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Abstract

In randomized controlled trials (RCTs), treatment assignment is unconfounded with baseline
covariates, allowing outcomes to be directly compared between treatment arms. When outcomes
are binary, the effect of treatment can be summarized using relative risks, absolute risk reductions
and the number needed to treat (NNT). When outcomes are time-to-event in nature, the effect of
treatment on the absolute reduction of the risk of an event occurring within a specified duration of
follow-up and the associated NNT can be estimated. In observational studies of the effect of
treatments on health outcomes, treatment is frequently confounded with baseline covariates.
Regression adjustment is commonly used to estimate the adjusted effect of treatment on outcomes.
We highlight several limitations of measures of treatment effect that are directly obtained from
regression models. We illustrate how both regression-based approaches and propensity-score
based approaches allow one to estimate the same measures of treatment effect as those that are
commonly reported in RCTs. The CONSORT statement recommends that both relative and
absolute measures of treatment effects be reported for RCTs with dichotomous outcomes. The
methods described in this paper will allow for similar reporting in observational studies.
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1. Introduction 
 
Randomized controlled trials (RCTs) are considered the gold standard for 
estimating the efficacy and safety of health care interventions. In RCTs, 
randomized treatment assignment ensures that, on average, treated and untreated 
subjects do not differ systematically from one another. Since treatment is not 
confounded with baseline covariates, simple measures of treatment effect can be 
estimated by comparing outcomes directly between treated and untreated subjects. 

There is a growing interest in using observational studies to estimate the 
effects of treatments, interventions, and exposures on health outcomes.  In 
observational studies, treatment assignment is not assigned at random, but is 
influenced by patient characteristics. Observational studies allow one to examine 
the effects of treatments in settings in which randomized trials may not be 
feasible; furthermore, they allow one to estimate treatment safety and efficacy 
outside the tightly controlled confines of an RCT. Since treatment is not assigned 
at random, treated and untreated subjects frequently differ systematically from 
one another. Since treatment is confounded with baseline covariates, the effect of 
treatment on outcomes cannot be estimated by directly comparing outcomes 
between treated and untreated subjects. Instead, regression analysis is frequently 
used to estimate the effect of treatment on outcomes after adjusting for differences 
in baseline characteristics between treated and untreated subjects. A limitation to 
this approach is that measures of treatment effect obtained directly from 
regression models are usually in a different metric from those obtained directly 
from an RCT. For instance, when outcomes are binary, regression adjustment 
allows for the estimation of an adjusted odds ratio; in an RCT, one can estimate 
not only the odds ratio, but also the relative risk reduction, the absolute risk 
reduction and the numbers needed to treat (NNT). 

Patients, clinicians and policy makers are usually more interested in 
understanding the absolute benefits and harms of a therapy, than its relative 
benefits and harms. For example, although oral contraceptives increase the 
relative likelihood of a deep venous thrombosis or pulmonary embolism by up to 
three times (Douketis, 1997), physicians are comfortable recommending an oral 
contraceptive to most women wishing to avoid pregnancy because the absolute 
risk of serious harm is extremely low. 

An advantage of the relative risk reduction is that its magnitude is often 
similar in different subgroups of patients. For example, warfarin (an oral blood 
thinner) decreases the relative risk of stroke in patients with atrial fibrillation (a 
common heart rhythm disorder that is responsible for a high proportion of strokes 
in elderly persons) by about 67 percent, irrespective of patient age (Atrial 
Fibrillation Investigators, 1994; van Walraven, 2009). However, the risk of stroke 
in people with atrial fibrillation varies greatly, depending upon age and the 
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presence or absence of other conditions. A young person with atrial fibrillation 
who has no other cardiac disease has an annual risk of stroke of approximately 
1%, while an elderly person with heart failure and a previous stoke has an annual 
risk of stroke of approximately 15% (Gage, 2001). Since the relative risk 
reduction of 67 percent appears to be constant across subgroups (van Walraven, 
2009), this means that the absolute decrease in stroke associated with one year of 
warfarin therapy is approximately 0.67 percent for the young person and 10% for 
the elderly person. The corresponding numbers needed for one year of warfarin 
therapy are 149 and 10 respectively. Because warfarin therapy is associated with 
an annual risk of a serious bleeding event (e.g. bleeding into the brain or the 
stomach) of about 1-2 percent, most clinicians would not recommend warfarin 
therapy to the young person, but feel that the benefits of warfarin therapy 
outweigh the risks in the older person. Current guidelines for the management of 
patients with atrial fibrillation, which influence hundreds of thousands of patients 
around the world, recommend warfarin for patients at high risk of stroke, but 
aspirin for those at low risk (Singer, 2008). This example illustrates that, even in 
the presence of a constant relative risk reduction, differences in patients’ baseline 
risk can markedly impact the clinical impact of a therapy. When describing the 
benefits and harms of a therapy, it is important to use both relative and absolute 
expressions of risk reduction (or increase).  Furthermore, to improve clinical 
decision making, it is important to have an understanding of the baseline risk of 
an event occurring in the absence of treatment. 

The objective of this paper is to describe how clinically-meaningful 
measures of treatment effect can be estimated in observational studies. In 
particular, we demonstrate how all the measures of effect commonly reported in 
RCTs can also derived for observational studies. The paper is structured as 
follows. In Section 2, we describe commonly reported measures of treatment 
effect in RCTs.  We focus on measures of effect when outcomes are continuous, 
binary, and time-to-event in nature. In Section 3, we introduce the data that will 
be used throughout the paper to illustrate the different statistical methods.  In 
Section 4, we describe conventional measures of effect obtained in observational 
studies when regression adjustment is used to account for systematic differences 
between treated and untreated subjects. Limitations with these measures of effect 
are highlighted. In Section 5, we describe regression-based approaches to 
estimating clinically-meaningful measures of treatment effect similar to those 
obtained in RCTs. In Section 6, we describe methods based on the propensity 
score that allow for estimating measures of effect similar to those reported in 
RCTs. Finally, in Section 7, we summarize our observations. 
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2. Measures of treatment effects in RCTs 
 
In this section, we review measures of treatment effect that are commonly 
reported in RCTs and summarize clinical commentaries on the relative utility of 
these different measures of effect. While we describe on measures of treatment 
effect when outcomes are continuous, binary, or time-to-event in nature our 
primary focus is on binary or time-to-event outcomes, as they occur more 
frequently in published reports of RCTs in the medical literature (Austin et al., 
2010a). 
 
2.1. Continuous outcomes 
 
When outcomes are continuous, the difference in mean outcomes between 
treatment groups is commonly reported in RCTs (Austin et al., 2010a). The 
treatment effect is the difference in means: the mean change in response due to 
treatment. In some instances, when the outcome variable also exists as a baseline 
variable, investigators can use regression models to estimate the effect of 
treatment on the outcome response after adjusting for the baseline value of the 
response variable (Senn,1989; Senn, 1994; Altman and Dore, 1991; Permutt, 
1990). Researchers can also estimate the effect of treatment on the change in the 
response variable from the baseline value of the response variable. 
 
2.2. Binary or dichotomous outcomes 
 
There are several possible measures of treatment effect when outcomes are binary 
in nature. The effect of treatment on outcomes can be reported using risk 
differences (or absolute risk reductions), the number needed to treat (NNT), the 
relative risk (or the relative risk reduction), and the odds ratio. Consider a two-
armed RCT with a binary outcome Y. Let pT = Pr(Y=1|Treated) and pC = 
Pr(Y=1|Control) denote the probabilities of the outcome (success/failure) in the 
treated and untreated arms, respectively. Possible measures of treatment effect are 
described in the table below. 
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 Measure of effect Definition 
Absolute risk reduction (ARR) pC – pT 
Number needed to treat 1/ARR 
Relative risk pT/pC 
Relative risk reduction 

C

TC

p
pp −

×100  

Odds ratio 
)1/(
)1/(

CC

TT

pp
pp

−
−  

As illustrated with the previous example of warfarin therapy in patients 
with atrial fibrillation, the ARR and NNT provide more clinically useful 
information to patients and clinicians than does the RRR on its own. However, the 
RRR is needed in order to calculate the ARR and NNT for patients who have 
different pre-treatment risks of a bad outcome (stroke, in the atrial fibrillation 
example). Therefore, many recommend that the benefits and harms of therapies 
should be expressed in both relative and absolute terms. For example, the recently 
revised CONSORT statement recommends that, for RCTs with dichotomous 
outcomes, both relative and absolute measures of treatment effect be reported 
(Schulz et al., 2010).  Furthermore, the BMJ (British Medical Journal) requires 
that absolute risk reductions and the associated number needed to treat (NNT) be 
reported for any randomized controlled trial with a dichotomous outcome 
(http://resources.bmj.com/bmj/authors/types-of-article/research. Site accessed 
April 5, 2010).  
 
2.3. Time-to-event or survival outcomes 
 
Kaplan-Meier survival curves are frequently reported in RCTs in which outcomes 
are time-to-event in nature (Austin et al., 2010a). From the Kaplan-Meier survival 
curves, one can determine the probability of an event occurring within a specified 
duration of follow-up. From this quantity, one can determine the absolute 
reduction in the probability of an event occurring within a specific duration of 
follow-up. In addition, one can estimate the NNT to avoid one event from 
occurring within the specified duration of follow-up. The area under the survival 
curve is the expected (or mean) survival time in a given treatment group (Klein 
and Moeschberger, 1997). Therefore, one can estimate the expected survival for 
treated and untreated subjects, separately. The difference in expected survival 
time is the effect of treatment on expected survival. Finally, a Cox regression 
model can be fit, allowing one to estimate the effect of treatment on the relative 
hazard of the event occurring (Cox and Oakes, 1984). The first two measures of 
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treatment effect are absolute measures of effect, while the third is a relative 
measure of effect. 

There is a paucity of discussion about the relative utility of different 
measures of treatment effect in RCTs when the outcome is time-to-event in 
nature. However, many of the arguments in the context of binary outcomes would 
hold when outcomes are time-to-event in nature. Therefore, at the very minimum, 
absolute measures of treatment effect should complement relative measures of 
treatment effect. 
 
3. Dataset for illustrating statistical methods 
 
In this section we briefly describe the data that were used for illustrating the 
different statistical methods for quantifying the effect of treatment on outcomes.  
Detailed clinical data obtained by retrospective chart review were available on a 
sample of 9,945 patients hospitalized with a diagnosis of heart failure from 103 
acute care hospitals in Ontario, Canada between April 1, 1999 and March 31, 
2001.  These data were collected as part of the Enhanced Feedback for Effective 
Cardiac Treatment (EFFECT) Study, an ongoing initiative to improve the quality 
of care for patients with cardiovascular disease in Ontario (Tu et al., 2004, 2009).  
Data on patient demographics, vital signs at presentation, and results of physical 
examination at presentation, medical history, and results of laboratory tests were 
collected for this sample.  We restricted the initial sample to those 9,162 patients 
discharged alive with a diagnosis of heart failure.  Subjects with missing data on 
key continuous baseline covariates were excluded from the current study (N = 
1,547).  We chose to conduct a complete case analysis and exclude subjects with 
missing data since the focus of the current article is on describing methods to 
estimate clinically- and policy-relevant measures of treatment effect. In a 
particular application, applied researchers would need to decide how best to 
account for missing data. The selected approach could possibly include imputing 
missing data, thereby allowing for all subjects to be included in the subsequent 
analyses. Furthermore, the hierarchical nature of the data was not taken into 
account when estimating different measures of treatment effect. The focus of the 
paper is on methods to estimate clinically and policy-relevant measures of 
treatment effect. Consequentially, we did not focus on methods to incorporate the 
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excluded 117 subjects with either a documented history of allergy to beta-
blockers or a documented intolerance to beta-blocker use while in hospital (the 
most common documented reasons for in-hospital intolerance: 
allergy/hypersensitivity; asthma/COPD/bronchospasm; bradycardia/heart block; 
hypotension).  Therefore, the final study sample consisted of 7,496 patients. 

The demographic and clinical characteristics of beta-blocker users and 
non-users are described in Table 1 (this table is reproduced from a prior study 
using these data for illustrative purposes (Austin, 2009a)).  Continuous variables 
were compared between treatment groups using the Kruskal-Wallis test, while 
categorical variables were compared using the Chi-squared test.  27.2% of 
patients received a prescription for a beta-blocker at hospital discharge.  
Systematic differences in several baseline covariates were observed between 
treated and untreated subjects. As noted above, unless other stated, conventional 
statistical analyses conducted in this sample assume that all observations were 
independent of one another. 

In the current study, we considered two different outcomes: death within 
one year of hospital discharge (a dichotomous outcome) and time to death, with 
subjects censored after five years of follow-up (a survival outcome).  In our 
sample, 27.7% of the subjects died within one year of hospital discharge.  One 
should note that the dichotomous outcome was not a rare event, with a large 
minority of patients dying within one year of discharge.  Four thousand nine 
hundred and seventy (66.3%) subjects died within five years of hospital 
discharge. 

  

effect of clustered data into these analyses. Post-discharge mortality was 
determined by linking the study sample to the Registered Persons Database using 
encrypted versions of the each patient’s Ontario Health Insurance Plan number.  
A further two subjects for whom the recorded date of death preceded the date of 
hospital admission were excluded.  Thus, the resultant cohort consisted of 7,613 
patients.  In the current study, the exposure was receipt of a prescription for a 
beta-blocker at hospital discharge.  From this sample of 7,613 patients, we 
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Table 1.  Demographic and clinical characteristics of the 7,496 heart failure 
patients in the study sample. 
 

Beta-blocker: No 
(N = 5,458) 

Beta-blocker: Yes 
(N = 2,038) 

Variable 

Median  
(25th percentile –  
75th percentile)  
or N (%) 
 

Median  
(25th percentile –  
75th percentile)  
or N (%) 
 

P-value 

Demographic characteristics 
Age, years 78 (70-84) 75 (67-82) <.001 
Female 2,766 (50.7%) 991 (48.6%) 0.114 
Vital signs on admission 
Systolic blood pressure, 

mmHg 
147 (127-170) 151 (130-176) <.001 

Heart rate, beats per minute  94 (78-111) 88 (73-108) <.001 
Respiratory rate, breaths per 

minute 
24 (20-30) 24 (20-28) <.001 

Presenting signs and symptoms 
Neck vein distension 2,963 (54.3%) 1,174 (57.6%) 0.01 
S3 511 (9.4%) 228 (11.2%) 0.018 
S4 200 (3.7%) 87 (4.3%) 0.225 
Rales > 50% of lung field 551 (10.1%) 228 (11.2%) 0.168 
Findings on chest X-Ray 
Pulmonary edema 2,734 (50.1%) 1,117 (54.8%) <.001 
Cardiomegaly  1,995 (36.6%) 699 (34.3%) 0.07 
Past medical history 
Diabetes 1,839 (33.7%) 788 (38.7%) <.001 
CVA/TIA 866 (15.9%) 333 (16.3%) 0.619 
Previous MI 1,783 (32.7%) 966 (47.4%) <.001 
Atrial fibrillation 1,649 (30.2%) 519 (25.5%) <.001 
Peripheral vascular disease 677 (12.4%) 298 (14.6%) 0.011 
Chronic obstructive 

pulmonary disease 
1,067 (19.5%) 186 (9.1%) <.001 

Dementia 421 (7.7%) 90 (4.4%) <.001 
Cirrhosis 46 (0.8%) 6 (0.3%) 0.011 
Cancer 652 (11.9%) 192 (9.4%) 0.002 
Electrocardiogram – first available within 48 hours 
Left bundle branch block 823 (15.1%) 288 (14.1%) 0.304 
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Laboratory tests 
Hemoglobin, g/L 124 (110-138) 125 (111-138) 0.159 
White blood count, 10E9/L 9 (7-12) 9 (7-11) 0.25 
Sodium, mmol/L 139 (136-141) 139 (137-141) 0.002 
Potassium, mmol/L 4 (4-5) 4 (4-5) 0.138 
Glucose, mmol/L 7 (6-10) 8 (6-12) <.001 
Blood urea nitrogen, 

mmol/L 
8 (6-12) 8 (6-12) 0.581 

Creatinine, μmol/L 104 (82-142) 106 (85-143) 0.002 
 
4. Traditional measures of effect in observational studies 
 
The absence of randomization in observational studies frequently results in the 
baseline characteristics of treated subjects differing systematically from those of 
untreated subjects. If the distribution of prognostically important baseline 
covariates differs between treated and untreated subjects, then treatment 
assignment is said to be confounded with baseline covariates. As a result, direct 
comparisons of outcomes between treated and untreated subjects may result in 
biased estimates of the effect of treatment on outcomes. Health researchers have 
frequently used regression analysis to adjust for systematic differences between 
treated and untreated subjects when estimating the effect of treatment on 
outcomes. In this section, we briefly describe the use of regression adjustment for 
estimating treatment effects in observational studies. In particular, we highlight 
some of the limitations of this approach when outcomes are binary or time-to-
event in nature. 
 
4.1. Continuous outcomes 
 
If the outcome is continuous, then the following linear regression model can be fit 
to the study data: 
 

iiiTi eTY +++= Xβββ0     (1) 

where  denotes the subject-specific outcome,  is an indicator variable 
denoting treatment status (T = 1 treated; T = 0 untreated), and is a vector 
denoting measured baseline covariates. The regression coefficient 

iY iT

iX

Tβ  denotes the 
adjusted difference in the mean outcome between treated and untreated subjects. 
Conditional on a given value of the vector of baseline covariates, the mean of the 
distribution of the outcome is Tβ units greater amongst treated subjects than it is 
in untreated subjects. Thus, the measure of treatment effect is in the same metric 
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as that produced in an RCT with the same outcome: a difference in means. 
Furthermore, due to the collapsibility of the mean, the adjusted difference in 
means coincides with the marginal or population-average difference in means 
(Greenland, 1987). This can be seen because if a given subject were untreated, the 
expected outcome would be: iXββ +0 , whereas if the same subject were treated, 
the expected outcome would be: iTiy Xβββ ++= 0 . If one integrates the first 
quantity over the distribution of X, one obtains that the average response in the 
population, if all subjects were untreated, would be: . In integrating 

the second quantity over the distribution of X, one obtains that the average 
response in the population, if all subjects were treated, would 
be: . The difference between these two marginal responses 

is

dXX
X

i∫+ ββ0

dXX
X

iT ∫++ βββ0

Tβ . Therefore, the marginal effect of treatment coincides with the adjusted 
treated effect when the outcome is continuous. 

Therefore, when linear regression adjustment is used to estimate the 
adjusted effect of treatment on a continuous outcome, the metric of the treatment 
effect is identical to that which would be obtained in an RCT in a similar context 
(a difference in means). Furthermore, the adjusted difference in means obtained 
from a linear regression model coincides with the marginal effect that would be 
obtained in an RCT. Finally, as in RCTs, the above method can be adapted to 
allow for adjustment of the baseline value of the response variable, or to estimate 
the effect of treatment on the change from baseline. One can adjust for the 
baseline value of the response variable by including it as a covariate in the 
regression model described in formula (1). One can also estimate the effect of 
treatment on the change in baseline by replacing the response variable in formula 
(1) by the difference between the pre- and post-intervention values of the response 
variable. 
 
4.2. Binary and time-to-event outcomes 
 
In medical research, outcomes are frequently binary or time-to-event in nature. In 
such settings, logistic regression models or Cox proportional hazards models are 
frequently used to estimate an adjusted treatment effect. The resultant measure of 
treatment effect is the adjusted odds ratio or the adjusted hazards ratio, when 
outcomes are binary and time-to-event, respectively. However, there are several 
limitations to the conventional use of regression models to estimate treatment 
effects in these contexts. 

The first limitation to the conventional use of regression adjustment is that 
the resultant measure of treatment effect (an adjusted odds ratio or an adjusted 
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hazard ratio) is a relative measure of treatment effect. As such, it does not provide 
any information about the absolute risk of the outcome, nor of the absolute 
reduction in the risk of the event. As noted in Section 2, many clinical 
commentators have suggested that relative measures of treatment effect provide, 
at best, limited information about the effectiveness of a given treatment or 
exposure. Several commentators have suggested that absolute measures of 
treatment effect and the associated NNT are more informative for clinical 
decision making than are relative measures of treatment effect. 

A second limitation to the use of regression adjustment in this context is 
that the adjusted odds ratio or hazard ratio is not collapsible (Greenland, 1987; 
Gail et al., 1984). Therefore, the adjusted odds ratio or hazard ratio does not 
coincide with the marginal (or population-average) odds ratio or hazard ratio that 
would be estimated in an RCT in a similar context. Gail et al. (1984) 
demonstrated that in an RCT with binary or time-to-event outcomes, the crude 
(marginal) odds ratio or hazard ratio does not coincide with an adjusted odds ratio 
or hazard ratio. 

A third limitation to the use of logistic regression when the outcome is 
binary is also related to the odds ratio being the resultant measure of treatment 
effect.  Many clinical readers are tempted to interpret the odds ratio as a relative 
risk. However, when the outcome is common, then the odds ratio is further from 
unity than is the relative risk (Localio et al., 2007).  Thus, interpreting the odds 
ratio as a relative risk may result in an overestimation of the magnitude of the 
effect of treatment on the outcome. 

We used the data described in Section 3 to illustrate the use of 
conventional logistic regression.  The occurrence of the dichotomous outcome 
(death within 365 days of hospital discharge) was regressed on an indicator 
variable denoting receipt of a prescription for a beta-blocker at hospital discharge 
and the 28 baseline covariates described in Table 1.  The logistic regression model 
assumed linear relationships between each of the continuous covariates and the 
log-odds of death.  The odds ratio for the effect of beta-blocker prescribing on 
mortality was 0.73 (95% confidence interval: 0.64 – 0.83).  Thus, assuming no 
unmeasured confounders, prescribing a beta-blocker at hospital discharge 
decreased the odds of death by 27% (all effects of treatment on the dichotomous 
outcome are summarized in Table 2).  Similarly, a Cox proportional hazards 
regression model was used to estimate the effect of beta-blocker prescribing on 
post-discharge survival.  The resultant adjusted hazards ratio was 0.78 (95% CI: 
0.72 – 0.83).  Thus, assuming no unmeasured confounders, beta-blocker 
prescribing reduced the hazard of death by 22%. 
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Table 2.  Comparison of treatment effects for binary outcome in case study
 

Method of estimation Estimated treatment effect
(95% confidence interval) 

Odds ratio 
Logistic regression adjustment 0.73 (0.64, 0.83) 

Relative risk 
Zhang-Yu substitution method 0.79 (0.72, 0.87) 
Poisson regression 0.81 (0.73, 0.90) 
Poisson regression – sandwich variance estimation 0.81 (0.74, 0.89) 
Conditional standardization by centering covariates 0.77 (0.68, 0.86) 
Marginal probabilities 0.81 (0.75, 0.88) 
Propensity score matching 0.79 (0.71, 0.89) 
Propensity score stratification 0.80 (0.73, 0.89) 
Inverse probability of treatment weighting 0.81 (0.73, 0.91) 

Risk difference 
Bender and Blettner -0.063 (-0.087, -0.040) 
Marginal probabilities -0.054 (-0.076, -0.034) 
Imbens -0.053 (-0.076, -0.029) 
Propensity score matching -0.055 (-0.082, -0.029) 
Propensity score stratification -0.057 (-0.081, -0.033) 
Inverse probability of treatment weighting -0.054 (-0.077, -0.031) 
Number needed to treat 
Bender and Blettner 16.0 (11.5, 26.4) 
Marginal probabilities 18.5 (13.2, 29.4) 
Imbens 18.9 (13.2, 34.5) 
Propensity score matching 18.2 (12.2, 34.5) 
Propensity score stratification 17.5 (12.3, 30.3) 
Inverse probability of treatment weighting 18.5 (13.0, 32.3) 

 
5. Regression-based methods to estimate clinically-meaningful measures of 

treatment effect in observational studies 
 
Given the limited ability of direct regression adjustment to estimate clinically-
meaningful measures of treatment effect when outcomes are binary or time-to-
event in nature, we now review alternate regression-based methods to estimate 
clinically-meaningful measures of treatment effect. In this section, our focus is on 
settings in which outcomes are binary or time-to-event in nature. 
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5.1 Binary outcomes 
 
Several authors have described methods to estimate relative risks, risk differences 
(or absolute risk reductions) and numbers needed to treat (NNT) using regression-
based methods. We describe methods for relative risks and absolute risk 
reductions separately. The NNT can be estimated directly from the absolute risk 
reduction. 
 
5.1.1 Relative risks 
 
Zhang and Yu (1998) described a method to estimate an adjusted relative risk 
from an adjusted odds ratio that was obtained from a logistic regression model in 
a cohort study. Let OR denote the odds ratio obtained from a logistic regression 
model in which the dichotomous outcome was regressed on an indicator variable 
denoting treatment status and a set of covariates. Furthermore, let P0 denote the 
proportion of untreated subjects who experience the outcome of interest. Zhang 
and Yu proposed following estimate of the relative risk: 

)()1( 00
Yu and Zhang ORPP

ORRR
×+−

=  

They suggested that confidence intervals for the relative risk could be obtained by 
substituting the endpoints of the confidence interval for the adjusted odds ratio in 
the above formula.  The approach of Zhang and Yu has been criticized by McNutt 
et al. (2003), as it results in estimated relative risks that are biased away from the 
null, with the estimated association appearing to be stronger than is true. McNutt 
et al. suggest that the bias in the method of Zhang and Yu arises from using one 
summary value of the probability of the outcome (P0), rather than accounting for 
the more complex relationship between the occurrence of the outcome and 
treatment for each covariate pattern. Furthermore, the method of producing 
confidence intervals proposed by Zhang and Yu has been criticized for resulting 
in intervals that are artificially narrow (Localio et al., 2007; McNutt et al., 2003).  
Using the estimated adjusted odds ratio of 0.73 that was obtained above, and with 
the probability of the outcome amongst untreated subjects being 0.30, then 
RRZhang and Yu = 0.79 (95% CI: 0.72 – 0.87).  As noted above, the estimated 
treatment effect for binary outcomes are summarized in Table 2. 

To address the limitation of the method of Zhang and Yu, McNutt et al. 
(2003) proposed three methods for calculating the relative risk in prospective 
observational studies: stratification, using a log-binomial generalized linear 
model, or using Poisson regression. Stratification involves estimating stratum-
specific estimates of the relative risk and then pooling these stratum-specific 
relative risks. While this approach is attractive when there are only a few 
categorical confounders, it is not practical in settings in which there are many 
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confounding covariates, some of which may be continuous in nature. Log-
binomial models are a generalized linear model with a logarithmic link function 
and a Binomial distribution for outcomes. However, these models can be difficult 
to implement in practice, since the logarithmic link function only restricts the 
probability of an outcome to be greater than 0 (while the logit link function in a 
logistic regression model restricts the probability of an outcome to lie between 0 
and 1). Therefore, estimation methods for these models may fail in specific 
empirical settings. McNutt et al. suggest that Poisson regression be used to 
estimate relative risks; however, they state that this approach may result in 
confidence intervals that are conservative when outcomes are common. In order 
to address the conservative nature of confidence intervals obtained using Poisson 
regression, Zou (2004) suggested using Poisson regression models with robust 
variance estimates to obtain estimates of relative risks and the associated 
confidence intervals. In a limited set of simulations, this approach was found to 
perform satisfactorily (Zou, 2004). 

Using our sample dataset, we estimated the reduction in the probability of 
death within one year associated with beta-blocker use.  Stratification was not 
feasible given that we wanted to account for 28 baseline covariates, several of 
which were continuous.  The log-binomial model did not converge.  The 
conventional Poisson model resulted in a rate ratio of 0.81 (95% CI: 0.73 – 0.90).  
When robust variance estimates were obtained, the resultant 95% confidence 
interval changed to: 0.74 – 0.89. 

Wacholder (1986) suggested using a log-binomial generalized linear 
model estimated using a modified algorithm to estimate relative risks in 
prospective studies. As discussed in the above paragraph, a limitation to the use of 
the log-binomial model is that predicted probabilities are not constrained to lie 
within the unit interval. Wacholder addressed this limitation by developing a 
modification of the iterative estimation procedure in which the parameter space is 
restricted to those values that result in predicted probabilities lying within the unit 
interval.  However, Wacholder’s method requires using macros for the GLIM 
software, which is no longer commercially available.  For this reason we did not 
examine estimation using this method in our sample. 

Localio et al. (2007) proposed an approach to estimating the relative risk 
from a logistic regression model. Assume that the following logistic regression 
model was fit to the data: 
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If the baseline covariates are set to their reference values ( 0Xi = ), then we have 

that βα +=⎟⎟
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))exp(1/()exp()1Pr( 00 βαβα +++==iY  for treated subjects, while 
))exp(1/()exp()1Pr( 00 αα +==iY  for untreated subjects. The ratio of these two 

probabilities is the relative risk: ))exp(1/())exp(1( 00 βαα −−+−+=RR . A 
limitation to this approach is that one can only compute the relative risk for the 
reference covariate pattern. Computing the relative risk for a different covariate 
pattern requires that the covariates be transformed so that the desired covariate 
pattern is the reference pattern. Localio et al. refer to this method as conditional 
standardization by centering covariates. A consequence of this method is that 
there is no longer a uniform relative risk, but potentially a different relative risk 
for each covariate pattern.  We used this method in our sample.  The reference 
subject was taken to be a subject whose continuous covariates were set equal to 
the sample mean, while the dichotomous covariates were set equal to the sample 
mode.  The resultant relative risk was 0.77 (95% CI: 0.68 – 0.86).  The 95% 
confidence interval was estimated using non-parametric bootstrap methods with 
1,000 bootstrap replicates, as this was found by Localio et al. to have superior 
performance compared to competing approaches. 

Finally, both Austin (2010b) and Localio et al. (2007) suggested a method 
based upon determining marginal probabilities of the outcome using predicted 
probabilities derived from a logistic regression model. Localio et al. refer to this 
approach as marginal standardization using logistic regression, while Austin 
refers to it as determining marginal probabilities from a logistic regression model. 
We summarize the proposed approach as follows. Assume that the logistic 
regression model described in formula (2) was fit to the data. Using the fitted 
logistic regression model, one can determine the probability of the outcome if a 
given subject were treated and if the same subject were untreated. The probability 
of the outcome if a subject were treated is  

i
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The probability of the outcome if a subject were not treated is  

 

i

i

e
e

αX

αX

+

+

+ 0

0

1 α

α

      (4) 

  

14

The International Journal of Biostatistics, Vol. 7 [2011], Iss. 1, Art. 6

http://www.bepress.com/ijb/vol7/iss1/6
DOI: 10.2202/1557-4679.1285



 One then determines the mean probability of the outcome if the whole population 
were treated and again if the whole population were untreated. These mean 
probabilities have been referred to as the marginal probabilities of success for 
treated and untreated subjects, respectively. They are marginal probabilities, since 
they describe the average risk in the population if the entire population were 
either treated or untreated. Let 1=Tp  and 0=Tp  denote the marginal probabilities of 
success for treated and untreated subjects, respectively. Then the relative risk can 

be estimated as 
0

1

=

=

T

T

p
p , while the relative risk reduction is defined as 

0

10100
=

== −
×

T

TT

p
pp . Both Austin and Localio et al. proposed using bootstrap 

methods to estimate confidence intervals for the relative risk.  We applied this 
method to our study sample.  We used a logistic regression in which one year 
mortality was regressed on an indicator variable denoting treatment and the 28 
covariates listed in Table 1.  Non-parametric bootstrap methods with 1,000 
bootstrap replicates were used to derive 95% confidence intervals.  The resultant 
relative risk was 0.81 (95% CI: 0.75 – 0.88). 
 
5.1.2 Absolute risk reductions and number needed to treat 
 
Four different regression-based approaches have been suggested in the literature 
for estimating absolute risk reductions in cohort studies. The first was by 
Wacholder (1986), who suggested using generalized linear models with the 
identify link function to estimate risk differences. Using generalized linear models 
with a Bernoulli distribution and an identify link function allows one to estimate a 
risk difference. Limitations to this approach are that the identify link function 
does not constrain the predicted probabilities of an outcome to lie between 0 and 
1. Instead, the predicted probabilities are allowed to take any value on the real 
line. In practice, this can lead to computational problems. Wacholder proposed a 
modification to the standard iterative estimation procedure to restrict the 
coefficient space to those coefficients that resulted in fitted probabilities in the 
unit interval.  However, implementation of this method requires using macros in 
the GLIM software programme.  For this reason, we did not consider this method 
further. 

The second approach to estimating NNTs has been advocated by Bender 
and Blettner (2002) (Bender and Blettner appear to have coined the term number 
needed to be exposed for use in epidemiological applications). A logistic 
regression model relating the odds of the outcome to an indicator variable 
denoting treatment/exposure and baseline covariates is fit to the study data. When 
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the adjusted odds ratio is greater than one (i.e. exposure increases the odds of the 
outcome), then the number needed to be exposed for harm (NNEH) is obtained by 
combining the adjusted odds ratio (OR) from the estimated logistic regression 
model and the event rate in the unexposed subjects (UER): 

 

  
UER)-(11)-(OR

OR
UER)1OR(

1NNEH
×

+
×−

=    (5) 

 
The UER is determined as the mean probability of the outcome in untreated 
subjects as derived from the logistic regression model. If the adjusted odds ratio is 
less than one, (i.e. exposure decreases the odds of the outcome) then the number 
needed to be exposed for benefit (NNEB) is given by NNEB = -NNEH.  Bender 
et al. proposed using the multivariate Delta approach to estimate confidence 
intervals for the adjusted NNEH (Bender and Blettner, 2002; Bender and Kuss, 
2003).  When applied to our sample, the NNEB was 16.0 (95% CI: 11.5 – 26.4).  
Thus, 16 patients would have to be treated with beta-blockers at discharge to 
avoid one death within one year of discharge.  The risk difference can be obtained 
by taking the reciprocal of the NNT: the absolute risk reduction was -0.063 (95% 
CI: -0.087 to -0.040). 

The third approach that has been advocated by different authors is based 
on the use of marginal probabilities, as described in Section 5.1.1. This approach 
has been advocated by both Bender and colleagues (2007) and by Austin (2010b). 
Using the terminology of the previous section, the risk difference can be 
estimated as 10 == − TT pp . There are minor variations between the approaches 
suggested by the different authors. The approach described above reflects the 
method proposed by Austin (2010b). Austin suggested averaging the predicted 
probabilities across the entire sample, allowing one to estimate an average 
treatment effect: this is the average effect at the population level of moving the 
entire population from untreated to treated. Bender and colleagues (2007) suggest 
averaging the predicted probabilities over either the treated subjects or the 
untreated subjects. Averaging the predicted probabilities over the treated subjects 
allows one to estimate the average treatment effect for the treated. Furthermore, 
Austin proposed using bootstrap methods to estimate associated confidence 
intervals, while Bender et al. (2007) proposed using the multivariate Delta method 
to estimate the variance of the estimated treatment effect.  In our sample data, we 
use the method proposed by Austin, in which averaging was done over the entire 
sample.  Ninety-five percent confidence intervals were obtained using non-
parametric bootstrap methods with 1,000 bootstrap replicates.  The resultant risk 
difference was -0.054 (95% CI: -0.076 to -0.034).  Thus, treatment at discharge 
with a beta-blocker prescription reduced the absolute risk of death within one year 
by 5.4%.  The associated NNT was 18.5 (95% CI: 13.2 – 29.4). 
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Imbens (2004) suggested an approach, which, while not explicitly 
intended to estimate risk differences, can be easily adapted for this approach. The 
approach proposed by Imbens is similar to that of Austin (2010b) and Bender et al 
(2007). The primary difference is that rather than fit a single logistic regression 
model relating outcomes to treatment and baseline covariates, two separate 
logistic regression models are fit. Each model relates outcomes to baseline 
covariates. The first model is fit using only the untreated subjects, while the 
second model is fit using only the treated subjects. Estimates of the predicted 
probability of the outcome are then obtained for each subject in the sample using 
the first model and the second model. These will be the probabilities of the 
outcome if each subject were untreated and treated, respectively. These quantities 
can then be averaged, either over the entire sample or over the subjects who were 
treated. From these marginal probabilities, one can compute the absolute risk 
reduction.  Using this method on our study sample, resulted in a risk difference of 
-0.053 (95% CI: -0.076 to -0.029) (1,000 bootstrap replicates were used to 
estimate the sampling variance of the estimated risk difference).  Thus, the 
associated NNT was 18.9 (95% CI: 13.2 – 34.5). 
 
5.2 Time-to-event  outcomes  
 
In this sub-section, we focus on using regression-based approaches to estimate 
absolute measures of treatment effect for time-to-event or survival outcomes. 
 
5.2.1 Absolute risk reduction and number needed to treat  
 
Austin has proposed a method to estimate an absolute risk reduction and the 
associated NNT from an adjusted survival model (Austin, 2010c). The method is 
similar to the method for estimating marginal probabilities using a logistic 
regression model that was described in Sections 5.1.1 and 5.1.2. The method is 
applicable with either the Cox proportional hazards regression model or with 
parametric accelerated failure time (AFT) models. Using this approach, survival 
time is regressed on treatment status and baseline covariates. For each subject, a 
predicted survival curve is generated assuming that the subject was untreated. 
These survival curves are then averaged, resulting in a marginal survival curve.  
This marginal survival curve describes survival in the population if the entire 
population was untreated. Then, a second survival curve is generated assuming 
that each subject was treated. These survival curves are then averaged, resulting in 
a second marginal survival curve.  This marginal survival curve describes survival 
in the population if the entire population was treated. This approach is similar to 
the corrected group prognosis method for computing adjusted survival curves that 
was proposed by Ghali et al. (2001). For any duration of follow-up, one can 
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estimate the absolute probability of the event occurring in the population if the 
entire population was untreated and again if the entire population was treated. The 
difference between these two marginal probabilities is the absolute reduction in 
the probability of the event occurring within a specified duration of follow-up. 
The number needed to treat to avoid one event occurring within the specified 
duration of follow-up is the reciprocal of this quantity. 

We used a Cox proportional hazards regression model to regress survival 
time on an indicator variable denoting treatment status and the 28 baseline 
characteristics described in Table 1.  We estimated the difference in the 
probability of survival to 1,025 days (the median duration of follow-up in the 
study sample).  The sampling variability of the risk difference was determined 
using 500 bootstrap samples. The resultant risk difference was -0.077 (95% CI: -
0.097 to -0.057).  Thus, one would need to prescribe a beta-blocker to 13 (95% 
CI: 10.3 to 17.5) patients at discharge to avoid one death within 1,025 days of 
discharge. 
 
5.2.2 Expected (mean) survival time 
 
An approach similar to that described in Section 5.2.1 can be used to estimate the 
effect of treatment on mean survival time. As above, the two marginal survival 
curves can be estimated: the survival curve if the entire population were untreated 
and the survival curve if the entire population were treated. The area under each 
marginal survival curve is the expected survival: the mean survival time in the 
population if all subjects were either untreated or treated. The difference between 
these two expected survival times is the change in expected survival time due to 
treatment.  We do not illustrate this method in our sample data as the duration of 
follow-up (five years) was inadequate to reliably estimate expected survival time. 
 
6. Propensity-score based methods to estimate clinically-meaningful 

measures of treatment effect in observational studies 
 
The previous section described regression-based approaches to estimating risk 
differences and relative risks. In this section, we describe approaches based on the 
propensity score. 
 
6.1 Definitions and background 
 
Given an observational study with a variable T denoting treatment assignment (T 
=1 treated; T = 0 untreated) and a vector X of observed baseline covariates, the 
propensity score is defined to be the probability of treatment assignment 
conditional on the observed baseline covariates: Z = Pr(T = 1 | X) (Rosenbaum 
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and Rubin, 1983, 1984). The propensity score is a balancing score: conditional on 
the propensity score, the distribution of observed baseline covariates is 
independent of treatment assignment (Rosenbaum and Rubin, 1983). Therefore, 
the distribution of observed baseline covariates will be the same between treated 
and untreated subjects with the same propensity score. The propensity score can 
be used in four different ways to estimate treatment effects: propensity-score 
matching, stratification on the propensity score, inverse probability of treatment 
weighting (IPTW) using the propensity score, and covariate adjustment using the 
propensity score (Rosenbaum and Rubin, 1983; Rosenbaum 1987; Austin and 
Mamdani, 2006). The first three of these allow one to directly estimate clinically-
meaningful measures of treatment effect. 
 
6.2 Propensity score methods 
 
In this section, we briefly describe propensity-score matching, stratification on the 
propensity score, and IPTW using the propensity score. 

In propensity-score matching, pairs of treated and untreated subjects are 
formed such that matched subjects have similar values of the propensity score 
(alternatives to pair-matching include many-to-one matching on the propensity 
score and full matching). Estimates of treatment effect are estimated in the 
resultant matched sample. Propensity-score matching is frequently used in the 
medical literature (Austin, 2007a, 2008a, 2008b). Stratification on the propensity 
score stratifies the original sample according to the values of the propensity score. 
A commonly-used approach is to stratify the sample according to the quintiles of 
the propensity score (Rosenbaum and Rubin, 1984). Using this approach, five 
approximately equally sized strata are formed. Within each stratum, the effect of 
treatment on outcomes is estimated by comparing outcomes between treated and 
untreated subjects within that stratum. Stratum-specific estimates of treatment 
effect are then pooled to obtain an overall measure of treatment effect 
(Rosenbaum and Rubin, 1984). In propensity score weighting, the inverse 

probability of treatment is defined to be: 
Z
T

Z
Tw

−
−

+=
1
1 , where Z denotes the 

estimated propensity score. The sample is then weighted by the inverse 
probability of treatment (Lunceford and Davidian, 2004). In the sample weighted 
by the inverse probability of treatment, treatment assignment is independent of 
measured baseline covariates. 

Propensity score methods allow one to separate the design of an 
observational study from the analysis of an observational study (Rubin, 2007). By 
matching on the propensity score, stratifying on the propensity score, or 
weighting by the inverse probability of treatment, the confounding between 
treatment status and observed baseline covariates has been eliminated. Therefore, 
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on average, there is no need to adjust for differences in baseline covariates 
between treated and untreated subjects. Rather, outcomes can be directly 
compared between treated and untreated subjects, as one would do in an RCT. 
Thus outcomes can be directly compared between treated and untreated subjects 
in the propensity-score matched sample, the inverse probability of treatment 
weighted sample, and within strata defined by the propensity score. 
 
6.3 Using the propensity score to estimate clinically-meaningful measures of 

treatment effect 
 
6.3.1 Binary outcomes 
 
In propensity-score matching, outcomes can be directly compared between treated 
and untreated subjects in the matched sample. When outcomes are binary, risk 
differences and relative risks can be estimated directly by comparing the 
estimated probability of the outcome between treated and untreated subjects in the 
matched sample. However, one must account for the matched nature of the 
sample when estimating the variance of the treatment effect (Austin, 2009b). 

In stratification on the propensity score, the outcomes between treated and 
untreated subjects can be directly compared within each propensity score stratum. 
Stratum-specific risk differences can then be pooled across the strata (Rosenbaum 
and Rubin, 1984).  For relative risks, there are two options. First, stratum-specific 
relative risks can be formally pooled using the Mantel-Haenszel estimator of the 
pooled relative risk (Breslow and Day, 1987; Austin, 2008c). Second, the 
probability of the outcome occurring in untreated subjects can be averaged across 
propensity score strata. Similarly, the probability of the outcome occurring in 
treated subjects can be averaged across propensity score strata. These are the 
marginal probabilities of the outcome occurring in untreated and treated subjects 
respectively. The ratio of these marginal probabilities can be determined, with 
confidence intervals estimated using bootstrap methods. Estimates from these two 
stratification-based approaches should coincide if subject-specific relative risks 
are uniform. Lunceford and Davidian (2004) examine stratification estimators for 
estimating treatment effects when estimating treatment effects for continuous 
outcomes. Many of the estimators can be simply modified for estimating absolute 
risk reductions when outcomes are binary. 

When using IPTW using the propensity score, outcomes can be compared 
directly between treated and untreated subjects in the weighted sample since the 
confounding between treatment and observed baseline covariates has been 
removed by weighting. Lunceford and Davidian examine a variety of weighting 
estimators for the effect of treatment on continuous outcomes.  These can be 
modified to estimate the effect of treatment on binary outcomes. 
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In our study sample, the propensity score was estimated using logistic 
regression to regress an indicator variable denoting treatment assignment on the 
28 covariates listed in Table 1. The logistic regression model assumed that all 
subjects in the sample were independent of one another. There is no clear 
consensus in the statistical literature as to how best to account for hierarchically-
structured data when estimating the propensity score. 

An important component of any propensity score analysis is to assess the 
comparability of measured baseline covariates between treated and untreated 
subjects with a similar propensity score (Austin, 2009c).  Assessment of baseline 
balance for this sample and this propensity score model has been reported 
elsewhere (Austin, 2009a).  When using propensity score matching, subjects were 
matched on the logit of the propensity score using calipers of width equal to 0.2 of 
the standard deviation of the logit of the propensity score (Austin, 2010d).  Two 
thousand and twenty-five (99.4%) of the 2,039 treated subjects were successfully 
matched to an untreated subject.  In the matched sample, the probability of death 
within one year of discharge was 0.269 and 0.214 in untreated and treated 
patients, respectively.  In the matched sample the risk difference due to treatment 
was -0.055 (95% CI: -0.082 to -0.029).  The associated NNT was 18.2 (95% CI: 
12.2 to 34.5).  The relative risk was 0.79 (95% CI: 0.71 – 0.89).  Thus, treatment 
reduced the risk of death within one year of discharge by 21%.  We then stratified 
the full sample on the quintiles of the propensity score. The pooled estimate of the 
risk difference was -0.057 (95% CI: -0.081 to -0.033).  The associated NNT was 
17.5 (95% CI: 12.3 to 30.3). The estimate of the relative risk obtained by 
estimating marginal probabilities was 0.80 (95% CI: 0.73 to 0.89).  When using 
IPTW, the estimated risk difference was -0.054 (95% CI: -0.077 to -0.031).  The 
associated NNT was 18.5 (95% CI: 13.0 to 32.3).  Finally, using IPTW, the 
estimated relative risk was 0.81 (95% CI: 0.73 to 0.91). 
 
6.3.2 Time-to-event outcomes 
 
When using propensity-score matching and outcomes are time-to-event in nature, 
Kaplan-Meier survival curves can be produced separately, for treated and 
untreated subjects in the matched sample.  The log-rank test should not be used 
for testing whether the two curves are statistically significantly different from one 
another, as this test assumes that the two samples are independent of one another 
(Harrington, 2005).  Instead, one can use the stratified log-rank test for comparing 
Kaplan-Meier curves from matched samples (Klein and Moeschberger, 1997).  
Comparing Kaplan-Meier survival curves between treated and untreated subjects 
allows one to estimate absolute risk differences for specific durations of follow-up 
time. Furthermore, the area under each of the two Kaplan-Meier curves can be 
determined, allowing one to estimate the mean survival time in each treatment 

  

21

Austin and Laupacis: Treatment Effects in Observational Studies

Published by Berkeley Electronic Press, 2011



group. The difference between these two quantities is the change in mean survival 
due to treatment. Confidence intervals for differences in mean survival and 
absolute risk differences for specific durations of follow-up are likely best 
estimated using bootstrap methods. 

When using stratification on the propensity score, Kaplan-Meier curves 
can be estimated separately for treated and untreated subjects within each 
propensity-score stratum. Stratum-specific estimates of the absolute reduction in 
the risk of an event occurring within a specified duration of follow-up can then be 
estimated. These stratum-specific estimates can be pooled across strata. Similarly, 
stratum-specific estimates of the change in expected survival time can be 
determined. These estimates can be pooled across strata to obtain an overall 
estimate of the effect of treatment on expected survival time. 

Xie and Liu (2005) describe an estimator of the Kaplan-Meier survival 
curve (and associated log-rank test) for use with inverse probability of treatment 
weighting. By estimating Kaplan-Meier curves in treated and untreated subjects 
separately, one can estimate the absolute reduction in the risk of an event 
occurring within a specified duration of follow-up time. Similarly, by estimating 
the area under each of the two survival curves, one can estimate the effect of 
treatment on the expected survival time. 

The centre panel of Figure 1 displays the Kaplan-Meier curves comparing 
5-year survival in the two treatment groups in the propensity-score matched 
sample.  The two survival curves were statistically significantly different from 
one another (P < 0.0001).  The right panel of Figure 1 displays the adjusted 
Kaplan-Meier curves in the weighted sample.  Using the adjusted log-rank test for 
use with IPTW, the two curves were statistically significantly different from one 
another (P < 0.0001). For comparative purposes, the left panel of Figure 1 
displays the crude Kaplan-Meier survival curves in the original study sample. In 
comparing the survival curves in the center and right panels to those in the left 

  

panel, one observes that the difference between the crude survival curves in the 
two treatment groups was reduced when confounding was accounted for. 
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Figure 1. Kaplan−Meier survival curves in original, matched and weighted samples
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7. Discussion 
 
Randomized controlled trials (RCTs) are the gold standard for estimating the 
effect of treatments, interventions, and exposures on health outcomes. In RCTs, 
there will, on average, be no systematic differences in baseline characteristics 
between treated and untreated subjects. This allows outcomes to be compared 
directly between the different treatment arms, permitting the reporting of 
clinically-meaningful measures of treatment effect. In particular, absolute 
measures of treatment effect can be estimated when outcomes are binary and 
time-to-event in nature. Several clinical commentators have suggested that 
absolute measures of treatment effect are superior to relative measures of 
treatment effect for making treated-related decisions for patients (Laupacis et 
al.,1988; Cook and Sackett, 1995; Jaeschke et al., 1995), while others have 
criticized the reporting of odds ratios in RCTs (Sackett et al., 1996). At the very 
least, the reporting of relative measures of treatment effect should be 
supplemented by the reporting of absolute measures of treatment effect 
(Schechtman, 2002; Sinclair and Bracken, 1994). 

There is growing interest in using observational or non-randomized 
studies to examine the effect of treatment on health outcomes. However, in non-
randomized studies, there are often systematic differences between treated and 
untreated subjects. Historically, researchers have used regression methods to 
adjust for observed systematic differences between treated and untreated subjects. 
A limitation to this approach is that, when outcomes are binary or time-to-event in 
nature, the resultant measure of treatment effect is a relative measure such as an 
odds ratio or a hazard ratio. We suggest that absolute measures of treatment effect 
should also reported for observational studies of the effect of treatment on 
outcomes. 

In this paper we have summarized methods that have been proposed in the 
literature for estimating clinically-meaningful measures of treatment effect in 
observational studies. When outcomes are binary, we have described methods for 
estimating relative risks, absolute risk reductions, and the number needed to treat 
(NNT). When outcomes are time-to-event in nature, we have described methods 
for estimating the absolute reduction in the probability of an event occurring 
within a specified duration of follow-up time (and the associated NNT). We have 
also suggested methods for estimating the effect of treatment on expected survival 
time. Application of these methods allows for supplementing the reporting of 
relative measures of treatment effect by absolute measures of treatment effect. 
Furthermore, when outcomes are dichotomous, the described methods allow for 
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the reporting of relative risks, and free one from using the odds ratio as a measure 
of association and effect.  When outcomes are common, the odds ratio does not 
provide an approximation of the relative risk; rather, it magnifies the apparent 
association between treatment and outcome. 

We have considered two different families of approaches for estimating 
clinically-meaningful measures of treatment effect in observational studies: 
regression-based approaches and propensity score-based approaches.  Each 
clinically-meaningful measure of treatment effect can be estimated using either 
approach. We would argue that there are advantages to the propensity score-based 
approaches compared to the regression-based approaches. First, propensity-score 
methods reflect a design-based approach to removing confounding, whereas 
regression methods reflect an analysis-based approach to removing confounding 
(Rubin, 2007). As Rubin (2007) has argued, the use of propensity score methods 
allows one to separate the design of an observational study from the analysis of an 
observational study. Using propensity score methods, no reference is made to the 
outcome until the propensity score model has been specified and adequate balance 
in baseline covariates has been observed between treated and untreated subjects 
with similar propensity scores. A second advantage to propensity-score based 
approaches is that one can explicitly assess the degree to which confounding has 
been removed. When matching, stratifying or weighting using the propensity 
score, one can examine the similarity of treated and untreated subjects within the 
matched sample, within propensity-score strata or within the weighted sample, 
respectively (Austin, 2009c). These balance diagnostics serve as an empirical test 
of whether the propensity score model has been adequately specified. When using 
regression-based approaches it is more difficult to assess whether the outcomes 
model has been adequately specified, and whether confounding between treatment 
and baseline covariates has been removed. 

We have described how three different propensity score methods can be 
used to estimate clinically-meaningful measures of treatment effect: propensity 
score matching, stratification on the propensity score, and inverse probability of 
treatment weighting (IPTW) using the propensity score. There are subtle 
differences between these methods. First, propensity-score matching allows one 
to estimate average treatment effects for the treated (ATT), whereas stratification 
and weighting allow one to estimate average treatment effects (ATE) (Imbens, 
2004). However, we would note that use of different weights allows one to 
estimate either the ATT or the average treatment effect for the controls (ATC) 
when using IPTW. Furthermore, the stratification estimator can be modified to 
estimate the ATT (Imbens, 2004). Second, empirical studies have shown that 
matching and weighting eliminates a greater degree of the observed differences 
between treated and untreated subjects than does stratification (Austin and 
Mamdani, 2006; Austin et al., 2007; Austin, 2009a). Simulations have shown that 
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in some settings matching and weighting remove equivalent amounts of 
imbalance between treated and untreated subjects, while in other settings 
matching removes modestly more imbalance (Austin, 2009a).  

In Table 2 we summarize the different estimated measures of effect for the 
impact of beta-blocker prescribing on death within one year of discharge in our 
study sample.  Several observations can be made from an examination of this 
table.  First, the adjusted odds ratio (0.73) is further from unity than are all the 
estimated adjusted relative risks (relative risks range from 0.77 to 0.81).  This 
highlights the fact that the odds ratio overestimates the magnitude of the relative 
risk when the outcome is common.  Second, apart from conditional 
standardization by centering covariates (which estimates the relative risk for a 
specific covariate pattern), the other relative risks were lay between 0.79 and 0.81.  
Third, when estimating risk differences, then five of the six methods resulted in 
qualitatively similar estimates (-0.053 to -0.057). 

We have noted above, that randomization will ensure that, on average, 
treated and untreated subjects do not differ systematically from one another. 
However, in any given randomization, it is possible that residual differences may 
exist between treatment groups. Several authors have suggested that regression 
adjustment be used to adjust for potential differences in baseline covariates that 
are predictive of the outcome (Senn,1989; Senn, 1994; Altman and Dore, 1991; 
Lavori et al., 1983). When outcomes are binary or time-to-event in nature, 
regression adjustment results in the odds ratio or the hazard ratio being reported 
as the measure of treatment effect. Several of the methods described in the current 
paper can be directly applied to RCTs to estimate clinically-meaningful measures 
of effect when regression adjustment is used and outcomes are binary or time-to-
event in nature (Austin, 2010b, 2010c). 

In summary, the design of RCTs allows for the reporting of simple, 
clinically-meaningful measures of treatment effect. The recently revised 
CONSORT statement on the reporting of results for RCTs recommends that, for 
RCTs with dichotomous outcomes, both relative and absolute measures of 
treatment effect be reported (Schulz et al., 2010).  In observational studies of the 
effect of treatment or exposure on outcomes, relative measures of treatment 
effect, such as the odds ratio or the hazard ratio, are frequently reported. In this 
paper we have summarized different statistical methods that allow for estimating 
clinically-meaningful measures of treatment effect in observational studies. We 
encourage researchers to report absolute risk reductions, numbers needed to treat, 
and relative risks when outcomes are binary. This would allow the reporting of 
treatment effects in observational studies to mirror what is recommended for 
RCTs.  When outcomes are time-to-event in nature, we encourage authors to 
report the absolute reduction in the risk of an event occurring within a specified 
duration of follow-up (along with the associated number needed to treat). 
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