancer [20]. While quite useful,

this additive scheme captures the coordination be-

tween the dysregulation of interacting gene products

to a limited extent as interacting genes may not be

additive in their functions. Observing that coordinated

changes in the mRNA-level expression of interacting

proteins can exhibit combinatorial patterns as well,

Chowdhury et al. [21] quantized gene expression

data and represented the expression profile of a

sub-network as a multi-dimensional random variable

that represents the combination of expression states

of the genes in the sub-network. As a stronger

information-theoretic measure of coordinated dysre-

gulation, Anastassiou [22] proposed synergy, which is

defined as the difference between the overall mutual

information of sub-network state and the mutual in-

formation of sub-states of sub-network state.

Besides mutual information, several alternate

measures for assessing sub-network dysregulation

have been recently proposed. These measures in-

clude the density of dysregulated genes in a subset

of disease samples [25], the number of disease samples

that can be distinguished from control samples by at

least one gene in the sub-network [26], the linear

separation between disease and control samples in

the multi-dimensional space induced by expression

profiles of the genes in the sub-network [27], and the

ability of a decision tree constructed from the

sub-network in discriminating disease and control

samples [28].

Since the sub-network space of the human PPI

network is of exponential size, searching for sub-

networks with significant dysregulation is a challen-

ging computational problem. In order to tackle these

challenges, greedy heuristics [19, 26], branch-and-

bound algorithms [21, 25], and randomized search

algorithms [27], were proposed. Sub-networks

identified by these algorithms were used as features

for classification in various applications. It was

repeatedly shown by several studies that such

network-based classifiers outperform traditional

gene expression based classifiers in predicting metas-

tasis of breast [19, 25] and colorectal cancers [20, 21],

response to chemotherapy [27], and progression of

glioma [28].

An alternate approach to assessment of network-

level dysregulation is to infer disease-specific net-

works by identifying interactions that are dysregu-

lated in disease. As examples of this approach,

Figure 2: A data integration framework for using disparate -omic data sets together to identify functional
sub-networks in complex phenotypes. Data/experimental procedures are shown on the upper panel, inferred infor-
mation shown in solid boxes on the lower panel, computational algorithms are shown in dashed boxes on the
lower panel are shown by solid lines pipeline for identification of disease-associated sub-networks. This framework
was used to identify PPI sub-networks dysregulated in late-stage colorectal cancer, revealing novel targets that are
dysregulated at the post-translational level, but were not captured by untargeted proteomic analysis (45).
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Watkinson et al. [23] identified pairs of genes with

synergistic differential expression in prostate cancer

by clustering samples represented as points in the

two-dimensional space induced by the expression

levels of the pairs of genes and correlating this clus-

tering with disease state. Similarly, Mani et al. [24]

identified dysregulated interactions in B-cell lymph-

omas by constructing B-cell specific-networks and

scoring the interactions in these networks using

mutual information.

Overall, we expect continued advances in de-

veloping network models of disease driven by ana-

lysis of genome-wide expression data; these data are

fertile ground for applying emerging graph theoret-

ical algorithms to -omics data.

INTEGRATING GENOME-WIDE
ASSOCIATION DATA AND
NETWORK BIOLOGY TO
UNDERSTANDDISEASE
Characterization of disease-associated variation in

human genomes is an important step towards enhan-

cing our understanding of the cellular mechanisms

that drive complex diseases, with many potential ap-

plications in personalized medicine. In the last

decade, genome-wide linkage and association studies

(GWAS) based on comparison of healthy and af-

fected populations have been quite useful in iden-

tifying genetic variants, particularly single nucleotide

polymorphisms (SNPs) and more recently copy

number variants (CNVs) that are potentially linked

with disease [29]. However, many limitations of

GWAS are being increasingly pronounced. These

limitations, which pose significant challenges to ef-

fective identification of genes associated with com-

plex diseases and their use in clinical applications,

include the following:

(i) The number of loci being monitored is in the

order of millions while the number of patients is

often limited to several thousands; therefore

multiple hypothesis testing poses restrictions on

evaluation of significance, leading to many can-

didate loci with moderate P-values [30].

(ii) Susceptible loci identified by GWAS so far gen-

erally account for a limited fraction of the geno-

typic variation in patient populations [31].

(iii) Predictive models based on identified loci have

modest success in classifying phenotype (risk as-

sessment) and therefore are of limited practical

use [32, 33].

(iv) Many of the SNPs identified by GWAS do not

have clear functional implications that provide

insights into the mechanistic bases of disease;

however, they might indeed have key regula-

tory roles [34].

Recognition of these limitations lead to concerns

about the significant cost of the studies and a grow-

ing perception that the benefits to society are not yet

matching the investment and thus that improved

approaches are needed. This trend has not gone un-

recognized by bioinformaticians, and explanations

for the missing heritability have focused on rare vari-

ants [35] and interactions (epistasis) [36] as likely

culprits.

Multi-gene analysis is commonly proposed as a

logical next step to understanding the relationship

of gene and disease [31]. The question is how to

go about it without exponentially increasing the

number of tests required? A promising direction in

this regard is the development of multi-gene frame-

works by incorporating biological data from other

sources to confine the search space for combinations

of variants to be tested [37]. This approach poten-

tially has many favorable consequences, including

reduction of the number of hypotheses (gene com-

binations) to be tested [38] and a context for gaining

insights into the functional bases of genetic inter-

actions [39, 40]. Consequently, computational meth-

ods are rapidly being developed to integrate GWA

data with disparate -omics data sets for prioritizing

and identifying combinations of genes that are most

likely to be functionally associated with the disease of

interest. Many methods utilize available pathway and

annotation information to identify pathways that are

significantly enriched in disease-associated genes [41,

42]. Recently, more sophisticated methods are also

developed to assess disease association of pathways by

directly integrating genotypes of the genes that take

part in the pathway (as opposed to performing en-

richment analysis based on association scores of indi-

vidual genes) [43]. PPI networks also offer an

invaluable resource in this regard, since they provide

functional information in a network context and

they can be obtained at a large scale via

high-throughput screening [23].

Computational methods for identifying epistatic

interactions using PPI data are still in relative infancy

[31]. However, in the context of similar applications,

use of PPI data has demonstrated great success in

enhancing the outcome of GWAS [44]. These

Network biologymethods for translational science 451



applications include prioritization of candidate

disease genes and identification of disease-gene en-

riched sub-networks of the human PPI network.

Network-based prioritization of
candidate disease genes
Methods for candidate gene prioritization are based

on empirical evidence suggesting that products of

genes that are implicated in clinically similar diseases

are clustered together into ‘hot spots’ in PPI net-

works [45]. Motivated by these observations, many

methods have been developed to search the PPI net-

works for interacting partners of known disease genes

to narrow down the set of candidate genes impli-

cated by GWAS. In one of the pioneering studies,

Lage et al. [46] score candidate disease genes based

on the association of their interacting partners with

diseases clinically similar to the disease of interest.

While such methods prove quite useful, they do

not utilize knowledge of PPI networks to their

full potential. In particular, they do not consider

interactions among proteins that are not coded by

candidate genes, which might also be useful in

understanding indirect functional relationships be-

tween candidate genes and genes implicated in clin-

ically similar diseases.

Information-flow based approaches to disease-

gene prioritization are grounded on the notion that

products of genes that have an important role in a

disease are expected to exhibit significant network

crosstalk to each other in terms of the aggregate

strength of paths that connect the corresponding

proteins. These methods, which include random

walk with restarts [47] and network propagation

[48], take as input the disease association scores of

individual proteins (e.g. association with a disease

clinically similar to the disease of interest).

Subsequently, they propagate this information

across the PPI network to compute network-based

disease association scores for all proteins in the net-

work. Finally, using these network-based association

scores, they rank the proteins coded by genes in the

implicated linkage interval for the disease of interest

(Figure 3).

Algorithms for candidate gene prioritization are

often evaluated via leave-one-out cross-validation

studies using data from Online Mendelian

Inheritance in Man (OMIM). This database provides

previously identified disease–gene associations for

hundreds of human diseases and thousands of

genes. In order to assess the performance of a

prioritization algorithm, each disease–gene associ-

ation in the database is considered. First, the associ-

ation between the gene (named the target gene) and

the disease (named the disease of interest) is removed

from the database. Then a virtual linkage interval is

constructed by selecting a number of genes in

chromosomal proximity of the target gene as candi-

date genes. Subsequently, using a human PPI net-

work and the clinical similarity of the disease of

interest to other diseases, these candidate genes are

ranked by the algorithm being tested. The final rank-

ing of the target gene is then used as an indicator of

the performance of the algorithm.

Systematic experimental studies show that,

information-flow based approaches, which take

into account the multiplicity of network paths be-

tween candidate genes and genes involved in clinic-

ally similar diseases, drastically improve the accuracy

of network-based disease-gene prioritization, as

compared to methods that only consider direct inter-

actions [44]. However, these methods tend to favor

highly connected gene products, since such proteins

are likely to receive more flow [49]. While many

disease-associated genes have many known inter-

actions, loosely connected gene products are also

of great interest for generating novel information,

since such genes are likely to be less studied.

Motivated by these considerations, network algo-

rithms that use topological similarity instead of net-

work connectivity are also proposed. These

methods assess the potential disease association of

each candidate gene based on the notion that pro-

teins with similar roles in disease may be located

similarly in terms of their proximity to other pro-

teins in the network [50].

Identification of disease-gene enriched
subnetworks
Since GWAS generally return many genetic variants

that are moderately associated with disease.

Aggregation of these moderate association scores

within a functional context may reveal groups of

functionally related proteins with significant aggre-

gate association score. Based on this hypothesis, Jia

et al. [51] integrate GWAS results for breast and pan-

creatic cancer using PPI data. They convert SNP

markers in a GWAS data set to their associated

genes, with the P-value of the genes being a function

of the SNPs associated with those genes. Then they

load the weighted genes onto a comprehensive

human PPI network to construct a node-weighted
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PPI. Subsequently, they use a dense module-

searching algorithm to identify sub-networks that

maximize the proportion of low P-value nodes.

The novelty of this method is to use all the SNP

P-values in the calculation; this ‘moderate-

significance’ SNPs can positively contribute to the

networks if they interact with highly significant

SNPs, while highly significant SNPs that only ‘talk’

to low significance SNPs are downgraded. For ex-

ample, in the analysis of breast cancer GWAS, inter-

esting genes like SMAD3, whose individual

association is not significant (p� 0.10), are identified

as it is recruited into a dense sub-network that overall

is significant.

Liu et al. [52] take a related approach for analyzing

GWAS data from an obstructive sleep apnea (OSA)

GWAS study. They first generate a tissue-specific

protein–protein interactome from adipose tissue, as

inflammation of adipose tissue and its relationship to

obesity are key variables of the disease. They then

search this interactome d for OSA related sub-

networks by mapping P-values from the GWAS

study to proteins of the interactome, similar to the

approach above. In this case, the Cytoscape plug-in

jactivemodule, originally developed to analyze

microarray data [17], is re-purposed to detect a

large significant sub-network within that interac-

tome. The jactivemodule combines the network

Figure 3: Network-based prioritization of candidate disease genes. (A) Flow chart for network-based prioritiza-
tion algorithms: -omic data are shown by green ellipses (top left), clinical data are shown by purple ellipses (top
right), intermediary data are shown by cyan ellipses (left and right bottom two ellipses), computational algorithms
and statistical analyses are shown by boxes, overall outcome of the framework is shown by a red ellipse (top
middle). (B) Key principles employed by prioritization algorithms: Each panel shows part of a hypothetical PPI net-
work, blue nodes (light grey) represent products of seed genes, red nodes (dark grey) represent products of candi-
date genes. Connectivity-based algorithms rank candidate genes based on their products direct interactions with
product’s of seed genes; information-flow based algorithms rank candidate genes based on themultiplicity of net-
work paths between their products and products of seed genes; topological similarity based algorithms rank candi-
date genes based on the similarity of their products’ location in the PPI network to that of the products of
candidate genes.
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Figure 4: Workflow for network detection. Networks are identified by jactivemodule using P-values from GWAS
study (see text). Briefly, based on the P-values for each SNPs from GWAS, each gene has been assigned a P-value,
then, they are superposed on the human PPI interactome derived from HPRD, finally, Cytoscape and jactivemodule
are used to identify the network that is enriched with significant P-values. The color represents the P-values and
nodes with gray color indicate that the P-values are missing from GWAS.
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structure and associated P-value of each protein to

extract potentially meaningful sub-networks. A

highly significant subnetwork with 203 proteins

and 324 interactions is identified by this method

(Figure 4). Note that many of the nodes have

modest P-values (low z-scores), and would not be

seen as significant in a conventional GWAS. Another

Cytoscape plugin MCODE is applied to explore the

protein complexes or other modules present in the

sub-network identified by jactivemodule. GO func-

tional categories are analyzed for enrichment in the

sub-network, the detected functions included insulin

receptor signaling pathway, and negative regulation

of tyrosine phosphorylation of STAT3 proteins. This

is of interest as STAT3 tyrosine phosphorylation

is noted to be critical for interleukin protein

Figure 5: Biochemical networks for personalized medicine. Biochemical reaction networks are rooted in the
mechanistic interactions that comprise biological pathways; as such, these networks are carefully constructed
from a wealth of genomic and metabolic databases, as well as from detailed experimental and literature data.
Once networks have been constructed and curatedçto ensure mass and charge balance, and to minimize gaps in
connectivityçthey serve as a powerful platform for interpreting high-throughput data. Not only can the network
provide functional pathway context for genetic, transcriptomic or other perturbations, but through
constraint-based modeling, these perturbations can be directly related to emergent phenotypes. Incorporating
information from transcriptional regulation and intracellular signaling can lead to improved ability of the model
to replicate in vitro and in vivo conditions. The iterative process of generating and experimentally testing simulated
predictions leads to a refined and accurate model that holds great promise for facilitating personalized medicine.
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production in the inflammatory response and STAT

family members are implicated in several processes

relevant to tumor growth, providing a novel link

between OSA and cancer.

Overall, many recent studies apply GWAS data in

an unbiased manner and use most or all of the data

to probe for interactions of interest. This is an im-

portant next step in GWAS analysis, as it identifies

additional genes that likely contribute to phenotype.

However, the newly identified targets, missed in

conventional GWAS, are not yet proven to recover

missing phenotype. Construction of classifiers with

these new targets, and testing in various cohorts is

required to assure that significant progress is being

made with these integrative approaches. Use of PPI

networks is also likely to be promising in identifying

epistatic interactions among two or more function-

ally related genes.

LOOKINGAHEAD: MECHANISTIC
IN SILICOMODELSTO GUIDE
PERSONALIZEDMEDICINE
An emerging frontier in systems and network

approaches to medicine comes from recent advances

in the ability to model large-scale biochemical reac-

tion networks in human systems. Thus far, we have

discussed multiple network approaches to aid the

development of systems medicine; these approaches

have primarily used networks generated via

high-throughput interaction data and statistical net-

work inference from high-throughput measurements

(e.g. transcriptomes and GWAS data). However,

biochemical reaction networks differ fundamentally

from these networks in that they are based explicitly

on our detailed understanding of the underlying

chemical mechanisms in the cell [53], while the net-

works generated using high-throughput data are

generally far less detailed or complete. These types

of biochemical networks, particularly for metabol-

ism, have been highly successful in modeling micro-

bial systems [54, 55], as well as in smaller-scale

human systems [56, 57]. These types of models

offer strong potential for linking genotype with

observed phenotypes quantitatively, and methods

for their reconstruction are now quite advanced

[58]. Most significantly, as biochemical reaction net-

works are based explicitly on the underlying chem-

ical mechanisms of the system, the rules of physics

and chemistry such as mass-energy balances and

thermodynamics can be applied directly. Their basis

in mechanism also means that they are generally

built from the bottom up and involve ‘forward-

calculations’ [59] based on linking well-characterized

components together and computing the conse-

quences of observed experimental data on the rest

of the system, rather than on statistical learning or

data-fitting. Thus, they can be used as a strong basis

to interpret high-throughput data and offer the

long-term potential to be a powerful means to ad-

dress fundamental challenges of personalized medi-

cine where particular disease-relevant perturbations

in patients can be unique (and thus not easy to ad-

dress from purely statistical approaches) (Figure 5).

IN SILICOMETABOLICMODELSAT
THEGENOME-SCALE
Metabolic networks are the most comprehensive and

well-understood class of biochemical reaction net-

works today. While large-scale maps of known me-

tabolism in humans have existed for quite some time,

it is only in the past few years that computational

models of metabolism at the genome-scale in

humans have been made [60, 61]. These initial

models represent globally all the known metabolic

potential encoded in the human genome. This global

map is now serving as a starting point for generating

specific metabolic models of each of the cell types of

the human body, with the first genome-scale recon-

structions having been completed for hepatocytes

[62, 63]. Additionally, core models have been

made of interactions between three distinct types

of neurons and astrocytes [64]. These models of

interacting cells can demonstrate differential effects

of genetic perturbations on neuron subtypes and dif-

ferent regions of the brain—providing the ability to

evaluate modifications in neurodegenerative diseases

such as Alzheimer’s [64] or Leigh’s syndrome [65].

Even more recently, methods have been developed

to integrate genome-scale metabolic networks with

genome-scale transcriptional regulatory networks in

a semi-automated framework [66], and efforts are

underway to also elucidate genome-scale signaling

networks in a similar manner [67].

APPLICATIONSOF
GENOME-SCALEMETABOLIC
MODELSTODISEASE
Genome-scale in silico models of human metabolism

are already being applied to important medical
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questions, and their continued development holds

great potential for long-term significant impact for

personalized medicine. One of the best-known hall-

marks of cancer and one of its most pervasive features

is the Warburg effect, where cancer cells shift their

metabolism to less energetically efficient glycolysis

based energy production, which is potentially adap-

tive to a hypoxic tumor micro-environment, instead

of the greater adenosine triphosphate producing oxi-

dative phosphorylation generally used in normal

cells. Using the first genome-scale metabolic model

for cancer, evidence showed that this adaptation

could be computed directly from cancer cells adapt-

ing to having higher growth rates [68]. Importantly,

the model also captured three distinct metabolic

phases commonly seen in tumor progression, as

well as other key metabolic changes such as a pref-

erence for glutamine uptake over other amino acids.

Biochemical reaction network models also show

promise in providing predictions of biomarkers

grounded in disease mechanisms. One intriguing

early study focused on predicting metabolites

whose concentration in the blood was predicted to

change based on inborn genetic errors in metabolic

enzymes [69]. Genetic mutations that cause enzyme

defects can be simulated and the highest confidence

metabolic changes predicted, which give rise to

highly enriched hypotheses for metabolite-based

biomarkers. One important aspect of this type of

approach is that the mechanism related to the bio-

marker change is explicitly described via the model,

and thus represents more than only observed statis-

tical association. This study predicted 233 high con-

fidence biomarker changes reflecting 176 possible

enzyme defects from mutations.

Another major area of use is for predicting drug

targets. For example, the first generic genome-scale

network model for cancer metabolism was used to

predict 52 cytostatic drug targets [70]. Around 40%

of these were already targeted by known, approved

or experimental anti-cancer therapeutics, leaving

over half that were predicted to be candidates for

novel interventions. More importantly, the model

also predicted synthetic lethal combinations of

drugs, which are difficult to screen comprehensively

in experiments.

Another highly useful aspect of such models is

their ability to predict drug off-target effects when

combined with structural protein analysis. This ap-

proach is two-pronged, with structural bioinformat-

ics enabling the prediction of protein-drug off targets

based on ligand binding sites, while the metabolic

model enables the system-level prediction of what

effects these putative interactions would have on

the system and which would be predicted to affect

e.g. cell viability. A kidney metabolic model pre-

dicted causal drug off-targets that were experimen-

tally shown to impact renal function in patients with

gene deficiencies that may cause observed side effects

from clinical trials. The model also predicted genetic

risk factors for drug treatment that corresponded

to both known and unknown renal metabolic

disorders.

CONCLUSION
This review highlights recent trends in network biol-

ogy analysis of -omics data for to understand the

mechanistic basis of disease. The power of functional

network frameworks for analyzing disparate sets of -

omics data is increasingly clear in the articles re-

viewed here. We expect network biology to play

an increasingly important role in informing research

studies, including clinical trails and drug develop-

ment. A challenge for practitioners in the field is to

provide robust tools that can be used by the

non-specialist permitting rapid growth of the

approaches. In addition, network-based models and

related network biomarkers must be tested outside

their initial discovery cohorts to provide robust clin-

ical predictions.

Key Points

� Network biology approaches are rapidly overtaking gene, gene
set, andevenpathway analyses as theprovide a functional frame-
work for analyzingmultiple types of -omics data.

� Network approaches in the analysis of genome-wide association
data can ‘rescue’ potentially interesting associations that appear
insignificant due tomultiple hypothesis testing corrections.

� Modeling of biochemical networks is rapidly improving, provid-
ing potential connections between explicit cellular models and
genome-wide data.
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