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SUMMARY
Background—Haemoglobinopathies variously reduce the risk of developing malaria syndromes.
Quantifying these relationships may strengthen the foundation for translational studies of malaria
pathogenesis and immunity.

Methods—The databases of MEDLINE and Embase (1950 – September 9, 2011) were searched
to identify studies that estimated the risk of malaria in patients with and without
haemoglobinopathies. Additional studies were identified from reference lists. Included outcomes
were Plasmodium falciparum-related outcomes of severe malaria, uncomplicated malaria,
asymptomatic parasitaemia, or pregnancy-associated malaria, and P. vivax malaria. Two
independent reviewers identified studies, assessed their quality, and extracted data; data were
meta-analyzed when outcomes were reported in more than one study.

Findings—Of 62 identified studies, 44 reported on HbAS, 19 on HbAC and HbCC, and 18 on α-
thalassaemia. Case-control studies showed a decreased risk of severe malaria for HbAS (summary
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Odds Ratio [OR] 0.09; 95% confidence interval [CI] 0.06 – 0.12), HbCC (summary OR 0.27; 95%
CI 0.11 – 0.63), homozygous α-thalassaemia (summary OR 0.63; 95% CI 0.48 – 0.83), HbAC
(summary OR 0.83; 95% CI 0.74 – 0.92), and heterozygous α-thalassaemia (summary OR 0.83;
95% CI 0.74 – 0.92). Only HbAS was consistently associated with protection from uncomplicated
malaria (summary Incidence Rate Ratio 0.69; 95% CI 0.61 – 0.79); none demonstrated protection
from asymptomatic parasitaemia. There was a paucity of clinical studies investigating β-
thalassaemia, HbE, P. vivax malaria, and pregnancy-associated malaria.

Interpretation—Protection from severe malaria syndromes is significant for HbAS, HbCC,
HbAC, and homozygous and heterozygous α-thalassaemia, but these haemoglobinopathies differ
substantially in the degrees of protection. Protection from uncomplicated malaria and
asymptomatic parasitaemia is mild or absent. By attenuating the severity of malaria,
haemoglobinopathies serve as a model for investigating the mechanisms of malaria pathogenesis
and immunity.

INTRODUCTION
Haemoglobinopathies are highly prevalent in some human populations currently or
historically exposed to the malaria parasite Plasmodium falciparum. In the major
haemoglobinopathies, adult haemoglobin – normally composed of two α-globin and two β-
globin chains – is altered by genetic polymorphisms that encode single amino acid
substitutions in β-globin (as in HbS, HbC, and HbE) or reduce production of α- and β-
globin chains (in α- and β-thalassaemia, respectively).1 These haemoglobin variants and
thalassaemias are postulated to have been naturally selected for their protection from
malaria, as evidenced by a broad spectrum of investigations. These include experimental P.
falciparum infection protocols, in vitro laboratory experimentation, ecological
epidemiologic studies, and cartographic modeling.2 Nevertheless, confirmation and
quantification of malaria risk reductions due to haemoglobinopathies requires clinical
studies.

Correlates of both malaria pathogenesis and immunity to disease can be identified by
studying patterns of differential susceptibility to malaria. Investigations of increased
susceptibility to P. falciparum malaria during pregnancy3,4 and resistance to P. vivax
infection in West Africans lacking erythrocyte expression of Duffy Antigen Receptor for
Chemokines (DARC)5,6 have unearthed fundamental mechanisms of both malaria
pathogenesis and acquired immunity. These molecular mechanisms – adumbrated by careful
epidemiologic studies – are foundations for leading vaccine candidates against pregnancy-
associated malaria7 and vivax malaria.8 While some falciparum malaria vaccines are
showing partial efficacy,9,10 malaria’s pathogenic mechanisms are not understood
sufficiently to inform the rational design of future therapeutics and preventive measures.

The clinical manifestations of P. falciparum malaria display a broad spectrum of severity
from asymptomatic parasitaemia to severe malaria syndromes.11 Differential protection
from specific syndromes owing to genetic resistance may constitute a “natural experiment”
that helps to identify the mechanisms of malaria pathogenesis that cause clinical morbidity.
Toward this end, we conducted a systematic review of published studies to estimate the
direct clinical effects of haemoglobinopathies on malaria syndromes.

METHODS
Search strategy & review criteria

We performed our review and meta-analysis in accordance with the PRISMA guidelines
(Supplementary methods, Table S1).12 Two authors (SMT and CMP) independently
performed the database searches (through September 9, 2011), appraised study quality, and
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extracted study data. Additional references were selected from the reference lists of
identified studies. To appraise the quality of the observational studies, we adapted the
principles of the Newcastle-Ottawa scale;13 in order to base analyses on robust data, we only
included studies that scored at least seven stars on the scale’s assessment of patient
selection, comparability, and exposure/outcome. When reported data were not sufficient for
estimation of desired comparisons, we contacted study authors. Overall, we selected studies
that reported the frequency of clinical outcomes in patients with and without a
haemoglobinopathy.

Study participants—We included studies that principally enrolled children; the
exceptions were studies that investigated pregnancy-associated malaria. We included studies
conducted in any level of malaria endemicity, but did not consider studies of non-immune
travelers.

Study designs—For the incident outcomes of severe malaria, uncomplicated malaria,
asymptomatic parasitaemia, and vivax malaria, we included data from both prospective
cohort and case-control studies. For asymptomatic parasitaemia (with either Plasmodium
species), we also included data from cross-sectional studies. For pregnancy-associated
malaria outcomes, we included data from cross-sectional studies of pregnant women. For
case-control studies, we required a clear description of the selection of controls. We
excluded case reports.

Exposure assessment—We only considered papers in which haemoglobin typing
employed electrophoresis, chromatography, or DNA analysis.

Outcome assessment—We investigated clinical outcomes owing to infection with
either P. falciparum or P. vivax. P. falciparum-related outcomes were severe malaria
(including cerebral malaria and severe malarial anaemia),14 uncomplicated malaria,
asymptomatic parasitaemia, and pregnancy-associated malaria; vivax malaria was also
included (Supplementary methods).

Definitions
The human genome normally contains four copies of the α-globin gene and two copies of
the β-globin gene. Individuals with deletions of one a-globin gene (–α/αα) and two α-
globin genes (–α/-α or αα/--) are referred to as α-thalassaemia heterozygotes and
homozygotes, respectively. β-thalassaemia refers to individuals with impaired production of
a single β-globin gene (β-thalassaemia trait, or β-thalassaemia minor). We did not
investigate HbSS, HbSC, the deletion of three α-globin genes (α−/−-), or the impaired
production of two β-globin genes (β-thalassaemia major) because these genotypes typically
manifest severe clinical sequelae which complicate any assessment of malaria-specific
clinical morbidity. Additionally, we did not explore haemoglobin mutations with low global
population prevalences, including haemoglobins D, Constant Spring, and Lepore. Odds
Ratios (ORs) and Incidence Rate Ratios (IRRs) reflect comparisons between patients with
haemoglobin variants and those with HbAA, or between patients with thalassaemias and
those without.

Data analysis
For studies that did not report comparisons of interest, we extracted raw data to either 1)
compare prevalences of parasitaemia between patient groups with the chi-squared test (in
cross-sectional studies); 2) compare prevalences of haemoglobin variants between groups of
patients with malaria syndromes with unadjusted ORs (in case-control studies); or 3)
compute Risk Ratios (RRs) or IRRs of malaria syndromes between groups of patients with
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and without haemoglobinopathies (in prospective studies). All comparisons were calculated
with exact confidence intervals.

Because case-control and prospective cohort studies estimate relative risk using distinct
statistical methodologies, we employed separate analyses to meta-analyze ORs and IRRs.
When individual-level case-control data were available for two or more studies that
compared the prevalence of a haemoglobinopathy for the same case and control groups, we
meta-analyzed the data to produce summary ORs. Meta-analyses were computed using
random-effects models employing the DerSimonian & Laird method (metan in Stata/IC); the
I2 statistic for heterogeneity was calculated using the Mantel-Haenszel method for meta-
analyzed data within subgroups (haemoglobinopathy and malaria syndrome). Similarly,
when data were available for two or more prospective studies which compared incidence
rates of the same outcome, we meta-analyzed the data to produce summary IRRs. Meta-
analyses of IRRs were computed using random-effects Poisson meta-regression.15. We
assessed publication bias in case-control studies using funnel plots and Begg’s test
(Supplementary methods). All single-study and summary analyses were calculated with
Stata/IC (version 11, Stata Corp, College Station, TX).

Role of the funding source
The sponsor of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. The corresponding author (SMT) had full access to
all the data in the study and had final responsibility for the decision to submit for
publication.

RESULTS
The search strategy identified 2664 studies for review, and we selected 62 for inclusion
(Figure 1): 44 studies of HbAS, 19 of HbAC, eight of HbCC, 18 of α-thalassaemia (all
except one included homozygotes), three of HbE, and two of β-thalassaemia (some studies
examined more than one haemoglobinopathy). Of the 62 studies, 18 were prospective
cohorts, 15 were case-control, and 31 were cross-sectional studies (two studies reported
more than one design). Five studies investigated pregnancy-associated malaria, and two
studies included patients with P. vivax malaria. There was no evidence of reporting bias
amongst comparable studies (Supplementary methods, Figure S1).

Severe P. falciparum malaria syndromes
Haemoglobin S—Compared to healthy controls, the summary OR for severe malaria was
0.09 (95% CI 0.06 – 0.12; I2 10.6%) across five studies which together enrolled more than
10,000 patients,16–20 and was similar to summary ORs for the specific syndromes of
cerebral malaria (0.07; 95% CI 0.04 – 0.14; I2 0%)18,19 and severe malarial anaemia (0.09;
95% CI 0.06 – 0.13; I2 0%)(Figure 2, Table 1).18,19 Compared to children with
uncomplicated malaria, ORs for severe malaria in three studies17,21,22 were heterogeneous
and a summary OR estimate was non-significant (0.52; 95% CI 0.20 – 0.38; I2 50.0%).

Only two cohort studies have reported the incidence of severe malaria (Figure 3, Table 2).
The incidence of severe malaria was reduced by 71% (95% CI 38% – 88%)23 and 83%
(95% CI 60% – 93%)24 in similar cohorts of Kenyan children. In the second cohort, the
incidence of cerebral malaria was nonsignificantly reduced by 86% (95% CI -17% – 98%),
while that of severe malarial anaemia was reduced by 60% (95% CI 40% – 70%)25 and 89%
(95% CI 3% – 99%).24 Taken together, data from both case-control and prospective cohort
studies indicate that HbAS is consistently associated with large reductions in the risk of
severe malaria syndromes.
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Haemoglobin C—HbC appears to protect against severe malaria to a lesser degree than
HbAS and in proportion to allele frequency (Figure 2). Compared to healthy children in four
studies16,17,19,20 that together enrolled over 9,000 patients, the summary ORs for severe
malaria were 0.27 (95% CI 0.11 – 0.63; I2 0%) for HbCC and 0.83 (95% CI 0.74 – 0.92; I2

10.2%) for HbAC (Figure 2; Table S1). Protection from specific severe malaria syndromes
has not been fully investigated in HbCC; in one study,19 HbAC showed mild protection
from cerebral malaria (OR 0.64; 95% CI 0.45 – 0.91) and severe malarial anaemia (OR 0.87;
95% CI 0.68 – 0.11). When compared to children with uncomplicated malaria, protection
from severe malaria is inconsistent: non-significant protection is reported from severe
malaria in three studies17,21,26 of HbCC (summary OR 0.12; 95% CI 0.12 – 10.70; I2 0.7%)
and HbAC (summary OR 0.76; 95% CI 0.32 – 0.79; I2 60.7%), and from severe malarial
anaemia in two studies21,26 that combined homozygotes and heterozygotes (summary OR
0.35; 95% CI 0.04 – 0.73; I2 0%). Significant protection from cerebral malaria was reported
in one study of Malian children that combined homo- and heterozygotes (OR 0.15; 95% CI
0.004 – 0.93).21

Prospective studies have not reported the incidence of severe syndromes in HbC children
(Table 2). Thus, convincing evidence for protection from severe malaria owing to HbC
derives largely from few case-control studies.

Haemoglobin E—Meta-analysis of two studies27,28 in Myanmar and Thailand that
compared the prevalence of HbE in severe and uncomplicated malaria cases demonstrated
no evidence of protection (summary OR 0.41; 95% CI 0.04 – 0.95), though this should be
interpreted cautiously given the significant heterogeneity of the findings (I2 70.5%, p=0.027)
and the highly-selected settings of the studies.

α-thalassaemia—Four studies19,29–31 investigated α-thalassaemia in healthy children and
children with severe malaria: summary ORs were 0.63 (95% CI 0.48 – 0.83; I2 20.6%) for
homozygotes and 0.83 (95% CI 0.74 – 0.92; I2 0%) for heterozygotes. Protection from
cerebral malaria was nonsignificant in one study19 for heterozygotes (OR 0.80; 95% CI 0.64
– 1); protection from severe malarial anaemia was reported in two studies,19,29 with
summary ORs of 0.50 (95% CI 0.35 – 0.72; I2 0%) for homozygotes and 0.86 (95% CI 0.75
– 0.996; I2 0%) for heterozygotes. One prospective study from Kenya documented a
decreased incidence of severe disease in α-thalassaemia homozygotes (IRR 0.54; 95% CI
0.30 – 0.99) and heterozygotes (IRR 0.60; 95% CI 0.39 – 0.90) (Table 2; Figure 3).23

Additionally, protection from severe malarial anaemia among heterozygotes (IRR 0.33; 95%
CI 0.14 – 0.78) was similar to protection from cerebral malaria (IRR 0.48; 95% CI 0.24 –
0.97).32

β-thalassaemia—No studies have investigated the risk of severe malaria in patients with
β-thalassaemia.

Uncomplicated P. falciparum malaria
Haemoglobin S—In two West African studies,17,33 compared to healthy children the
summary OR for children with uncomplicated malaria was 0.30 (95% CI 0.20 – 0.45; I2

0.8%) (Table 1; Figure 2). Multiple prospective studies have characterized the risk reduction
in malaria attributable to HbS (Table 2; Figure 3). Meta-analysis of five studies23,34–37

produced a summary IRR estimate of 0.69 (95% CI 0.61 – 0.79), which likely approximates
the risk reduction owing to HbAS more closely in these malaria hyperendemic settings.38

Haemoglobin C—Few studies have reported the risk of uncomplicated malaria associated
with HbC. Two studies in West Africa compared healthy children and children with
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uncomplicated malaria: for HbCC, the OR for malaria was 0 (95% CI 0 – 0.41) owing to the
absence of HbCC in the case patients,17 and for HbAC the summary OR was 0.16 (95% CI
0.26 – 0.23; I2 80.9%).17,33 Three prospective studies have yielded conflicting results (Table
2; Figure 3): meta-analysis of two studies35,37 yielded a summary OR of 0.05 (95% CI 0.88
– 0.26). Thus, definitive evidence of protection from uncomplicated malaria afforded by
HbCC and HbAC has not been established.

Haemoglobin E—No identified studies quantified susceptibility to malaria by HbE.

α-thalassaemia—Several prospective studies have assessed the incidence of
uncomplicated malaria in α-thalassaemic children (Table 2; Figure 3), with conflicting
results. In Vanuatu, the incidence of falciparum malaria was higher in α-thalassaemia
homozygotes (IRR 0.3; 95% CI 0.32 – 0.07) and heterozygotes (IRR 0.1; 95% CI 0.77 –
0.61);39 in contrast, the incidence of uncomplicated malaria was lower in homozygotes (IRR
0.83; 95% CI 0.70 – 0.97) and heterozygotes (IRR 0.93; 95% CI 0.82 – 0.04) in Kenya,23 as
well as homozygotes (RR 0.12; 95% CI 0.02 – 0.83) and heterozygotes (RR 0.30; 95% CI
0.10 – 0.85) in Tanzania.40 Meta-analysis of three studies23,35,39 suggests lack of protection
for both homozygotes (summary IRR 0.12; 95% C.I. 0.69 – 0.81) and heterozygotes
(summary IRR 0.98; 95% C.I. 0.87 – 0.11).

β-thalassaemia—In one case-control study in Liberia, the prevalence of β-thalassaemia
was lower in cases of uncomplicated malaria than in community controls (OR 0.56; 95% CI
0.36 – 0.86) (Table 1; Figure 2).33

P. falciparum parasitaemia
Haemoglobin S—Cross-sectional studies have reported conflicting data on the prevalence
of P. falciparum parasitaemia in asymptomatic HbAS children (Table S3). Compared with
HbAA children, a lower prevalence of parasitaemia in HbAS children was reported in four
studies,41–44 similar prevalence in ten studies,45–54 and higher prevalence in two
studies.55,56 In these surveys, parasite densities were reported in HbAS children as
lower41,46,49,56,57 or similar45,50,52,55 to those in HbAA children. One case-control study
reported similar prevalences of HbAS in parasitized (23%) and unparasitized (24%)
asymptomatic children (Table 1).20 In two prospective studies,58,59 parasitaemia rates were
similar in HbAS and HbAA children (Table 2). Taken together, HbAS does not consistently
protect from P. falciparum parasitaemia.

Haemoglobin C—In cross-sectional surveys of adults and of children, HbC has not been
associated with a reduced prevalence of P. falciparum parasitaemia45–47,49,55,60 or P.
falciparum density.37,45,46,49,55 The incidence of asymptomatic parasitaemia did not differ
between HbAC and HbAA children in Mali.37 Thus, HbC does not appear to modify the risk
of P. falciparum parasitaemia.

Haemoglobin E—One cross-sectional study in India reported a significantly lower
prevalence of P. falciparum parasitaemia in patients with HbE (AE or EE) (0.6%) compared
with patients with HbAA (20.5%; p = 0.005 by chi-squared test).61

α-thalassaemia—In cross-sectional studies, α-thalassaemia was not associated with the
prevalence of parasitaemia in children32,62–66 or, in several studies, the density of
parasitaemias.56,62–64 In one prospective study of children in Papua New Guinea, both α-
thalassaemia homozygotes (IRR 0.51; 95% CI 0.32 – 0.81) and heterozygotes (IRR 0.56;
95% CI 0.36 – 0.87) had fewer episodes of PCR-detectable parasitaemia than those without
α-thalassaemia,67 though this outcome has not been investigated in other studies.
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β-thalassaemia—In one cross sectional study in Liberia, P. falciparum prevalence was
similar in children with (78%) and without (82%) β-thalassaemia.68

Pregnancy-associated P. falciparum malaria
Compared to women with HbAA, the prevalence of peripheral P. falciparum parasitaemia
was similar in women with HbAS among Nigerian primigravidae69 and Gabonese primi-
and secundigravidae,70 and significantly higher in Ugandan women of all gravidities (Table
S4).71 In two studies in Ghana there was no association between HbS, HbC, or α-
thalassaemia and P. falciparum prevalence.72 In one study in Papua New Guinea that
assessed birth outcomes, α-thalassaemia was not associated with placental malaria, birth
weight, placental parasite density, maternal peripheral parasitaemia, or maternal anaemia.73

On the whole, there are few data on the effect of haemoglobin variants on pregnancy-
associated malaria or placental parasitization.

P.vivax malaria: Is protection species-specific?
No studies investigated an effect of HbAS, HbAC, or HbCC on P. vivax infection. In a
prospective study in Vanuatu, the incidence of P. vivax malaria was significantly increased
in homozygous α-thalassaemic children less than 5 years old (IRR 0.4; 95% CI 0.40 – 0.30)
and nonsignificantly increased in children greater than 5 years old (IRR 0.0; 95% CI 0.42 –
0.14) (a similar pattern of increased malaria susceptibility was reported for P. falciparum
malaria).39 In a cross-sectional study investigating HbE in India, P. vivax parasitaemia was
significantly less prevalent in HbEE/AE (0.7%) than in HbAA individuals (20.1%; p <
0.001).61

DISCUSSION
Genetic polymorphisms that affect the structure and production of the β- or α-chains of
haemoglobin are variously associated with protection from a range of clinical manifestations
of P. falciparum infection. The degree of protection varies between haemoglobinopathies,
but in general is greatest against severe malaria, moderate against uncomplicated malaria,
and absent against asymptomatic P. falciparum parasitaemia. The degrees of protection
against severe malaria by HbAS (91%; 95% CI 88 – 94), HbCC (73%; 95% CI 37 – 89), and
homozygous α-thalassaemia (37%; 95% CI 17 – 52) compare favorably with those reported
for current large-scale malaria-control efforts, including intermittent preventive antimalarial
therapy in children (87% to 69%)74,75 or infants (38%)76 and the use of insecticide-treated
bed nets (45%).77

HbS and to a lesser extent HbC protect from malaria but not from parasitaemia, suggesting
that these haemoglobin variants prevent the transition from asymptomatic parasitaemia to
malaria. This transition is poorly understood. This protective effect may derive from the
abnormal display of parasite virulence factors on the surface of parasitized HbC and HbS
erythrocytes,78,79 possibly owing to the disruption of the parasite’s remodeling of
erythrocyte’s intracellular trafficking network by HbS and HbC.80 Additionally, the age-
dependent nature of malaria protection owing to HbAS81,82 and α-thalassaemia83 among
children in recent reports support a protective mechanism based upon an enhanced
acquisition of malaria immunity. Though HbS does not generally enhance IgG responses to
a diverse array of P. falciparum proteins,84 HbS may yet enhance IgG responses specifically
to the parasite’s major cytoadherence ligand and virulence factor Plasmodium falciparum
erythrocyte membrane protein (PfEMP1).85 Additional possible mechanisms for protection
owing to haemoglobinopathies include an enhanced clearance of parasitized erythrocytes,86

impaired parasite growth,87 or the induction of protective immunomodulatory mechanisms
by parasitized erythrocytes.88 Data supporting these various molecular mechanisms are
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complex [reviewed in 89,90], and because these possibilities are not mutually-exclusive, the
relative contribution of mechanisms may vary between haemoglobinopathies. By allowing
parasitization while attenuating the pathogenic mechanisms that lead to disease and fatal
outcomes, haemoglobin variants offer a model system to explore the cellular events involved
in causing morbidity (Panel 1).

Panel 1

Unanswered questions for future clinical and translational research

1. Does HbCC protect from uncomplicated malaria and asymptomatic
parasitaemia, or only from severe falciparum malaria?

2. Does α-thalassaemia reduce the risk of disease from specific non-Plasmodium
pathogens?

3. Do haemoglobinopathies influence the risk of uncomplicated or severe P. vivax
malaria?

4. Do haemoglobinopathies influence the risk of pregnancy-associated malaria?

5. Do HbE and β-thalassaemia confer protection from uncomplicated or severe
falciparum malaria?

6. Does α-thalassaemia exert negative epistatic effects on malaria protection by
HbC and HbE?

7. Do haemoglobinopathies confer malaria protection to non-immune populations?

8. How do co-inherited G6PD deficiency variants and ABO blood groups
influence the malaria-protective effects of haemoglobinopathies? 9. Does HbAS
confer protection against falciparum malaria outside of sub-Saharan Africa,
(e.g., India)?

The attenuation of malaria by haemoglobinopathies has important implications for non-
randomised analyses of clinical malaria studies. While randomised trials may achieve
balance of underlying protective polymorphisms, comparisons of non-randomised groups
may be compromised by differential prevalences of haemoglobinopathies or other risk
modifiers.91 Such potential bias could impact the differential efficacy of therapies, vaccines,
or other preventive measures in ecological analyses that compare populations that are not
defined by randomisation and in analyses of predictors of individual-level risk. Our data
endorse HbS as an important covariate in such analyses owing to its consistent protection
from uncomplicated malaria (IRR 0.69; 95% CI 0.61 – 0.79), which is a common outcome
in vaccine trials.9,10

Our review highlights several gaps in our basic understanding of how Plasmodium parasites
cause the symptoms and life-threatening manifestations of malaria. The paucity of outcome
investigations of pregnancy-associated malaria is striking, considering that this disease
model has revealed fundamental mechanisms of both parasite virulence and host adaptive
immunity.92 Similarly, the effect of haemoglobinopathies on P. vivax parasitaemia and
malaria incidence is relatively unknown despite geographic overlap in South Asia.
Additionally, given the measurable incidence of severe P. vivax malaria,93 case-control
studies may explore associations between haemoglobinopathies and severe vivax malaria
syndromes. Finally, clinical investigations have relatively neglected HbE, β-thalassaemia,
and HbCC. This is surprising given the high prevalence (up to 50%) of HbE in Cambodia
and HbC in parts of West Africa, as well as Haldane’s 60-year-old ‘malaria hypothesis’ that
heterozygous β-thalassaemia protects against severe and fatal falciparum malaria.94
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Two further points merit attention. First, though our systematic review was specifically
designed to assess malaria outcomes, within the identified studies we found some evidence
that while HbAS conferred malaria-specific protection22,24 α-thalassaemia protected against
other mild and severe infectious syndromes, including pneumonia.29,32 Because malaria
itself may counfound the relationship between haemoglobinopathies and other infections –
as recently reported for the effect of HbAS on bacteremia95 – myriad individual and
epidemiologic factors could account for this difference, in addition to biological differences
in the mechanisms of protection. The identification of these mechanisms may be aided if this
phenomenon is confirmed by future clinical studies or meta-analyses. Second, the
dissimilarity of estimates from prospective studies of the risk of uncomplicated falciparum
malaria in homozygous α-thalassaemic children is striking, with significantly increased risk
on the southwestern Pacific island of Vanuatu39 but either slightly decreased or unchanged
risk in Africa and Papua New Guinea (Table 2).31,35,40,67,96 Other data have suggested an
increased Plasmodium prevalence in homozygous α-thalassaemics in Papua New Guinea,97

underscoring that haemoglobinopathies may have variable effects in different settings upon
different outcomes. Future studies are needed to more definitively characterize these effects
and define their relationship with host genetics, malaria epidemiology, and acquired
immunity to malaria.

This systematic review is subject to several limitations. We may have failed to identify
relevant studies, though the independent selection of studies by two independent reviewers
who each assessed over 2600 studies suggests adequate identification. Secondly, risk
estimates for malaria may be influenced by unmeasured or unreported host factors, such as
G6PD deficiency and ABO blood groups. Nevertheless, heterogeneity was low for most
meta-analyzed comparisons, suggesting a consistent effect of haemoglobinopathies upon
malaria risk. Finally, the clinical epidemiology of malaria results from poorly-understood
interactions between host, parasite, and environmental factors which vary between included
studies. We therefore employed random-effects meta-analysis models, and heterogeneity in
risk estimates was generally low.

Despite previous successes in exploiting innate malaria protective-factors to investigate
malaria pathogenesis, recent reports highlight the complexity of the co-evolution of host and
parasite. P. vivax infection is now recognized in Malagasy individuals who lack DARC
expression on their erythrocytes that were previously thought to be resistant to vivax
malaria,98 suggesting alternate erythrocyte invasion pathways. Additionally, a-thalassaemia
can attenuate the malaria-protective effect of HbAS when co-inherited,23 emphasizing the
need to integrate investigations of genetic resistance. Nevertheless, by attenuating the
virulence of malaria parasites, haemoglobinopathies offer an attractive “natural experiment”
to help elucidate malaria’s pathogenic mechanisms and potentially translate models of
pathogenesis and immunity into clinical application.
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Figure 1.
Study identification flowchart
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Figure 2.
Unadjusted individual and summary Odds Ratios for specific malaria syndromes by
haemoglobin variants
Abbreviations: CI, confidence interval; Hb, haemoglobin
a Not included in meta-analyses because prevalences of HbAS in cases and controls were
not reported. All Odds Ratios (ORs) are for comparison with healthy controls. The data
markers represent either ORs from individual studies (circles) or summary ORs for
subgroup data (diamonds) that were generated by random-effects meta-analysis of
individual studies (squares). For individual studies included in meta-analyses, the size of the
square data marker is relative to the weight of the study. The I2 statistic is a measure of the
heterogeneity of the individual study estimates which were meta-analyzed, and was
calculated using the Mantel-Haenszel method. ORs for individual studies may differ from
those in Table S1 or in the original published studies because they were calculated from raw
data and are thus unadjusted.
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Figure 3.
Individual and summary incidence rate ratios of P. falciparum syndromes in prospective
studies of children with haemoglobinopathies
Abbreviations: CI, confidence interval; Hb, haemoglobin. All incidence rate ratios (IRRs)
compare patients with the variant listed to patients with either HbAA or the αα/αα
genotype. Summary measures (diamonds) were computed using random-effects Poisson
meta-regression of individual studies (squares).
a Studies had overlapping cohorts. Because the cohort in Williams et al (2005)23 subsumes
that of Williams et al (2005),24 only data from Williams et al (2005)23 was included in the
meta-analyzed summary IRR for uncomplicated malaria in HbAS children.
b Summary IRR of uncomplicated malaria in HbAS compared with HbAA children from
five studies.23,34-37

c Summary IRR of uncomplicated malaria in HbAC compared with HbAA children from
two studies.35,37

d Summary IRR of uncomplicated malaria in homozygous or heterozygous α-thalassaemic
compared with non-thalassaemic children from three studies [Williams 1996, Williams 2005
(NG), Crompton 2008].23,35,39

e Detected by polymerase chain reaction.
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