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Abstract
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin
secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates.
Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell
proliferation and pancreas development, along with transcription factors, such as pancreatic and
duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their
receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR
pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P
< 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with
control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and
protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared
with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations
were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control
islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that
declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor
epithelial cell and mature β-cell replication.
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Introduction
Several epidemiological and experimental studies have demonstrated a relationship between
intrauterine growth restriction (IUGR) and impaired glucose homeostasis in later life,
indicating that β-cell dysfunction was established in utero.1–4 IUGR fetuses have lower
plasma insulin concentrations and glucose-stimulated insulin secretion,5 which are partially
explained by a diminished number of pancreatic β-cells in severe cases.6 Pancreas
development in fetal sheep parallels human fetal pancreas development,7,8 and
complications of IUGR in human fetuses are similar to those in a comparative sheep model,
with placental insufficiency produced by maternal exposure to a high-temperature
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environment during the bulk of gestation.9–11 Two reasons for decreased β-cell mass in
near-term placental insufficiency-induced IUGR (PI-IUGR) sheep fetuses are slower rates of
β-cell replication9 and less pancreatic progenitor epithelium at the beginning of the third
trimester (SW Limesand et al., unpublished). In normal pancreas development, these
processes are regulated by insulin-like growth factors (IGFs) and fibroblast growth factors
(FGFs), respectively.12,13 However, the impact of placental insufficiency on pancreatic IGFs
and FGFs is not defined.

IGFs regulate cell proliferation, survival and metabolism, while their binding proteins
(IGFBPs) can inhibit or potentiate IGF activity, depending on subtypes and target cells.14 –17

Furthermore, pancreatic progenitor epithelial cell proliferation is increased by fibroblast
growth factor receptor (FGFR) 2IIIB ligands, FGF7 and 10.13,18–20 Expansion of these
pancreatic and duodenal homeobox 1 (PDX-1)-positive progenitor cells will also influence
the absolute number of β-cells formed. PDX-1 expression is high in β-cells and regulates
insulin and glucose transporter 2 (Glut2), which is required for proper β-cell function.21,22

Therefore, we postulated that reduced expression of IGFs and FGFs or greater expression of
IGFBPs in the IUGR fetal pancreas will explain the decline in β-cell mass and insulin
secretion in the PI-IUGR sheep fetus. Furthermore, the expression profile for IGFs may
occur in fetal islets of Langerhans and reduce other factors required for β-cell function.

Materials and methods
Animals and experimental protocol

Protocols involving animals were approved by the Institutional Animal Care and Use
Committee at the University of Arizona and the University of Colorado Anschutz Medical
Center. Both laboratories are accredited by the American Association for Accreditation of
Laboratory Animal Care. Pregnant Columbia-Rambouillet crossbred ewes (n = 32) carrying
singleton fetuses were purchased from Nebekar Ranch (Lancaster, CA, USA). PI-IUGR
ewes (n = 16) were housed in environmentally controlled rooms with elevated ambient
temperatures (40°C for 12 h and 35°C for 12 h; 30% relative humidity) from 37 ±3 days of
gestational age (dGA) to 120 ±3 dGA (0.24–0.82 gestation). Pair-fed control ewes (n = 16)
were maintained at thermoneutral conditions (25°C; 25% relative humidity). At 133.4 ±0.7
dGA, ewes were euthanized with an overdose of sodium pentobarbital (10 mmol/L,
intravenously; Euthasol, Virbac Animal Health, Fort Worth, TX, USA). Fetal pancreases
were removed and islets were isolated from a subset of these fetuses (PI-IUGR, n = 7;
controls, n = 6) as previously described.10,23 The head of the pancreas was collected from
the remaining PI-IUGR (n = 9) and control (n = 10) fetuses, snap-frozen in liquid nitrogen,
and stored at −80°C for RNA and protein extraction.

Biochemical analysis
Fetuses were instrumented with arterial catheters as described previously.10,23 Fetal blood
was collected in syringes lined with ethylenediaminetetraacetic acid or heparin. Plasma
glucose concentrations were measured with a YSI model 2700 SELECT Biochemistry
Analyzer (Yellow Springs Instruments, Yellow Springs, OH, USA). Blood oxygen content
was measured with an ABL 520 (Radiometer, Copenhagen, Denmark).

Quantitative realtime polymerase chain reaction
RNA was isolated and reverse transcribed as described previously.23,24 Synthetic
oligonucleotide primers for IGFs, FGFs, PDX-1, insulin and Glut2 (Table 1) were designed
from conserved sequences. Polymerase chain reaction (PCR) products were cloned into pCR
II (Invitrogen Life Technologies, Carlsbad, CA, USA) and verified by nucleotide
sequencing. Quantitative PCR was performed using a master-mix of SYBR® Green
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JumpStart™ Taq Ready Mix™ (Sigma-Aldrich, St Louis, MO, USA), 0.3 μmol/L 5′ and 3′
primers, and 2 μL of cDNA in a DNA Engine Opticon II™ System (MJ Research, Waltham,
MA, USA). The standard thermocycler protocol began with an initial denaturation (96°C)
for two minutes, plus 35 cycles of denaturation (96°C) for 45 s, annealing temperature
(Table 1) for 1.5 min, extension (72°C) for 45 s and fluorescent detection (72°C). After
DNA amplification, melting curve analysis (72–99.9°C with detection every 0.1°C/s) was
used to verify the product purity. In addition, a Southern hybridization was performed on a
sample of amplified DNA to confirm PCR products, as described previously.25 Results were
normalized to a reference gene (β-actin for the pancreas, S15 for the islet) using the
comparative change of threshold cycles (ΔCt) method (Ct gene of interest– Ct reference
gene) and fold change was determined by the Pfaffl’s and Livak’s method.26,27 Values are
presented as means ± SEM.

Protein immunoblot analysis
Immunoblots were performed for IGF-I and IGFBP-2 in fetal pancreatic tissue (sc-9013 and
sc-13096, respectively; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Protein was
extracted, separated by polyacrylamide gel electrophoresis and transferred onto a
polyvinylidene fluoride membrane as previously described.28 Non-specific binding was
blocked in phosphate-buffered saline with 0.05% Tween-20 (PBST) with 5% non-fat dry
milk for one hour, and then membranes were incubated with either IGF-I or IGFBP-2
antibody diluted (1:1000) in PBST with 5% non-fat dry milk at 4°C overnight.
Immunocomplexes were detected with anti-goat immunoglobulin G horseradish peroxidase-
conjugated secondary antibody (1:10,000; Bio-Rad Laboratories, Hercules, CA, USA) using
enhanced chemiluminesence-Plus (Amersham Pharmacia Biotech, Arlington Heights, IL,
USA) and exposed to X-ray film. IGF-I or IGFBP-2 immunocomplexes were removed with
a 62.5 mmol/L Tris, pH 6.8, 2% sodium dodecyl sulfate and 100 mmol/L β-mercaptoethanol
solution for 30 min at 50°C. Western blot analysis for β-actin (1:40,000; ICN Biomedicals,
Burlingame, CA, USA) was used to normalize for loading differences. Densitometry value
was measured with ImageJ software version 1.41 (National Institutes of Health, Bethesda,
MD, USA) and the analysis was completed by comparing individual density value against
mean value of control blots. Data are presented as means ± SEM.

Statistical analysis
One-way analysis of variance was performed using the general linear model procedure of
SAS (SAS v. 9.1; SAS Institute Inc, Cary, NC, USA), and pair-wise comparisons were made
using Student’s t-test. Analysis of quantitative realtime PCR data was performed on ΔCt
values.

Results
Fetal parameters

Mean fetal body weight was lower (1.7 ±0.2 kg versus 3.4 ±0.1 kg, P < 0.01) in PI-IUGR
fetuses (n = 16) compared with controls (n = 16). Gestation ages were similar (134 ±1 days
in PI-IUGRs versus 134 ±1 days in controls). Mean plasma glucose concentrations were
lower in IUGR fetuses compared with controls (0.65 ±0.04 mmol/L versus 1.11 ±0.04
mmol/L; P < 0.01). Mean blood oxygen contents were also lower in IUGR than control
fetuses (1.26 ±0.20 mmol/L versus 3.00 ±0.13 mmol/L; P < 0.01). An equal number of fetal
pancreases from each treatment group (control and PI-IUGR) were randomly collected for
either pancreatic RNA and protein extraction or isolation of islets of Langerhans. Fetal
characteristics (weight, glucose and oxygen) within treatments were not different between
collection assignments.

Chen et al. Page 3

Exp Biol Med (Maywood). Author manuscript; available in PMC 2012 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mRNA expression in fetal pancreatic tissue
Relative IGF-I mRNA concentrations were 64% lower (P < 0.01) in PI-IUGR pancreases
compared with control pancreases (Figure 1). IGFBP-2 mRNA was 2.25-fold higher (P <
0.01) in PI-IUGR pancreases. IGFBP-1 mRNA transcripts were not detected in the pancreas
by PCR-Southern blot hybridization procedures, but were detected in fetal liver (data not
shown29). No differences were observed in the expression of IGF-II, IGFBP-3, -4 and -5,
insulin receptor (IR), IGF type 1 receptor (IGF-1R) or IGF type 2 receptor (IGF-2R)
between PI-IUGR and control fetuses (data not shown). IGFBP-6 mRNA concentrations
tended to be 46% lower (P = 0.07) in PI-IUGR pancreases than controls (data not shown).
Expression levels of PDX-1 were 76% lower (P < 0.05) in PI-IUGR pancreases (Figure 1).
FGF7 and FGFR2IIIb mRNA concentrations were 76% (P < 0.05) and 78% (P < 0.01) lower
in PI-IUGR pancreases compared with controls, but FGF10 concentrations were not
different (data not shown).

mRNA expression in isolated fetal pancreatic islets
Islets of Langerhans isolated from PI-IUGR fetuses had higher (P < 0.05) IGF-II (1.5-fold)
and IGFBP-2 (3.7-fold) mRNA concentrations than controls (Figure 2). IGF-I and IGFBP-6
were not different between groups (data not shown). Insulin expression was 66% lower (P <
0.05) in PI-IUGR islets than control islets (Figure 2). However, PDX-1 and Glut2 islet
expression levels were not different between groups (data not shown).

IGF-I and IGFBP-2 protein concentrations in pancreatic tissue
IGF-I protein content was not different between PI-IUGR and control pancreases. However,
IGFBP-2 protein content was 1.2-fold greater (P < 0.01) in PI-IUGR pancreases compared
with controls (Figure 3).

Discussion
Two scenarios could explain how the IGF and FGF signaling pathways act independently to
reduce β-cell mass in IUGR fetuses following placental insufficiency. First, greater
IGFBP-2 mRNA and protein concentrations can slow β-cell replication rates by
antagonizing IGF action. Second, decreased FGF7 and FGFR2IIIb signaling can lower
PDX-1 expression which, along with decreased IGF signaling, will contribute to reduced
pancreatic progenitor epithelial cells and lower the proportion of cells available for
differentiation into mature β-cells.13,30,31 Factors influencing β-cell mass are replication of
mature β-cells, neoformation from pancreatic progenitor epithelium and apoptosis.32,33

Previously, we showed that mitotic rates, but not apoptotic rates, of β-cells are lower in
IUGR sheep fetuses at 0.9 of gestation, which is consistent with IGFBP-2 inhibition of IGF-
induced proliferation.9 We also showed that rates of β-cell neoformation are similar between
IUGR and control fetuses.9 Contrary to reduced pancreatic IGF-II, isolated PI-IUGR islets
have greater IGF-II expression. This may represent a local compensatory mechanism to
sustain a minimal β-cell mass by inhibiting apoptosis. Together, these findings begin to
identify several mechanisms that define how reductions in selected growth factors in the PI-
IUGR pancreas contribute to decreased β-cell mass in response to placental insufficiency.

Plasma IGF-I concentrations are lower in the IUGR fetus;34 however, IGF regulation of
somatic cell growth may not be dependent on circulating IGF-I concentrations but instead on
local autocrine/paracrine action. This has been shown in mice with a liver-specific IGF-I
mutation, where circulating IGF-I concentrations were reduced but growth and development
were unaffected.35,36 Thus, IGF production within the pancreas most likely regulates
pancreatic β-cell development, expansion and survival by local autocrine/paracrine
actions.15,16,30,37 Increased expression of IGF-I coincides with increased rates of β-cell
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mitosis during regeneration,38 whereas disruption of pancreatic IGF signaling decreases β-
cell mass and pancreas development,30 which might explain the reduction in fetal β-cell
mass in the IUGR pancreas.

The greater expression of IGF-II in our IUGR fetal pancreatic islets contradicts reports in
fetal rat models of IUGR, including the experimental model of IUGR produced by a
maternal low protein diet and the genetic β cell-deficient Goto-Kakizaki rat model, which
exhibit reduced pancreatic IGF-II mRNA, lower β-cell proliferation rates and greater
apoptotic rates.39,40 However, elevated IGF-II expression supports the survival of β-cells,
which is consistent with our observations of similar apoptotic rates between control and
IUGR β-cells.9,15,41

We identified pancreatic IGFBP-2–6 transcripts in the present study, but IGFBP-1
expression was not found, comparable to previous observations in the fetal rat pancreas.35

The six high-affinity IGF binding proteins positively or negatively influence IGF actions,
adding an additional level of regulation.14,42,43 Transgenic mice that globally over-express
IGFBP-2 have lighter carcass weights, showing that IGFBP-2 negatively influences IGF
growth actions.17 Therefore, as a negative regulator, greater IGFBP-2 levels in the pancreas
and islets would act to reduce IGF signaling despite normal IGF-I and increased IGF-II
concentrations. Additionally, maximal IGF stimulation of β-cell proliferation requires
adequate glucose concentrations, which play an important and specific role in β-cell
development by activating the endocrine progenitors.16,44 Therefore, due to placental
insufficiency, fetal hypoglycemia may further inhibit IGF-potentiated β-cell proliferation.9

In sheep and humans, β-cells differentiate from the pancreatic progenitor epithelium from at
least 0.24 of gestation until term.7 During this period, pancreatic progenitor epithelial cells
also proliferate, which is regulated by FGF signaling.19,20,45 Although FGF10 mRNA was
not different, lower pancreatic FGF7 and FGFR2IIIb mRNA concentrations would act to
reduce pancreatic progenitor epithelial cell expansion and subsequent β-cell neoformation in
PI-IUGR fetuses.19,20,45 In genetically engineered mice, transient ablation of PDX-1-
positive pancreatic progenitor cells was shown to be a critical and limiting determinant of
pancreas size and β-cell area.47 Decreased FGFR2IIIb signaling also lowers PDX-1
expression in pancreatic epithelial cells.13,46 Thus, while decreased pancreatic PDX-1
mRNA concentrations in PI-IUGR fetuses may be partially due to decreased numbers of β-
cells,9 it may also be due to the lower expression of pancreatic FGF7 and FGFR2IIIb
(Figure 1). Together, these conditions will reduce the pancreatic progenitor cell pool, and
lower β-cell mass in PI-IUGR fetuses. In the β-cells, PDX-1 transactivates insulin and Glut2
genes.19,48,49 In isolated pancreatic islets in the present studies, PDX-1 and Glut2 mRNA
concentrations were similar between IUGR and control fetuses (Figure 2). This normal
expression of PDX-1 mRNA, however, was not associated with normal insulin mRNA
(Figure 2), which was also reduced by 66% in the IUGR pancreas.9 These findings reflect
differential regulation of insulin and Glut2 expression by factors other than PDX-1. For
example, normal glucose concentrations are required for the normal regulation of insulin
gene expression and so fetal hypoglycemia may be responsible for decreased islet insulin
mRNA.50

In summary, we showed reductions in IGF-I, FGF7, FGFR2IIIB and PDX-1 mRNA
expression in PI-IUGR fetal pancreatic tissue, and increased IGFBP-2 mRNA and protein in
both pancreatic tissue and isolated islets in PI-IUGR fetuses. Reductions in IGF and FGF
signaling in the PI-IUGR pancreas act to decrease expansion of the pancreas progenitor
epithelium, leading to fewer cells differentiating into mature β-cells.13,30,31 Furthermore,
decreased IGF signaling will also reduce β-cell replication. Decreased differentiation of new
β-cells and reduced replication of mature β-cells will result in less overall β-cell mass,
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consistent with our previous observations.9 These findings are the first to define how growth
factor signaling pathways reduce β-cell mass in fetuses with placental insufficiency-induced
IUGR and provide a mechanistic foundation for the development of type 2 diabetes. In
addition, the new data point out that the response of the pancreas in the IUGR fetus is
complex and potentially treatable.
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Figure 1.
Pancreas expression profiles for IGF-I, IGFBP-2, PDX-1, FGF7 and FGFR2IIIB. Relative
mRNA concentrations for the genes listed on the abscissa are normalized to a reference gene
(β-actin) and expressed as the fold change from control calculated by the 2−ΔΔCt in
pancreatic tissue collected from control (□) and IUGR (■) fetuses. Mean ± SEM values for
animals are presented. Significance is indicated by *P < 0.05 and **P < 0.01. IGF-I, insulin-
like growth factor I; IGFBP-2, insulin-like growth factor binding protein 2; PDX-1,
pancreatic and duodenal homeobox 1; FGF7, fibroblast growth factor; FGFR2IIIB,
fibroblast growth factor receptor 2IIIB; IUGR, intrauterine growth restriction
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Figure 2.
Pancreatic islet expression profiles for IGF-II, IGFBP-2 and insulin. Relative mRNA
concentrations for the genes listed on the abscissa are normalized to a reference gene (S15)
and expressed as the fold change from control calculated by the 2−ΔΔ in pancreatic tissue
collected from control (□) and IUGR (■) fetuses. Mean ± SEM values for animals are
presented. Significance is indicated by *P < 0.05 and **P < 0.01. IUGR, intrauterine growth
restriction. IGF-11, insulin-like growth factor II; IGFBP-2, insulin-like growth factor
binding protein 2
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Figure 3.
Immunoblot analysis for IGFBP-2 in pancreas tissue. IGFBP-2 protein concentrations were
measured in control (□) and IUGR (■) pancreatic tissue. The graph summarizes band
intensities from each treament group. Significance from the Student’s t-test analyses are
depicted by * *P < 0.01. Representative immunoblots are shown for three control and three
PI-IUGR pancreas samples from both IGFBP-2 and β-actin. IUGR, intrauterine growth
restriction; IGFBP-2, insulin-like growth factor binding protein 2
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