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Multiple Imputation of Missing Phenotype
Data for QTL Mapping

Jennifer F. Bobb, Daniel O. Scharfstein, Michael J. Daniels, Francis S. Collins,
and Samir Kelada

Abstract

Missing phenotype data can be a major hurdle to mapping quantitative trait loci (QTL).
Though in many cases experiments may be designed to minimize the occurrence of missing data,
it is often unavoidable in practice; thus, statistical methods to account for missing data are needed.
In this paper we describe an approach for conjoining multiple imputation and QTL mapping.
Methods are applied to map genes associated with increased breathing effort in mice after lung
inflammation due to allergen challenge in developing lines of the Collaborative Cross, a new
mouse genetics resource. Missing data poses a particular challenge in this study because the
desired phenotype summary to be mapped is a function of incompletely observed dose-response
curves. Comparison of the multiple imputation approach to two naive approaches for handling
missing data suggest that these simpler methods may yield poor results: ignoring missing data
through a complete case analysis may lead to incorrect conclusions, while using a last observation
carried forward procedure, which does not account for uncertainty in the imputed values, may lead
to anti-conservative inference. The proposed approach is widely applicable to other studies with
missing phenotype data.
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1 Introduction

Interest in identifying the genetic basis of variation in quantitative traits continues
to grow. In humans, family-based linkage studies were once the prominent study
design to identify quantitative trait loci (QTLs), but the advent of genome-wide
association studies (GWAS) using unrelated subjects has made QTL identification
more feasible than ever, and numerous medically relevant traits have been mapped
using this approach in the past few years. The use of model organisms to map
QTLs is complementary to studies in humans and also offers some notable advan-
tages. The vast genetic diversity of different natural populations can be exploited
to uncover different regions of genome that harbor QTLs that would otherwise be
obscure, and at the same time experimental populations can be designed to avoid
potential biases due to population structure. Additionally, environmental variables
can be tightly controlled to reduce undesired variance. Finally, model organisms
provide the opportunity for experimentation that could not be performed in humans.

The mouse is often used for such purposes. Divergent parental strains are
crossed to form F1 heterozygotes, and these F1 mice are then intercrossed (or back-
crossed to a parental line) to form F2s with recombinant chromosomes. The trait, or
phenotype, of interest is quantified, and statistical methods are employed to assess
the association between the genotype and phenotype (Broman, 2001). Since the
mice are studied in a common environment, differences in phenotype may be at-
tributed to genetic discordance. This approach has been used for numerous traits of
biomedical relevance, and through further experimentation, investigators can iden-
tify the specific genes underlying the phenotype of interest. Because a large effort
is expended to breed mice for these types of studies, the mouse genetics commu-
nity has developed resources to facilitate and expedite QTL mapping. In particular,
recombinant inbred lines (RILs), generated by repeated (e.g. > 20 generations)
brother-sister matings of mice produced from intercrosses, have been developed
and are commercially available. These offer the advantage of being a renewable
resource; that is, mice of the same genotype can be phenotyped for multiple traits
across space and time. The Collaborative Cross (CC) is the newest and most pow-
erful resource of this type. The CC was designed to overcome many limitations
of previous QTL mapping approaches by capturing the maximal genetic diver-
sity of inbred strains while creating a balanced population structure (Chesler et al.,
2008; Churchill et al., 2004). Specifically, the CC is a panel of recombinant inbred
lines derived from eight-way crosses of classical (A/J, C57BL/6J, 129S1/SvImlJ,
NOD/LtJ, and NZO/H1LtJ) and wild-derived inbred strains (CAST/EiJ, PWK/PhJ,
and WSB/EiJ). The strengths of the CC compared to other approaches (Roberts
et al., 2007) and initial applications with the developing lines of the CC have re-
cently been described (Aylor et al., 2011).
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Here we use unrestrained whole body plethysmography (WBP) to pheno-
type a respiratory system trait in developing lines of the CC. WBP measures the
amplitude and frequency of breathing and, from the features of the breathing wave-
form, an empirical parameter known as enhanced pause (Penh) is calculated. Mea-
surements of Penh in the presence of aerosolized saline and then increasing concen-
trations of methacholine, a bronchoconstrictor, are used as measures of breathing
effort, and this changes in the context of lung inflammation due to allergen chal-
lenge (Hamelmann et al., 1997). Penh is therefore often used in mouse studies of
allergic airway disease, a model of human asthma. Results from previous QTL map-
ping experiments have been nicely summarized in two recent papers (Camateros
et al., 2010; Leme et al., 2010). Zhang et al. (1999) used an F2 intercross, applied
an ovalbumin-induced allergic model, and identified QTLs on chromosomes 9, 10,
11 and 17. Ackerman et al. (2005) identified interacting loci on chromosomes 2
and 6, and most recently Camateros et al. (2010) identified loci on several differ-
ent chromosomes. We sought to exploit the diversity of the CC to identify new
QTLs for Penh. This diversity was immediately apparent during the phenotyping
process, as some mice had Penh values that were very high even at low doses of
the bronchoconstrictor methacholine, and hence phenotyping was stopped in order
to protect the well-being of the mouse. This led to a situation in which there was
missing data for some mice, a result that has not been described in previous studies
with the same goal.

Without missing data, the standard QTL mapping strategy would be to (i)
fit a genetic model at each marker (for a large number of markers), (ii) obtain a
test statistic that quantifies the discrepancy in the phenotype value across different
genotype strains at each marker, and (iii) apply a permutation test to determine if
the largest observed test statistic is statistically significant. If statistical significance
is achieved, then this is considered evidence of a QTL at the marker having the
maximal test statistic. In the situation where data are missing for some of the mice,
this analysis must be adapted to appropriately account for the missing data.

If data necessary for quantifying the phenotype of interest is missing for a
subset of mice, a significant loss of power and bias may be introduced unless the
missing data are appropriately handled. Frequently the phenotype value is a nu-
merical summary of several observed characteristics of the mice, e.g., area under
the curve (AUC) values obtained from dose-response data in drug metabolism stud-
ies. In this case, when one or more of these observed characteristics are missing
for a subset of mice, the desired phenotype measure (AUC) cannot be computed.
An analysis that only uses data from those mice with complete measurements may
yield biased results, depending on the missingness mechanism. Rather than per-
form the desired QTL mapping analysis on just the subset of mice for which the
phenotype quantity is available, a model that describes the characteristics used to
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compute the phenotype summary may be developed and used to impute the values
for these characteristics. Then, the complete dataset obtained from the imputation
model may be used to impute the missing phenotype summary. The approach of
multiple imputation (MI) is preferred to imputing a single dataset, because it pro-
vides a way to incorporate uncertainty in the imputed values into the analysis (Little
and Rubin, 2002; Schafer, 1997).

While genotype imputation has become a widespread tool in genetic asso-
ciation studies (Li et al., 2009), imputation of missing phenotype data has been
less commonly applied by the QTL mapping community. In particular, previous
studies of Penh did not observe the same level of phenotypic diversity as seen in
the CC mice, and so missing data did not pose a major challenge for these stud-
ies (Ackerman et al., 2005; Camateros et al., 2010; Leme et al., 2010; Zhang et al.,
1999). Some prior work beyond the literature studying breathing effort in mice has
explored methods for handling missing phenotype data in linkage analysis, family-
based studies, and pedigree analysis (Ding and Laird, 2009; Fridley and Andrade,
2008; Fridley et al., 2003; Xing et al., 2003). In these studies the phenotype investi-
gated was a univariate, continuous parameter rather than a function of incompletely
observed dose-response curves, and so the development of a suitable phenotype im-
putation model was not a primary focus. Additionally, one feature not emphasized
by these studies is how inferential methods that account for the imputation of miss-
ing phenotype data should control for multiple comparisons, which is an important
goal in mapping studies seeking to identify significant QTLs among a large number
of potential markers.

In this paper we describe the methodological challenges involved in incor-
porating MI in QTL mapping when there is substantial missingness of a complex
phenotype. We focus on a particular experiment looking at the genetic factors that
contribute to breathing effort, as quantified by Penh, in mice. Our work provides
two main contributions. First, we develop a novel imputation model that captures
the unique features of the data. Second, we develop a methodology for combining
MI with a commonly used statistical analysis for QTL mapping. One of the features
of this approach is that it is a generalization of the analysis that would have been
conducted had there been no missing data. While our imputation model is specific
to the experimental protocol for measuring Penh over increasing doses of the bron-
choconstrictor, the conjoining of MI and QTL mapping may be generally applied
to other experiments with missing phenotype data.

The outline of the paper is as follows. In section 2 we introduce the phe-
notype and genotype data and in section 3 we define the phenotype summary for
QTL mapping. We describe the phenotype model used for MI in section 4 and the
methodology for combining imputed datasets with the QTL analysis in section 5.
The application of the methodology to QTL mapping of the Penh data is detailed
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and the results presented in section 6. We conclude with a discussion of the methods
and results in section 7.

2 Data

One hundred and sixty-two male mice that were part of a collaboration, described
in Aylor et al. (2011), were obtained and housed singly at the National Human
Genome Research Institute. To distinguish between the fully inbred lines of the CC
and the mice used for this study (which are not yet fully imbred), we refer to these
mice as “preCC” mice. Given that the mice were not yet fully inbred, each mouse’s
genome was unique, and biological replicates were precluded.

2.1 Genotype Data

Genotyping and haplotype assigment methods have been described by Aylor et al.
(2011). Briefly, mice were genotyped using the Affymetrix Mouse Diversity Ar-
ray (Yang et al., 2009a). SNP data were then used to infer haplotype probabilities
using a hidden Markov model (Mott et al., 2000). That is, for each region of the
genome, the probabilities that the region descended from each of the eight parental
strains of the CC were estimated, and these founder haplotype probabilities were
used (not genotypes) in our QTL model described in Section 5.1. For this study
we consider just chromosome 8 in order to demonstrate the application of the pro-
posed methodology. Because the marker density exceeded the total density of re-
combinations in the cross, it was possible to reduce the chromosome 8 genotype
data to approximately 1,380 intervals within which estimated genotype probabili-
ties were essentially constant, indicating a single haplotype for that region. Interval
boundaries were defined at transitions in highest probability genotype, based on
Baum-Welch output from a Hidden Markov model. In most intervals, haplotype
probabilities were near 1 for the inferred states. The haplotype probabilities for
each mouse sum to two (because each mouse inherited two CC alleles), and since
the mice are the products of inbreeding but not yet fully inbred, most regions are
homozygous for one CC strain.

2.2 Phenotype Data

Whole body plethysmography (WBP) phenotyping

A longitudinal study design (Lofgren et al., 2006) was conducted in which each
mouse was phenotyped for Penh using WBP at three time points, the first two being
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Baseline Baseline — Final

Receive WBP-1 WBP-2 Sensitization 1 Allergen WBP
Mice ( Challenge W
Day 1 9 12 19 22 30 37 40
Age: 8-12 > 15-19
weeks weeks

Figure 1: Timeline of study protocol on 162 preCC mice. Key phenotyping time-
points are outlined in blue. BW = body weight and WBP = whole body plethys-
mography.

baseline measurements, and the third subsequent to an allergen challenge, as shown
in Figure 1. The two baseline measurements were conducted within one week, and
hence we assume that the baseline phenotypes are exchangeable. After acclimati-
zation to the WBP chamber over 15-20 minutes, mice were phenotyped for Penh
as follows. The mice were administered increasing doses (0, 3.1, 6.2, 12.5, and 25
mg/ml) of methacholine by nebulization over a 2.5 minute period. Following the
nebulization period at each dose, mice were followed for five minutes, and average
Penh over the five minute period was calculated.

Allergen challenge protocol

The protocol we employed is a slight modification of that described by Kelada
et al. (2011). Low endotoxin Der p 1, from the Dermatophagoides pteronyssinus
species of house dust mite, was purchased from Indoor Biotechnology. Mice were
sensitized with 10 g Der p 1 by intra-peritoneal injection on days 22 and 30 of the
study. On day 37, mice were challenged by oro-tracheal aspiration with 50 ug of
Der p 1 diluted in 40 ul of saline. Peak inflammatory responses occurred 72 hours
after airway challenge, and so mice were phenotyped at this time point.

The phenotyping protocol just described was designed to yield three methacholine-
Penh dose-response curves for each mouse, including two replications at baseline
(before the allergen challenge) and a single curve measured after the allergen chal-
lenge. The phenotype summaries, which are functions of the three dose-response
curves, are described in section 3.

We next introduce some notation. Let Y;j; denote the Penh response for
mouse i at dose d; of methacholine, for replication k, of condition I/, where [ €
{pre, post} is the pre- or post-allergen challenge condition. Denote the methacholine-
Penh dose-response curve for mouse i of replication k and condition / by Y, (d),
where d is the dose, and note that Y;;; = Y, (d;) for j =110 5.
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Table 1: Number of mice having each missingness pattern for phenotyping at the
two repetitions of the pre-allergen challenge conditions (Pre;, Pre;) and at the post-
allergen challenge condition. In each missingness pattern, a “1” in position j in-
dicates that Penh was observed at dose j, while “0” denotes a missing value. For
example, 15 mice had complete data at the second repetition of the pre-condition
and were missing Penh at the last dose of the first repetition.
Pre, Post
Pre; 11111 11110 11100 11000 10000 00000 Total

11111 71 9 0 0 0 0 80 11111 81
11110 15 18 1 0 0 0 34 11110 44
11100 0O 2 3 0 0 0 5 11100 25
11000 1 0 2 0 0 0 3 11000 6
10000 0O 0 0 0 0 0 0 10000 0O
00000 31 8 1 0 0 0 40 00000 6
Total 118 37 7 0 0 0 162 Total 162

Table 1 summarizes the distribution of missingness of the dose-response
curves. Given that a Penh value is missing for a particular dose, it is missing for
all subsequent doses. Thus there are six possible missingness patterns for each
methacholine-Penh curve: Penh missing at all 6 doses of methacholine; Penh ob-
served at the first dose, but missing at doses 2 through 5; Penh observed at the first
two doses, but missing at doses 3 through 5, and so on. Values at higher doses
are missing in order to protect the well-being of the mouse. High concentrations
of methacholine can lead to overstimulation of the airways, causing excessive nar-
rowing and hence extreme difficulty breathing, and/or systemic cholinergic crisis.
Additionally, we note that a subset of 40 mice were not phenotyped for the first
repetition of the pre-condition (i.e. were only phenotyped at a single timepoint) due
to a change in the WBP protocol.

To understand the potential impact this missing data may have on QTL
mapping, we first provide a brief overview of commonly used terminology from
the statistical literature on missing data. Historically, three classes of missing data
mechanisms have been defined, which serve as a useful tool for selecting appropri-
ate statistical analyses for handling missing data (Rubin, 1976; Little and Rubin,
2002). The first mechanism, missing completely at random (MCAR), occurs when
the missing data come from the same underlying probability distribution as the ob-
served data. The second mechanism, referred to as missing at random (MAR),
arises when the probability that a data point is missing depends only on observed
variables, which can include covariates (e.g. mouse body weight) and outcomes
(e.g. observed Penh values Y;;;). Missing data are classified by the third mech-
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anism, missing not at random (MNAR), when the probability that a data point is
missing depends on unobserved variables. If the missingness mechanism is MCAR,
then statistical analyses based only on individuals with complete data will yield un-
biased results, though substantial loss of power may result under high levels of
missingness. When the less stringent assumption of MAR holds, it is sufficient to
posit a model for the outcome process and draw inference using multiple imputa-
tion or maximum likelihood methods. However if the mechanism is MNAR, then
one must model the missingness mechanism as well.

Pre-Allergen Condition Post-Allergen Condition

& | — pattern 11000 —— mouse 131 curves & -] — pattern 11000 —— mouse 131 curves
= = pattern 11100 -=—= mouse 95 curves = = pattern 11100 -=—= mouse 95 curves
o == pattern 11110 ===+ mouse 157 curves o === pattern 11110 ===+ mouse 157 curves
& - -— pattem 11111 & - -— pattem 11111

Penh
Penh

0 3125 6.25 125 25 0 3125 6.25 125 25

Figure 2: Observed mouse methacholine-Penh curves over five dosage levels in
the pre-allergen challenge condition (left plot) and in the post-allergen challenge
condition (right plot) are shown in gray. Trajectories from a sample of three mice
are highlighted. Black lines denote the average of the population of curves with
differing levels of missingness. Specifically, each black line corresponds to the
average of the Penh values at each dose within each missingness pattern. Patterns
are written such that a “1” in position j indicates that Penh was observed at dose j,
while “0” denotes a missing value.

For the 40 mice that are completely missing dose-response curves from the
first repetition of the pre-allergen challenge condition, it is plausible that these
curves are MCAR, as the decision to change the WBP protocol was independent
from the data-generating process. For these mice, the missing curves were com-
pletely imputed based on the imputation model described in section 4, which as-
sumes the less restrictive MAR mechanism. We next investigate the potential miss-
ingness mechanism for the partially observed curves. Figure 2 displays the observed
data for all mice in both the pre- and post-allergen challenge conditions. We ob-
serve that curves that have missing Penh values at the higher doses of methacholine
tend to be increasing faster than those that are not missing Penh values. If the data
were MCAR, then the rate of increase of curves with missing data would be the
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same as the rate of increase of the completely observed curves. It follows that the
missingness mechanism is not MCAR for these partially observed dose-response
curves, and so a complete case analysis would be inappropriate. However, the ob-
served data cannot similarly be used to distinguish between MAR and MNAR. The
approach for integrating multiple imputation with QTL mapping described in sec-
tion 5 is valid under the MAR assumption.

It is important to point out that there may be a philosophical objection to
considering Penh values at the higher doses to be missing. In some cases, it is
possible that the mouse may not have survived exposure to the bronchoconstrictor
(methacholine) beyond a particular dose, but this dose of maximal tolerance is not
observed by the study design. Thus the concept of “missing” may not be well-
defined at the doses where Penh values have not been measured, if those values
could never exist. Nonetheless, it may be reasonable to assume based on discus-
sions with our collaborators that a Penh value at least one dose beyond the largest
observed dose does exist. We will address this concern by considering alternative
specifications of the phenotype summary (section 3) which do not depend on the
highest doses, so as to mitigate reliance upon imputed Penh values at doses where
their existence is questionable.

3 Phenotype Summaries for QTL Mapping

There are two primary phenotype summaries of interest for each mouse. The first
phenotype Y™, defined as the area under the curve for the pre-allergen challenge
condition, quantifies breathing effort under normal physiologic circumstances. The
second Yidif ! is the area under the curve for the pre-allergen condition subtracted
from the area under the curve for the post-allergen condition. This latter pheno-
type quantifies the increased breathing effort when the lung is affected by airway
inflammation. The two summaries ¥?"* and Yl.dif ! are correlated but are both unique
biological entities of interest to the lung research community. Since mice have two
replications of the pre-condition, we use the average area under the curve over the
two replications. Specifically, we define the phenotype summaries of interest by

Y/(d) = f Yi(w)dw, (1)
w=0

Y gy = f Yis(w)dw — Y7“(d), @)
w=0

where Yi(d) = %(Y,-l 1(d) + Yn1(d)) is the average of the two pre-condition Penh
measurements at dose d. For the purposes of calculating AUC for (1) and (2),
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we assume a linear interpolation of each dose-response curve between consecutive
doses. The phenotypes of greatest scientific interest are Y} “(ds) and Yl.d’f ! (ds), with
the integration through the fifth dose.

To demonstrate the potential gain achievable by an imputation approach ver-
sus a completers only analysis, we calculate the number of mice for whom ¥?"(ds)
and Yf”f f (ds) could be calculated using the observed data. Note that there are two
ways to define a complete case for the phenotype summaries (1) and (2), since there
are at most two repetitions of the pre-allergen challenge condition for each mouse.
First, one could consider an exclusive criterion, where it is required that both pre-
condition curves be observed at each dose up through d in order for Y f "“(d) (and
hence Yfﬁf ’(d) since it is a function of Y7"(d)) to be computed. Alternatively, one
could consider an inclusive criterion where Yf "(d) is computed if either of the two
pre-condition curves is observed through dose d. For this latter case, if there is only
one measurement at a particular dose d, the value Y;(d) is set to be that measure-
ment, and if there are are two measurements at that dose, the value Yi(d) is set to
be the average of the two measurements. Using the inclusive criterion, out of the
162 mice, one could calculate Y/"(ds) for 127 mice and Yl.d’f /(ds) for 79 mice. Re-
quiring the exclusive criterion, ¥/"(ds) and Yidif /(ds) could be calculated for only
71 mice and 53 mice, respectively.

If one were to conduct an analysis with only the complete cases, results
may be biased since mice with complete data tend to have lower Penh values. To
increase power and reduce the potential for bias in our analysis, we build a model for
the methacholine-Penh curves that incorporates scientific knowledge of the shape of
the relationship and use multiple imputation within the QTL mapping framework.

Alternative phenotype specifications

We considered sensitivity to the particular phenotype specifications ¥Y"“(ds) and
Y l.dif /(ds), which were calculated by integrating up to the fifth dose. There are a few
reasons why alternative specifications to the original phenotypes might be desired.
First, since the doses were not equally spaced, calculating area under the curve
is more heavily influenced by observed Penh values at higher doses than at lower
doses. Second, since there is more missing data at higher doses (Table 1), pheno-
type specifications based on fewer doses would be less sensitive to the imputation
scheme and more subjects would be included in a complete case analysis leading
to reduced bias. Finally, there is the potential philosophical issue regarding the
imputation of Penh values that may not exist (described above). To address these
concerns, we considered alternative phenotype specifications that are functions of
Penh values at only the first three or four doses, namely Y/"(d;) and Yl.‘ﬁf I(d ) where
we consider both j = 3 and j = 4.

Published by Berkeley Electronic Press, 2011 9
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4 Phenotype Model for Multiple Imputation

We developed a flexible parametric model to capture the nonlinear shape of the
methacholine-Penh exposure-response relationship over the five dosage levels, be-
fore and after the allergen challenge. The model also incorporates mouse-specific
covariate data, namely body weight, measured three days prior to the first Penh
phenotyping (Figure 1), and the year phenotyping was conducted, as both were sig-
nificantly associated with phenotype values. Since Penh must be strictly greater
than zero, and since scientific knowledge of the range for Penh necessitates a finite
upper bound, we modeled the transformed Penh as

log (i) = Boi + B1Zin + BoZpn + Brud; + Pati)dj — ti)s + €iju,  (3)
K —Yiu

where Z;; is an indicator of year (2008 or 2009), Z;, is body weight, and K is the

upper bound. The maximum Penh value that we observed in the dataset was 28.2,

and so we set the upper bound to be K = 30.

In the model (3), each mouse and each pre- or post-challenge condition
was allowed to have its own knot #;, which may be located at any of the last four
doses. Note that a knot at the last dose corresponds to the case where a knot is not
needed. The slope after the knot SB4(t;) was allowed to depend on the location of
the knot. To account for the correlation of repeated Penh measurements from the
same mouse, while at the same time accounting for the heterogeneity of the mouse-
specific curves before versus after the allergen challenge, we assumed a random-
effect distribution on the model coefficients. Specifically, we set 83; = B3 + b; and
assumed (By;, b;)’ ~ N((Bo, 0)’, X). We assumed the residuals to be independent with
eijrr ~ N(O, 0'51) to capture the heterogeneity of the Penh response at different dose
levels before and after the allergen challenge. Since some of the observed curves
were non-monotone, the term e;i; can be thought of as measurement error from the
true underlying curve, which is assumed to be monotonically increasing.

4.1 Prior Distributions

We assigned prior distributions for locations of the knots 7;; the model coefficients
B1, B2, and B4(t;); the parameters for the random-effect distribution Sy, B3, and X;
and the heterogeneity parameters 0'51 (j =1,...,5, 1 = pre, post). Specifically,
we assumed that the knot locations come from a multinomial distribution, where
the prior probability that the knot is at each of the four potential dose levels is
1/4. The parameters By, 81, and B, were each assigned independent N(0, 10%) prior
distributions. For the variance parameters, we assumed o ;; ~ unif(0, 100) and for
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Y = var((By;, b;)'), we assumed that o(8By;) ~ unif(0, 100), o(b;) ~ unif(0, 100), and
cor(By;, b;) ~ unif(0, 1), where o(-) denotes the standard deviation.

In order to incorporate the requirement that each mouse’s curve be mono-
tone, we would require that 83; > 0 and B3; + B4(t;) > 0. Rather than introducing
this strong restriction on each curve, we elected to just have the population aver-
age curve be monotone by incorporating the restrictions £3; > 0 and B3, + B4(¢) > 0,
(j=1,...,5,and [ = pre, post) on the prior distributions for these parameters. Thus
we specified the prior distributions as

B~ N(O,109I(By > max{0,B4(t) : 1 = d,d3,dy, ds)), | = pre, post
Ba(®) ~ N(O, 109L(B4(t) > max{—Bs1, —B}), t=da,ds,dy,ds,

where I(-) is an indicator function.

4.2 Multiple Imputations

The model was used to impute M = 10 complete datasets from the posterior pre-
dictive distribution of Y;;;. Justification for the choice of M is provided in sec-
tion 6.1. In particular, the mth complete dataset was obtained as follows. First
randomly select a posterior sample s. Then, for each value of Y;j; that was miss-
ing in the original dataset, simulate a sample U ~ N(/JS.[), 0'5.;)). Finally, set Yl.(]’.;(l; =
Kexp(U)/{1 + exp(U)}.

5 Incorporating MI in QTL Mapping

We first review a common approach for QTL mapping when there is complete data,
and then we outline our methodology to integrate multiple sets of imputed data
into the QTL mapping algorithm. We also consider some more routine methods for
handling missing data that may be compared with the proposed multiple imputation
approach.

5.1 QTL Mapping for Complete Data

Consider the case of no missing data. Let Y; be the phenotype summary for the ith

mouse, i = 1,...,1. Let Z; be a vector of covariate data for mouse i and let Z be
the matrix of covariate data having rows Z!. Further, let X, be the matrix of data
for marker p (p = 1,..., P), where each row represents a mouse and each column

(g = 1,...,G) is the corresponding haplotype probability. In particular, a row X;,
of the matrix X, represents the vector of haplotype probabilities of mouse i having
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each of the eight CC parental haplotypes (see Section 2.1 and Aylor et al. (2011)
for a description of haplotype inference methods). The goal of QTL mapping is
to ascertain for which markers there is a difference in the phenotype value across
the different genotypes. To do this, one conducts a hypothesis test for each marker
and then computes a p-value that accounts for multiple testing of the P different
markers.

To test the null hypothesis that there is no difference in the mean phenotype
value across strains for marker p, we used an additive genetic model (described
in Aylor et al. (2011)),

G-1

Yi = Bop+ ) BepXiep + VyZi+ €. @)
g=1

& ~ N(O,).

Note that G = 2 corresponds to the common scenario in which only two geno-
type classes are under consideration. The null hypothesis Hy : 8,, = 0 for g =
I,...,G — 1 may be tested using an appropriate test statistic (e.g. likelihood ratio
test, score test, or Wald test). For the remainder of this section, we will consider the
multivariate Wald statistic, as this is the statistic that will be generalized in the anal-
ysis that takes into account multiple imputation. Denote the desired test statistic for
the pth marker by T;bs. Thus, for the Wald test of the null hypothesis, we compute

obs _ ' v-17
Tp _ﬁpzp By ®)
where B, = (Bip, - --,Bc-1,,) and X, is the estimated variance of the estimated pa-

rameter Bp. A p-value may be computed from the appropriate asymptotic distri-
bution (in this case )(éfl) or from a permutation distribution. Since a permutation
test may be readily adapted to account for the testing of multiple markers, it is a
practical choice.

A permutation test may be implemented as follows. For iterations r =
1,...,R, first permute the phenotype summaries for the / mice to obtain Y’ (r), e Yl(r),
keeping the design matrix X, as well as the matrix of covariate data Z fixed.
Then calculate the test statistic Tl(,r) for the permuted summaries for each marker
p. Identify the largest of the test statistics across markers at the rth iteration and
denote this by T,(,fa)x = maxp(T,(,’)). The p-value for the largest observed test statis-

tic 79 = maxp(TZbS) is then calculated as the proportion of iterations for which

T > T°s  P-values may similarly be obtained for the second largest observed

max*

test statistic, and so on.
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5.2 QTL Mapping for Imputed Data

For each marker p and each imputed dataset m, the genetic model (4) is fit, yielding
estimates of ,Bg”) and the variance-covariance matrix Eg"). The generalization of the
Wald test statistic for the pth marker that accounts for the variability in the imputed
datasets is defined by

Fobs _ p’ w-1p

Tp - ﬂpr ﬂp’ (6)

where

[\l
bS]
1]
<=
M=
X1
2

1 S m A m R\
B, = m;(ﬁ;)—ﬁp)(ﬁﬁ,)—ﬁp)

M+1
p+TBP.

(Nl

V, =

This test statistic is the multivariate analogue to the test statistic used for hypothesis
tests of a one-dimensional parameter for multiply imputed datasets. However, un-
like the univariate case, finding a suitable reference distribution for the multivariate
analogue (6) is not straightforward. Approximate reference distributions have been
proposed that are based on making additional assumptions about the between- and
within-imputation covariance matrices X, and B, and which use an alternative es-
timate of the total variance V, (for details, see Little and Rubin (2002) or Schafer
(1997)). In addition to requiring additional assumptions, as with any asymptotic
approximation it is also assumed that the sample size is large enough so that the
approximation is reasonable.

An alternative to invoking large sample properties and applying the approx-
imations necessary to derive an appropriate reference distribution is to use a permu-
tation test. In addition to requiring fewer assumptions about the data, permutation
testing may be conveniently employed to account for the testing of multiple genetic
markers, as outlined above. The QTL mapping algorithm for complete data may be
seamlessly integrated with multiple imputation by replacing the test statistic Tl‘jb “(5)
used in the permutation testing procedure for complete data with T;j’“ from (6). In
particular, we run the algorithm for R iterations as follows. Forr = 1,...,R,

1. Randomly permute the labels of the I mice. Denote this permutation by
Jis J2s e os Ji-
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2. For each of the p markers,

(a) For each imputed dataset m, fit the additive genetic model (4) for the
permuted outcomes Yj(.’I"), Y;’z"), el Yj(.;”). Note that the marker and covari-
ate data (X, Z), (X, Zy), ..., (X}, Z;) retain their original ordering.
Obtain the estimates of ﬁﬁ,’") and Z;’”) based on the permuted data.

(b) Calculate the permuted test statistic Tl(,r) = B;VI;IBP based on (6) using
the estimates of ﬁ(m), ZE,’") (m =1,..., M) from the previous step.

3. Identify the largest permuted test statistic Ty, = max,(T3).

The p-value for the largest observed test statistic is then calculated as the proportion
of iterations r for which Ty, > T2, where T22% = max,(T¢") is the maximal test
statistic of the observed data. Note that the imputation model is fit just once prior to
permutation testing, and that the same M imputed datasets are used throughout. In
addition, as in the complete data setup, the order of the covariate data Z and marker

data X, remains unchanged throughout the procedure.

5.3 Other Approaches for Missing Data

Rather than developing an application-specific imputation model and incorporating
the variability of multiple imputed datasets into QTL mapping, there are several
alternative approaches to handle missing phenotype data.

We first consider a complete case analysis (CCA) where we perform the
QTL mapping procedure separately for the subset of mice for which ¥!"“(ds) could
be computed and for the subset for which Yl.dif f (ds) could be calculated. With re-
gards to the two repetitions of the pre-allergen challenge condition phenotyping, we
used the inclusive criterion for defining a complete case (section 3). Of the 162 mice
that were both genotyped and phenotyped, the statistic ¥/"“(ds) could be calculated
for 127 mice and Yl.dif f (ds) could be calculated for 79 mice. Additionally, we con-
sidered the last observation carried forward (LOCF) method (Heyting et al., 1992).
While each of the 162 mice had at least one measurement in the pre-allergen con-
dition, there were 6 mice without any post-allergen measurements. Thus, while the
phenotype summary Y/"(ds) could be computed for each mouse under the LOCF
imputation scheme, I/fl"ff(ds) could be calculated for 156 of the 162 mice. For
both CCA and LOCEF, QTL mapping was performed using the permutation testing
method for complete data described in section 5.1.
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6 Application to Penh Data

6.1 Multiple Imputation

The phenotype model from section 4 was fit using WinBUGS version 1.4.3 (Lunn
et al., 2000). We ran a single chain for 50000 iterations, with a burn-in of 10000,
and we kept every fifth sample, for a total of § = 8000 posterior samples. The
fitted methacholine-Penh curves are shown in Figure 3. Specifically, the fitted value
of Y;j (on the non-transformed scale) was estimated as K exp(it;;)/{1 + exp(i;j1)}
where f[i;;; 1s the posterior mean of w;;; = Boi + B1Zi + BaZin + Baudj + Baty)(d; —
ti)+ from model (3). Note that since y;j; is the median of the transformed Penh
value log{Y;ju/(K — Y;j)}, by taking a monotone transformation, it follows that
K exp(uij)/{1 + exp(u;j)} is the median of Y;j;. We see that the Penh values in
the post-allergen challenge condition are generally larger than in the pre-condition
across the five doses of methacholine, as expected based on the change in lung
function due to allergen challenge. However, this trend is not true for all mice;
as shown in Figure 3, for example, values of the dose-response curve in the pre-
condition exceed values in the post-condition for mouse 138. Additionally, these
plots show that the variability in the methacholine-Penh curves increases at larger
doses of methacholine.

Pre-Allergen Condition Post-Allergen Condition
g 7] ---- Mouse 18 ---- Mouse 131 g 7
Mouse 62 — — Mouse 138
o —— Mouse 79 Mouse 157 o
® 7 Mouse 95 ™ 7
w | w |
I3V Y
o | o |
£ c |«
c c
(O] (O]
o o | e o o |
T s ==
o | et o | 7 =
- /‘//// - Z; ==
//// — ’// ,j7
0 = = 0 o _=———————
/’/: e P e Bl
o siieemmoef o | st
T T T T 1 T T T T 1
0 3125 6.25 12.5 25 0 3125 6.25 12.5 25
dose dose

Figure 3: Fitted methacholine-Penh curves for the pre- and post-allergen challenge
conditions. Curves from a sample of seven mice are highlighted.
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To assess goodness-of-fit of the imputation model, we examined the poste-
rior predictive intervals (PPI) of the methacholine-Penh dose-response curves. In
particular, for each mouse i, each dose j, and each challenge condition /, we gen-
erated 8000 samples from the posterior predictive distribution of Y;j; using the re-
tained MCMC samples, from which we calculated the 2.5th and 97.5th percentiles.
We found that for the pre-condition, out of the 284 observed Penh values at the first
dose, 97.2% were contained within the respective posterior-predictive interval; of
the 284 observed Penh values at the second dose, 97.2% were within the PPI; at the
third dose 97.9% of the 281 Penh values were within the PPI; of the 269 values at
the fourth dose, 98.1% fell within the PPI; and of the 198 values at the fifth dose,
98.0% were contained in the PPI. For the post-condition, out of the 156 observed
Penh values at the first dose, 98.7% were contained within the respective posterior-
predictive interval; of the 156 observed Penh values at the second dose, 94.9% were
within the PPI; 98.0% of the 150 Penh values at the third dose were within the PPI;
of the 125 values at the fourth dose, all fell within the PPI; and of the 81 values at
the last dose, 98.7% were within the PPI.

As described in section 4.2, M = 10 complete datasets were imputed. Fig-
ure 4 shows, for a sample of three mice, the fitted curves from the model and the
corresponding imputed curves obtained from the model. We then applied the phe-
notype summary map from equations (1) and (2) to obtain Yl.(m) for each mouse i
and each complete dataset m (where Y; denotes either Y;"“(ds) or Y;ﬁf ! (ds)). As jus-
tification for the adequacy of M = 10 imputations, we applied the theory developed
by Rubin (1987) to estimate the relative efficiency of an estimate based on M im-
putations to one based on an infinite number of imputations. We found that for the
analysis with ¥;"“(ds), the relative efficiency of multiple imputation with M = 10
datasets for estimating 8, was > 99% for each of the P markers; for Yl.‘”f ! (ds) the
relative efficiency was > 97% for each of the P markers.

Comparing the distribution of the Yl.(m) simulated from the posterior predic-
tive distribution of Y; based on model (3) to the phenotype summaries calculated
from mice with complete dose-response data shows that these distributions differ
(Figure 5). In particular, the distribution of the imputed phenotype summaries has
higher variability and wider tails than the observed phenotype summary values for
both Yl?’ "(ds) and Yl.dif ! (ds). This can be explained by the fact that mice with miss-
ing Penh values tend to be those with larger Penh values at the higher doses, since
phenotype summaries will only be large in absolute value if at least one of the pre-
or post-allergen challenge curves has high Penh values.
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Figure 4: Mouse methacholine-Penh curves for three mice for the pre-allergen chal-
lenge condition (repetitions k = 1,2) and post-condition. Black lines denote the
fitted curves, i.e. the estimated median of Penh at each dose from fitting the pheno-
type model (3). Dashed lines denote the 10 imputed curves corresponding to each
observed curve with missing values.

6.2 QTL Mapping

We implemented QTL mapping using the methods described in section 5 for the
phenotype summaries Y”"“(d;) and Y*//(d;), j = 3,4,5. For the QTL mapping
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Figure 5: Distribution of phenotype summaries across mice for Y/"(ds) and
Yl.dif /(ds). Solid histograms correspond to the distribution of the imputed Yf"” across
mice and imputations. Shaded histograms correspond to the distribution of the ob-
served phenotype summaries Y?* calculated from the mice with complete data.

model (4), the covariates were Z; = (Z;, Z») where Z;, Z;, were the covariates used
in the imputation model (section 4).

We first describe results from our primary analysis of incorporating multiple
imputation within the QTL mapping framework through permutation testing (sec-
tion 5.2) for the phenotype summaries Y/ (ds) and Yi‘ﬁf /(ds), and then we compare
these results to results based on using CCA and LOCEF as well as results based on
the alternative phenotype specifications. Figure 6 shows the —log,,(p-values) at
each marker along the genome, for each of the different approaches and for each
phenotype specification, that do not account for multiple testing. The p-values of
the maximal observed test statistic for each approach, adjusted for multiple com-
parison, are included in the legend in the top right of each plot (Figure 6).

Incorporating multiple imputation

Using equation (6), we calculated the observed test statistics T;bs (p=1,...,1380)
that account for the multiple imputation for each marker p. Permutation testing was
based on R = 10000 permutations. We first examine the p-values that do not adjust
for the fact that 1380 hypothesis tests (corresponding to the 1380 markers) were
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Figure 6: Plot of —log,,(p-values) across different approaches for QTL mapping of
Y'"(d;) and Yl.dif /(d;), over specifications of the phenotype summaries based on in-
tegrating up to dose d; (j = 3,4, 5). Plotted circles correspond to the location of the
maximal test statistic across each approach, and legend in upper right lists p-values
for T2 adjusted for multiple comparison. Horizontal lines denote significance

max?

corresponding to the 0.01 and 0.05 levels (on the p-value scale).

performed. For Y["(ds), there are two regions for which the p-value is less than
0.05, at chromosomal positions 95.7-109.0 megabases (Mb) and at 109.3-112.3
Mb, which consists of 124 and 24 consecutive markers, respectively; there is also
a single marker having an unadjusted p-value below 0.01. The smallest p-value of
0.009 occurs for the marker with the maximal test statistic T;bs = 17.5 at 98.4 Mb.
When we accounted for multiple comparison in the permutation test, the p-value
for the largest observed test statistic was 0.17.
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For Yl.dif ! (ds), four regions of the genome were identified as having consecu-
tive markers with unadjusted p-values less than 0.05, at 9.5-9.8 Mb, 76.2—79.8 Mb,
82.0-88.9 Mb, and 91.2-92.0 Mb, which consisted of 6, 36, 56, and 9 markers,
respectively. The largest test statistic was 79" = 10.9 (p unadjusted = 0.018) at
87.4 Mb. When we accounted for multiple comparison in the permutation test, the
p-value for this largest observed test statistic was 0.29.

Alternative approaches

For the alternative approaches of complete case analysis (CCA), last observation
carried forward (LOCF) imputation, and sensitivity analyses based on calculating
the phenotypes using the first three or first four doses, we repeated the QTL map-
ping procedure.

We first observe that, consistent with the fact that there is much less missing
data for calculating Y/"“(d5) and Y;ﬁf /(d5) than for calculating ¥/ (ds) and Yl.dif T(ds),
the discrepancy in results across the CCA, LOCF, and MI approaches is reduced
for phenotype specifications based on fewer doses (Figure 6). The p-values ad-
justed for multiple comparison suggest that there may be a QTL for Y/ between
chromosomal positions 95 Mb and 113 Mb. For a particular specification of ¥/
(e.g. calculated by integrating up to the third, fourth, or fifth dose), the location of
the QTL does not vary much across the approach used for handling missing data.
However, using one of the more naive approaches (CCA or LOCF) may lead to
overstating the statistical significance, since p-values are lower under both CCA
and LOCF than under MI for Y"(d,) and Y""“(ds). For the phenotype Yl.dif /. given
the high adjusted p-values for the largest test statistic, and the inconsistency in the
location of the largest effect across the three phenotype specifications, there is little
evidence of a QTL. However, the CCA approach does identify a QTL at 34.3 Mb
for Yfif (dy), demonstrating that restricting to complete cases introduces bias that
may yield false positives.

7 Discussion

In this paper we propose a framework for handling missing phenotype data in QTL
mapping experiments through multiple imputation (MI), which we then apply to a
study of genetic markers for allergic airway disease in mice. To conduct MI we
develop a novel phenotype model describing the methacholine-Penh dose-response
relation. We also compare the permutation method for QTL mapping with multiply-
imputed datasets to two less sophisticated, but more commonly used, approaches
for dealing with missing data. Moreover, we perform sensitivity analysis based on
the phenotype summary specifications to assess the robustness of our conclusions
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to the degree of missingness present and to address a philosophical objection to the
imputation of Penh values at doses where those values may not exist. This study
focused on chromosome 8 as a “proof of concept,” in order to illustrate the proposed
methodology for integrating MI with QTL mapping. In the future this approach will
be applied to conduct QTL mapping for each of the remaining chromosomes.

The expectation-maximization algorithm (Dempster et al., 1977) and hid-
den Markov models have been used for dealing with missing genotype data in
QTL mapping experiments (Broman and Sen, 2009). However, though some pre-
vious genetic studies have investigated approaches for handling missing phenotype
data (Ding and Laird, 2009; Fridley and Andrade, 2008; Fridley et al., 2003; Xing
et al., 2003), these types of approaches have not been widely adopted by the QTL
mapping community. Generally, the experiment has either been conducted so that
missing data are considered to be minimal and analyses ignore the problem, or ad
hoc methods such as LOCF have been used without justification. However, these
approaches may yield questionable results. Restricting to the subset of subjects (e.g.
mice) for which there is complete data has the potential to lead to biased results if
the missingness mechanism is not missing completely at random. On the other
hand, though a single imputation approach precludes bias induced by a complete
case analysis, it may introduce other biases if the imputation at the larger doses
underestimates the values of the true curve. Further, by treating imputed values
as observed data, single imputation may understate the variability underlying the
imputed values which may lead to incorrect inference (Rubin, 1987).

In this study the range of Penh values observed (~1-28) greatly exceeds
those published in the literature (maximum values ~10). This suggests that the
genotypic diversity of the Collaborative Cross (CC) produces remarkable pheno-
typic diversity. In our case, the diversity of breathing effort phenotypes (Penh) was
so high that the protocol had to be curtailed to prevent undue stress to the mice.
This resulted in missing data, necessitating the phenotype imputation approach we
have developed. Our results indicate that on chromosome 8 there is a potential QTL
for baseline Penh when integrating up to 12 mg/ml methacholine (dose 4), between
chromosomal positions 95 Mb and 113 Mb. The identified region contains 203
genes, including 195 that are protein-coding genes and several that are microRNA
genes. This QTL is near a QTL previously reported by Camateros et al. (2010),
lending support that it may be real. Validating this QTL and identifying the causal
variants within this region will require additional experimentation as well as bioin-
formatic analyses incorporating complementary data (e.g. gene expression data,
SNP data, as described in Aylor et al. (2011)).

It is worth noting that the experiment we conducted was limited by the avail-
ability of a relatively small set of CC lines (n = 162). When the CC lines are fully
developed, more than 300 will be available, thereby providing a considerable in-
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crease in sample size as compared to the current study. At that time, biological
replicates will also be available. Experimental noise or measurement variation can
be reduced using multiple replicates, and therefore power will also increase.

The imputation model we developed flexibly captures the nonlinear shape
of the methacholine-Penh dose-response curves, and achieves a good fit to the data.
We additionally assessed sensitivity to the specification of the phenotype imputa-
tion model (3) and prior distributions, finding that the fitted curves were not highly
affected and that the location of the potential QTL remained consistent across spec-
ifications. In comparing the proposed methods to two simpler approaches for han-
dling missing phenotype data, our results demonstrate the potential pitfalls of using
complete case analysis (CCA) in the presence of substantial missing data when the
data are not missing completely at random. We found that while the CCA method
implied the presence of a QTL for the phenotype Yfif (dy), imputation approaches
did not yield consistent results. Similarly, failing to account for the uncertainty in
imputing a single dataset, as in LOCF, may lead to anti-conservative inference as
suggested by the results for Y/"“(ds) and Y?"*(ds).

The approach we described for conjoining MI with QTL mapping is easily
generalizable to different study designs and QTL mapping analyses. For example,
QTLs for diabetes-related traits are an area of considerable interest (Clee and Attie,
2007). Glucose tolerance tests are routinely performed in these studies, yet these
measurements are inherently limited by an upper bound of the assay of ~400-600
mg/dL (Jarvis et al., 2005; Pawlak et al., 2004). When such out of range values are
observed, investigators typically invoke simple approaches to deal with the missing
data, potentially leading to false positive or false negative results. In this situation,
an imputation model suitable to the application may be developed, and then multi-
ple imputation may be incorporated into QTL mapping using the methodology we
have described. Additionally, while this paper focused a particular QTL mapping
analysis, the approach for integrating multiple imputation with QTL mapping is
not limited to the chosen analysis. For example, rather than testing the statistical
significance of the largest observed test statistic max(T;bS), one could easily adapt
the permutation testing procedure to assess the significance of the largest series of
consecutive markers having test statistic Tgb‘ above a particular threshold.

We considered a two-stage analysis where, in the first stage we developed
a model for the methacholine-Penh dose-response curves and performed multiple
imputation, and in the second stage we performed QTL mapping to assess the asso-
ciation between a collection of genetic markers and the mouse-specific phenotype
summaries. To incorporate multiple imputation within the QTL mapping analysis,
we applied the combining rules developed by Rubin (1987) to obtain a test statis-
tic that accounts for the variability of the imputed datasets. An alternative method
is the “fuzzy p-values” approach of Thompson and Geyer (2007). Adapting this
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approach to our application would be an important direction of future work. A pos-
sible limitation of applying a two-stage analysis as we have done is that, given the
hypothesis that genotype and phenotype are associated, it could be argued that the
phenotype model for multiple imputation should include available genotype infor-
mation. However, including the totality of genotype data would yield an ill-posed
problem, with more predictors than responses. One solution would be to develop
an overarching model that jointly describes both phenotype data (observed and un-
observed) and genotype data, which would be used for QTL mapping.

Another direction of future work is to explore models for nonignorable
missingness, as it is likely the assumption that the unobserved phenotype data are
missing at random (MAR) is too simplistic. Since the decision to proceed to a
higher dose was based on whether the mouse was observed to be struggling at the
beginning of the phenotyping of that dose, the assumption that the data are MAR
may not be plausible. This could be addressed using mixture models (Little, 1994)
with models similar to (3) specified for each missing data pattern as given in Ta-
ble 1. To implement this, one would need to assume that many of the parameters
are the same across patterns. Sensitivity analysis could be conducted by varying the
slope after the last observed dose (which is not identifiable from the observed data
within a pattern).

There are several possible extensions of the methods developed here. Rather
than consider a summary statistic (such as area under the curve) for the methacholine-
Penh curves, one might conduct QTL mapping directly on the dose-response curves.
This could be done either through a longitudinal analogue of (4) where the multiple
Penh measurements Y;; for mouse i at dose d; (j = 1,...,J) are modeled, or by
adopting a functional data analysis framework (Ramsay and Silverman, 2005) to
consider the entire mouse-specific curve Y;(d) as a functional outcome in the QTL
mapping model. Functional mapping methods have been developed for other ap-
plications (Ma et al., 2002; Yang et al., 2009b), and approaches for incorporating
multiple imputation within functional mapping could be examined in future work.
To our knowledge the degree to which missing data differentially impacts QTL
mapping when the target is a scalar summary (e.g. Y™ or Yl.dif ) versus repeated
measurements (Y;;) versus a continuous function (¥;(d)) has not been explored. Ad-
ditionally, while our comparison of inference under the proposed multiple impu-
tation approach to inference under CCA or LOCEF is illustrative of the potential
problems that may arise by using these more naive approaches, future work might
conduct simulation studies to quantify the loss of power and bias that may result.

In previous QTL mapping experiments, we have seen little mention of ap-
proaches for dealing with missing phenotype data when the phenotype summary of
interest is a complex biological parameter that is a function of missing data. While
clearly it is preferable to design and conduct experiments in order to minimize the
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frequency of missing data, its occurrence is often unavoidable in practice. Conse-
quently, developing statistical analyses that use as much information as possible,
that limit potential biases, and that have high power to detect a QTL when one ex-
ists is an important task. The methods described in this paper, though developed to
study airway disease in mice, are broadly applicable to QTL mapping experiments
in the presence of missing phenotype data.
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