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1 Introduction
Clefts of the lip with/without cleft palate (CL/P) are one of the most common birth defects
in humans, and create a major public health burden for the affected children and their
families. Although there is strong evidence for genetic control of CL/P, it has proven
difficult to identify any single gene as being causal, and it is more likely that several genes
contribute to the etiology of this complex and heterogeneous malformation (Dixon et al.,
2011). The challenge lies in identifying which genes are involved when several may
contribute to risk (Schliekelman and Slatkin, 2002). It is clear that mutations within a single
gene can control a recognized Mendelian syndrome that includes CL/P as a hallmark
feature, and can also show consistent evidence of association in families with isolated, non-
syndromic CL/P. In particular, mutations in the IRF6 gene on chromosome 1q32 account for
most cases of Van der Woude Syndrome, an autosomal dominant syndrome (with a
prevalence of 1/50,000 among livebirths) involving CL/P generally accompanied by lip pits
in individuals carrying risk alleles. Polymorphic markers in IRF6 also show consistent
evidence of statistical association with isolated, non-syndromic CL/P in both case-control
and family based tests, suggesting common variants in this gene also influence risk, not just
rare mutations. Traditional genetic approaches such as linkage analysis using multiplex
families (i.e. those with two or more affected individuals) are effective in mapping causal
genes controlling Mendelian syndromes (and were critical in identifying IRF6 as causal for
Van der Woude syndrome). Meta-analysis of multiple linkage studies have identified several
regions of the genome that likely harbor causal genes controlling risk to non-syndromic CL/
P (Marazita et al., 2004, 2009). However, there is considerable locus heterogeneity among
these multiplex families used in these linkage studies, where different genes appear to be
acting in different families. Furthermore, only a modest fraction of isolated, non-syndromic
CL/P cases have any positive family history (i.e. most cases are from simplex families
where no other relatives are affected beyond the proband).

Genome wide association studies (GWAS) represent a useful study design for identifying
causal genes associated with polymorphic markers that tag unobserved high risk alleles
through linkage disequilibrium (LD), and this approach can be exploited to identify causal
genes in an unbiased genome wide context. GWAS have proven to be useful in identifying
novel genes (some of which may be causal) for complex and heterogeneous diseases
(McCarthy et al., 2008; Hindorff et al., 2009; Manolio and Collins, 2009). There have been
two GWAS of CL/P using population based study designs, both with cases and controls of
European ancestry (Birnbaum et al., 2009; Grant et al., 2009). Both of these studies
identified a novel region of 8q24 as strongly associated with risk to CL/P, but the markers
showing the strongest signal were not located in any known gene and in fact appeared to be
in a “gene desert”. Subsequent analysis of the German case-control data supplemented by
additional case-parent trios, strengthened evidence for two additional genes (VAX1 on
chromosome 10q25 and a region on chromosome 17q22 near NOG) (Mangold et al., 2010).
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A key problem with case-control studies is their susceptibility to confounding due to
population stratification which becomes critical when drawing cases from multiple,
genetically distinct populations. As part of the project International Consortium to Identify
Genes & Interactions Controlling Oral Clefts, we conducted a GWAS to identify genes
influencing risk to oral clefts, either directly, or through interaction with common maternal
exposures, using case-parent trios assembled from an international consortium. The case-
parent trio design, where the key genetic (allelic or genotypic) contrasts are within a family,
minimizes the potential for the above described confounding, and gives a more robust test
for association between markers (and potentially causal genes), and the outcome of interest.
Study subjects were recruited from 13 different sites in Europe, the US, China, Taiwan,
Singapore, Korea and the Philippines, and maternal exposures such as smoking and alcohol
consumption were recorded. In 2009, genotyping using the Illumina 610Quad array was
completed for more than 2000 case-parent trios. Analysis of the entire genome wide marker
panel using the allelic transmission disequilibrium test (Spielman et al., 1993; Spielman and
Ewens, 1996) yielded several regions of significance from this case-parent trio study (Beaty
et al., 2010). Similar to the findings of Birnbaum et al. (2009) and Grant et al. (2009), the
most significant signal was in the gene desert on chromosome 8q24, where markers well
removed from any known gene yielded strong signal of linkage and association. Further, two
novel genes (MAFB on chromosome 20 and ABCA4 on chromosome 1) achieved genome
wide significance.

The underlying rationale for GWAS is the assumption that common complex diseases are
attributable in part to allelic variants reasonably common in a population (“common disease,
common variant” hypothesis). And while GWAS have been very successful in identifying
hundreds of genetic markers associated with many different complex diseases, any
individual variant typically only represents a small increment in risk for a particular disease,
and together, they can usually explain only a small proportion of the familial clustering
(heritability) observed (Manolio et al., 2009; Eichler et al., 2010). The potential sources of
the “missing heritability” are manyfold, and much attention has for example shifted towards
assessing the effects of rare variants (with possibly larger effect sizes), which are poorly
tagged by standard genotyping arrays (Manolio et al., 2009; McClellan and King, 2010;
Dickson et al., 2010). Other possible explanations for the rather limited impact of individual
markers identified from GWAS include the presence of DNA copy number variants,
epigenetic effects, epistatis and gene-environment interactions, but also the ambiguity in the
definition of heritability and the potential role of environmental variables, and in the
instances of highly complex diseases, the potential difficulties in accurate phenotype
delineation. We are currently mining our oral cleft case-parent trio data to assess effects of
gene-environment interactions (with maternal smoking, alcohol consumption, and vitamin
supplementation as environmental variables, Wu et al., 2010; Beaty et al., 2011), epistatic
interactions (Wang et al., 2011), de-novo copy number events in the affected probands
(Scharpf et al., 2011), and parent of origin effects (Sull et al., 2008; Shi et al., 2011). In
addition, we recently obtained imputed genotypes for subjects of European and Asian
ancestry in these consortium data, generated with the software package BEAGLE
(Browning and Browning, 2009) using a HapMap Phase III reference panel, and we are
assessing effects of genetic distance and SNP selection biases on such imputed data, using a
newly developed genotypic transmission disequilibrium test that accommodates uncertain or
imputed genotypes (Taub et al., 2011; Murray et al., 2011).

A criticism of the commonly employed approaches for GWAS analyses is that they do not
use the full information available, and there remains the need to develop novel research
strategies beyond current genome-wide association approaches (Manolio et al., 2009). The
predominant strategy for analyzing GWAS data is to carry out SNP specific (marginal) tests
such as the Cochran-Armitage trend test, sort the results from the smallest to the largest p-
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value, and declare significance based on a Bonferroni correction to limit the family-wise
error rate at a fixed level (typically, α = 5%). The benefit of this approach is its
straightforward and reproducible implementation, but from both scientific and statistical
perspectives, this approach is sub-optimal. Enforcing a tight control on the family-wise error
rate, i.e. the probability of declaring at least one SNP significant that is not associated with
the phenotype, comes at the expense of truly associated SNPs which do not achieve
“genome wide” significance. This stringent type 1 error (false positive) control becomes
particularly problematic for complex disease GWAS, since typically many SNPs with very
modest effect sizes contribute to disease risk. Thus, many or most of those markers might be
missed, particularly when the sample size is small and/or the respective minor allele
frequencies are low. Further, controlling the family wise error rate via Bonferroni
completely ignores type 2 errors (false negatives), and employs a uniform threshold for
significance without considering power. Using such a constant threshold in a frequentist
setting leads to an inconsistent procedure, and viewed from a decision theory perspective,
leads to an inadmissible procedure (Wakefield, 2007, 2008, 2009). Possibly better suited
with regard to these criticisms are Bayes ranking procedures (Louis and Ruczinski, 2010).
This approach also ignores other possibly valuable information, for example findings from
prior linkage studies that could boost power to detect associations when properly taken into
account (Roeder et al., 2006, 2007). Other biological information available a priori concerns
genes and their respective roles in biological pathways, delineated from gene or protein
networks. Pathway-based approaches to jointly consider multiple variants and/or genes can
complement GWAS results, and even reveal completely new findings that would have been
missed when testing marginal associations alone, and thereby illuminate important genetic
contributions to complex disease (Baranzini et al., 2009; Eleftherohorinou et al., 2009;
Cantor et al., 2010). In this manuscript we employ the pathway-based approach proposed by
Wang et al. (2007) to analyze case-parent trios from our International Cleft Consortium.

2 Methods
A typical pathway-based analysis requires the selection of pre-defined pathways from an
existing data base such as KEGG (Kanehisa et al., 2010), GO (Ashburner et al., 2000; Gene
Ontology Consortium, 2010) or PANTHER (Thomas et al., 2003). Further required are
strategies to assign SNPs to genes, approaches to summarize the information available
within genes and pathways, and statistical methods for inference, valid with regards to type I
errors, coverage, etc. We were interested in pathways that contained genes previously
implicated in facial cleft linkage and association studies. In a benchmark study, Jugessur et
al. (2009) proposed such a list of 356 candidate genes that had shown some evidence of
playing a rule in facial clefting, included the previously reported genes TGFA and IRF6
among other promising candidate genes for clefts. The pathway-based analysis in this
manuscript was then carried out following the proposed procedure of Wang et al. (2007), a
modification of the gene-set enrichment analysis (GSEA) algorithm (Subramanian et al.,
2005). This method is implemented in the freely available software suite GenGen
(www.openbioinformatics.org/gengen/). In short, the approach can be described as follows:

1. Based on a list of biologically relevant genes (here, from Jugessur et al., 2009),
delineate pathways containing these genes (here, pathways identified by
PANTHER; Thomas et al., 2003). To avoid testing overly narrow or broad
functional categories, we limited ourselves to pathways containing at least 5, but
not more than 200 genes.

2. Map markers (SNPs) to genes. We included markers within 500kb of annotated
genes, since most enhancers and repressors fall within 500kb from recognized
genes, and most LD blocks are less than 500kb in size. SNPs located in a region
shared by two genes were mapped to both genes. Note that individual SNPs are
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rarely shared by two genes, however, sharing genes across pathways is more
common.

3. For each SNP the χ2 statistic and the p-value were calculated using the allelic
transmission disequilibrium test. The gene-wise statistic is defined as the highest
χ2 statistic among all markers within that gene.

4. For all N genes (G1,…,GN) in the analysis, rank the test statistics in a descending
order. Denote those as r(1),…,r(N).

5. A statistic called the “enrichment score” (ES) is calculated for each gene set (S)
defined by a pathway (cardinality NH). This statistic is defined as

where , and reflects the over-representation of significant genes
from the gene set S among all genes in the analysis. Citing Wang et al. (2007):
“The enrichment score, ES(S), measures the maximum deviation of concentration
of the statistic values in gene set S from a set of randomly picked genes in the
genome. Therefore, if the association signal in S is concentrated at the top of the
list, then ES(S) will be high.” Note that this test statistic can be understood as a
weighted Kolmogorov-Smirnov-like running-sum statistic (Hollander and Wolfe,
1999) giving higher weight to genes with large test statistics (see Wang et al., 2007,
for more details).

6. Since the enrichment score depends on the maximum test statistic, and thus the
number of markers per gene, a permutation procedure is carried out. The
transmitted/non-transmitted status for alleles at each marker are randomly shuffled,
and the enrichment scores for each gene set S is re-calculated. For a certain number
of permutations (here, n=1000 permutations), these enrichment scores are denoted
by ES(S, π), where π refers to the individual permutation. Then, a “normalized
enrichment score” (NES) can be calculated to to make gene sets directly
comparable:

7. These permutations are also used to calculate nominal p-values for each gene set
(pathway), simply as the proportion of ES(S, π) exceeding the observed enrichment
score ES(S). In addition, the family-wise error rate (FWER) can be controlled by an
adjustment procedure based on the “normalized enrichment score”. The FWER p-
value for a gene set can be calculated as the proportion of all permutations whose
highest NES score across all gene sets is higher than the observed NES score for
this particular gene set.

Since the FWER is a very stringent criterion, aiming to exclude any false positive results
(typically, at the expense of false negatives), the set of significant pathways after adjusting
for multiple comparisons this way can be small, or even empty. Thus, biologically relevant
information might be discarded if none of the gene sets exceeds the FWER criterion, but
signal is present in the data nonetheless, which would be evidenced by an enrichment of low
p-values, for example. The false discovery rate (FDR) is often employed to assess the
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expected number of true and false positives among a set of hypothesis tests declared
significant. Another approach to assess overall departure from randomness is Fisher’s
inverse χ2 test (Fisher, 1925). This approach derives a combined statistic from the p-values
of k independent hypothesis tests (p1,…, pk). Under the global null of no signal for any of

the hypothesis tests, the test statistic  asymptotically follows a χ2

distribution with 2k degrees of freedom. However, in the results presented here the
assumption of independence is clearly violated, since two or more pathways can contain the
same gene (and their markers). A second layer of permutations was carried out to
circumvent this issue (Figure 1). Similar to the above, the test statistic was based on the

nominal gene set p-values, defined as . Here, δ is a small constant to
avoid numeric problems in the inference, and in this application was chosen (ad-hoc) as
10−3. Note that the nominal p-values of each gene set were calculated using the initial 1000
permutations as reference group (Figure 1, left). To delineate the null distribution of this test
statistic T, a second layer of 1000 permutations was carried out by shuffling the transmitted/
non-transmitted labels for alleles at each SNP, and deriving enrichment and normalized
enrichment scores for each pathway. (Figure 1, right). For each of the new permutations,
gene set p-values are derived by comparing the enrichment scores to the same initial 1000
permutations that served as reference for obtaining the nominal p-values for the observed

data. That is, for each permutation , we calculate , which serves as
the null distribution for the observed T. The overall p-value can de derived as the proportion
of  that exceed T. The procedure for obtaining this exact p-value was implemented in the
statistical environment R (http://cran.r-project.org/).

3 Results
Case-parent trios used here originated from an international consortium (The Gene,
Environment Association Studies consortium, GENEVA) formed in 2007 by several
research groups to conduct a genome-wide search for genes influencing risk to oral clefts
using a case-parent trio design. A total of 5,742 individuals from 1,908 CL/P case-parents
trios (1,591 complete families with one or more affected probands, and 317 incomplete trios
where one parent was missing) were genotyped using the Illumina Human610-Quad v.1B
BeadChip at the Center for Inherited Disease Research (CIDR), one of the two genotyping
centers supported by the GENEVA consortium (Beaty et al., 2010). Genotype clusters for
each SNP were determined using the BeadStudio Module (version 3.3.7), and combined
intensity data from 99.2% of samples were used to define clusters and call genotypes. Both
the mean SNP call rates and the mean sample call rates were over 99.8%. Genotypes were
released for 589,945 SNPs (99.56% of those attempted). Duplicate samples from both
HapMap and study subjects were included on each plate, and reproducibility rates in the raw
data were 99.99% among 161 duplicated subjects.

Individuals were dropped if they had 1) unacceptably high rates of missing genotype calls
(larger than 5%), or 2) unacceptably high rates of Mendelian errors between parents and
children (larger than 5%). Four categories of quality control flags for all autosomal SNPs
were set: 1) unacceptably high rates of missing genotype calls (larger than 10%), 2) low
minor allele frequency (minor allele frequency less than 1%), 3) unacceptably high rates of
Mendelian errors between parents and offspring (larger than 5%), and 4) deviation from
Hardy-Weinberg equilibrium in founders (p<0.00001). As described in Beaty et al. (2010),
569,294 autosomal SNPs were available for analysis. The GWAS yielded several genome-
wide significant hits, in previously implicated and novel genes, but also various intergenic
regions (Table 1).
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A total of 51 pathways were identified by PANTHER (Thomas et al., 2003) that included at
least one of the 356 oral cleft candidate genes (Jugessur et al., 2009). Among those
pathways, 42 contained between 5 and 200 genes. DNA from 5742 individuals (2589
affected oral cleft probands, and 3153 parents) of predominantly Asian and European
descent was collected from 13 different populations (Beaty et al., 2010). For the pathway
analysis, a total of 40,208 autosomal markers (subject to quality control constraints, see
above) located in 1564 genes (or within 500kb up- or downstream from a gene), contained
in at least one of the 42 pathways, were considered. The test statistics relevant for pathway
analysis were derived from 1,604 complete CL/P case-parent trios (Table 2).

Analysis of the entire genome wide marker panel yielded several regions of significance
from this case-parent trio study (Beaty et al., 2010). However, the most significant signal
was in a gene desert on chromosome 8q24, where markers well removed from any known
gene yielded the most significant p-values. Further, two novel genes (MAFB on
chromosome 20 and ABCA4 on chromosome 1) achieved genome wide significance, but
since these were not recognized candidate genes for CL/P listed by Jugessur et al. (2009),
they were not included in this pathway analysis. The one recognized candidate gene for CL/
P, IRF6 on chromosome 1q32, was not included in any of the pathways identified in the
PANTHER data base, and so did not get included in this analysis. One marker included in
the pathway analysis reached genome-wide significance in the original GWAS (rs11538422
located in gene PDK1, belonging to the TCA cycle, with a p-value of 6.7×10−10). The
lowest individual p-value after this was 1.7×10−6 for SNP rs704574 in the COL8A1 gene,
contained in the “Integrin signaling pathway”.

We carried out the pathway-based analysis following the procedure proposed by Wang et al.
(2007), as described in the Methods section, and found several pathways exhibiting
nominally significant (p < 0.05) NES scores (Table 3). However, none of these pathways
could be considered significant when controlling the family-wise error rate at significance
level 5% via the Bonferroni correction (pthreshold = 0.05/42 ≈ 0.0012), or the less
conservative permutation based FWER control. Noticeably, three out of the five pathways
with the lowest multiple comparsion corrected p-value (i.e., the Angiogenesis, Huntington
disease, Cadherin signaling pathways) were among the largest pathways, containing up to
173 genes for the Angiogenesis pathway. The most “significant” pathway (Cytoskeletal
regulation, pFWER = 0.212) contained 82 genes. Among the smaller pathways, the TCA
cycle had one of the lowest nominal p-values (p = 0.03) but was not among the top ten after
multiple comparisons correction via permutation tests pFWER = 0.983. However, the
distribution of the observed p-values appears to show a clear deviation from a Uniform (0,1)
which would be expected under the global null of “no signal in the data” (Figure 2). This is
also reflected in the respective q-values (Storey and Tibshirani, 2003) of these pathways: for
example, 13 pathways are selected at a false discovery rate of 20% (Table 3).

To further assess whether or not this deviation can be explained by chance alone, we carried
out a second layer of permutation tests, as described in the methods section. The combined
test statistic derived from the p-values (Figure 2) was compared to those derived from an
additional 1000 permutations, letting the initial 1000 permutations serve as reference (Figure
3). Only 29 out of these 1000 permutations yielded a more extreme test statistic than the
observed data, and thus, we can quote an estimated p-value of 2.9%. While this pathway-
based analysis did not yield a clear significant result for any particular pathway, we can
conclude that one or more of the genes and pathways considered here likely do play a role in
oral clefting.
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4 Discussion
In this manuscript, we presented a pathway-based approach to analyze case-parent trios from
our International Cleft Consortium. The analysis is part of our ongoing efforts to find
additional signal in the genome scans of the CL/P probands and their parents, beyond the
hits reported in Beaty et al. (2010). Assessing the risk of oral clefts, we detected the
presence of interactions between candidate genes and environmental factors such as
maternal smoking and maternal alcohol consumption (Wu et al., 2010; Beaty et al., 2011),
reported on parent of origin effects (Sull et al., 2008; Shi et al., 2011), and detected an
epistatic interaction between markers of two candidate genes (Wang et al., 2011).
Unfortunately, the pathway-based analysis did not yield a clear result, as none of the
pathway enrichment tests was significant after multiple comparisons correction.
Nonetheless, we believe the analysis has generated some novel clues about the genetic
under-pinning of oral clefts. We observed a departure from randomness, indicating one or
more pathways investigated here is involved in these biological processes. Figure 2 and in
particular Figure 3 suggest that these could actually be a dozen or so, though we readily
admit that this statement is not completely on solid quantitative grounds. There are very
limited clues in the literature how the pathways reported here might relate to oral clefts. An
exception is TP63, a gene that encodes a member of the p53 family of transcription factors,
and belongs to the Huntington disease pathway (#4 in Table 3), the p53 pathway feedback
loops 2 (#10), and the p53 pathway (#13). Mutations in the TP63 gene have been implicated
in several Mendelian malformation syndromes that can include CL/P, and are the cause for
Split-Hand/Foot Malformation (Ianakiev et al., 2000) and Ankyloblepharon-Ectodermal
Dysplasia-Clefting syndrome (McGrath et al., 2001), and limb-mammary syndrome (van
Bokhoven et al., 2001).

We note one shortcoming of such a gene-set based approach is the fact that for every
genotyping platform there will be genes not covered by the respective probes. The
distribution of these probes across the genome is mainly driven by considerations of
coverage (loosely speaking, the average proportion of the variation in the genome that can
be captured with these probes), and while there is some enrichment on some of the platforms
for exonic regions, a fair fraction of genes will not be tagged (in our case 238 genes could
not be used due to the lack of markers). Even worse, some pathways such as the folate
synthesis pathway containing only six genes and thought to be related to CL/P, could not be
assessed at all. These issues will likely be alleviated with the advances in whole exome and
whole genome sequencing studies. However, from a statistical vantage point, the vastly
different number of genes within pathways and SNPs within genes raise a flag. In the
approach of Wang et al. (2007), each gene is represented by its most significant marker, and
thus, larger genes have higher gene-wise test statistics on average. When permutation tests
are correctly employed, the significance levels of the hypothesis tests are protected.
However, while we do not have to worry about the type I error, the type II error is of
concern, and it is virtually impossible to know precisely in advance what the power of the
procedure will be, and how it could be improved. The same concern also applies for the
vastly differing number of genes per pathway. We anticipate further development of
pathway based approaches, possibly those incorporating other biological data such as
transcript levels from RNAseq, will be a highly active research area.
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Figure 1.
The permutation procedures used in the analysis. Initially, 1000 permutations were carried
out and served as reference group to calculate a nominal p-value for each of the S = 42 gene
sets (left). A test statistic based on the distribution of these nominal p-values, similar to the
one in Fisher’s inverse χ2 test, was used to assess overall signal in the data. Since gene sets
can share some of the same genes, the p-values are not independent, and a second layer of
permutations (1000 iterations) was carried out to delineate the null distribution of the test
statistic, taking the dependency between pathways into account (right). For each of these
iterations in the “second layer” of permutations, the pathway p-values (that form the basis of
the respective test statistic) were derived using the same null distributions as in the observed
data (indicated by the “as reference” arrow in the upper right).
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Figure 2.
Histogram of the p-values for the “pathway significance” (Table 3). While none of the p-
values withstands a Bonferroni correction or family-wise error control via permutation tests,
there appears to be an enrichment among pathways showing low p-values, compared to a
Uniform (0,1) distribution expected under the null.
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Figure 3.
[Left panel] The p-values (shown on the −log10 scale) from the permutation test. Each thin
dark line represents one permutation. The p-values for the 42 gene sets, derived in each
permutation, are ordered and shown from least significant (left) to most significant (right).
The thicker white line shows the −log10 p-values for the observed data (Table 3). While the
most significant nominal p-value can be reasonably explained by chance, there appears to an
enrichment of low p-values in the distribution of the observed data, even compared to the
permuted scores. This is quantified in the [Right panel]. Each of the 1000 permutation is
summarized by calculating a combined test statistic from the 42 permuted gene-set p-values,
and the distribution of these combined test statistics serves as empirical null distribution for
the observed test statsitic, shown as a vertical bar. Only 29 of the permuted test statistics
exceed the observed test statistic, yielding a p-value of 2.9%.
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Table 2

The number of complete CL/P trios used in the data analysis, split by ancestry and gender of the proband. A
few families of European descent had more than one affected offspring, which resulted in more than one
complete trio for those families. Since the association test assesses the departure from independent assortment,
the respective allele transmission and contributions to the test statistic are independent.

Ancestry Proband CL/P trios Total Families

European Male 431

Female 250 681 668

Asian Male 582

Female 313 895 895

Other Male 16

Female 12 28 28
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