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Abstract
We here study the predictability of eye movements when viewing high-resolution natural videos.
We use three recently published gaze data sets that contain a wide range of footage, from scenes of
almost still-life character to professionally made, fast-paced advertisements and movie trailers.
Inter-subject gaze variability differs significantly between data sets, with variability being lowest
for the professional movies. We then evaluate three state-of-the-art saliency models on these data
sets. A model that is based on the invariants of the structure tensor and that combines very generic,
sparse video representations with machine learning techniques outperforms the two reference
models; performance is further improved for two data sets when the model is extended to a
perceptually inspired colour space. Finally, a combined analysis of gaze variability and
predictability shows that eye movements on the professionally made movies are the most coherent
(due to implicit gaze-guidance strategies of the movie directors), yet the least predictable
(presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks
to comparatively evaluate eye movement prediction algorithms.
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Introduction
Humans constantly move their eyes to sample the visual input with the highresolution centre
of the retina, and where they look is tightly linked to the aspects of a scene they are
consciously processing. Despite the obvious importance of oculomotor guidance strategies,
we still do not have a full understanding of how we select upcoming saccade targets from
the rich visual input in everyday vision. For very simple stimuli, such as coloured letter
arrays often used in visual search experiments, the input may adequately be described in
terms of simple visual features such as colour or corners vs. junctions, and a singleton in one
feature dimension may immediately “pop out” and capture attention and gaze (Wolfe, 1998).

Following this observation, a vast body of research has modelled saccade target selection in
more complex visual scenes based on low-level “saliency” (Itti, Koch, & Niebur, 1998,
Tatler, Baddeley, & Vincent, 2006, Bruce & Tsotsos, 2009, Meur, Callet, Barba, & Thoreau,
2006, Gao & Vasconcelos, 2009, Itti & Baldi, 2006, Zhang, Tong, Marks, Shan, & Cottrell,
2008, Kienzle, Franz, Schölkopf, & Wichmann, 2009, Judd, Ehinger, Durand, & Torralba,
2009). Typically, a number of easily computable visual features such as luminance, contrast,
or orientation are extracted for every location, and those locations that differ in one or more
of these features from their neighbourhood are assigned higher saliency values. Then,
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saccade targets can be picked from the resulting saliency map, e.g. by an iterative winner-
takes-all operation with subsequent inhibition of previously fixated locations.

These models are appealing for at least two reasons. First, it has been shown repeatedly that
image regions with higher saliency are also more likely to be fixated (Reinagel & Zador,
1999, Parkhurst & Niebur, 2003); in other words, eye movement behaviour can be predicted
(to some extent) based on computationally tractable low-level image features. This is
particularly true for free viewing experiments, i.e. in the absence of high-level tasks
(Einhäuser, Rutishauser, & Koch, 2008). It is important to note, however, that even the best
models under the best of circumstances are far from perfect predictors, and the inter-
observer agreement as a likely upper ceiling for prediction performance is also significantly
lower than 100 per cent (Peters, Iyer, Itti, & Koch, 2005).

The second reason for the appeal of saliency models is their conceptual proximity to the
biology of the primate visual system, where dedicated circuits in the early stages encode
low-level features such as oriented edges, corners, motion, or colour (Wandell, 1995).

The majority of research on saliency has used static images as stimuli. While static real-
world scenes are undoubtedly a much more realistic and relevant input to the visual system
than traditional, impoverished psychophysical stimuli, they still crucially lack dynamic
information. Whenever something or someone moved in the bushes, our ancestors probably
were well advised to quickly determine the source of this motion, whereas static image
regions could be examined at leisure. Indeed, eye movements when viewing static images
become more idiosyncratic than on dynamic content after only a few seconds of viewing
time (Dorr, Martinetz, Gegenfurtner, & Barth, 2010).

Therefore, the number of studies that model eye movement behaviour using dynamic natural
scenes has been growing recently, comprising bio-inspired, information-theoretic, machine-
learning, and signal processing based approaches (Itti, 2005, Tatler, Baddeley, & Gilchrist,
2005, Meur et al., 2006, Kienzle, Schölkopf, Wichmann, & Franz, 2007, Vig, Dorr, & Barth,
2009, Zhang, Tong, & Cottrell, 2009, Mahadevan & Vasconcelos, 2010, Guo & Zhang,
2010, Mital, Smith, Hill, & Henderson, 2011). Unfortunately, the problem of what
constitutes “naturalness” of a scene is only exacerbated in the dynamic case relative to static
images. The space of possible image sequences is even larger due to the combinatorial
explosion of adding another dimension. Furthermore, where databases of hundreds of
calibrated images exist that can be displayed in quick succession, movies are typically
longer and harder to come by, so fewer can be presented in one experimental session.
Several studies have used professionally produced stimuli such as Hollywood movies or TV
shows, but these are often carefully arranged in order to direct attention to specific objects of
interest, and contain cuts that do not typically occur under normal viewing conditions.

The choice of the optimal stimulus set notwithstanding, the concept of saliency has been
also challenged fundamentally; for a recent review, see Tatler et al. (2011). Even though
prediction performance is significantly above chance in virtually all studies, current low-
level models seem to hit a ceiling at an ROC score of around 0.7, so that a large part of eye
movement selection remains unexplained; when high-level task demands or socially
meaningful stimuli such as faces are introduced, prediction performance gets even worse
(Einhäuser, Spain, & Perona, 2008, Einhäuser, Rutishauser, & Koch, 2008). Because blank
surfaces contain no information at all, but reacting to sudden looming onsets might be
crucial for survival, it is intuitively plausible that image features can guide attention.
However, it simply may be that under many conditions, saliency is not causal for eye
movements, but merely correlated with the presence of semantically meaningful objects.
Without low-level properties such as edges or a texture gradient, objects cannot be
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distinguished from their surround, but the magnitude of these properties – once above a
certain threshold – may be less crucial.

More recent, complex saliency models may also suffer from too many free parameters that
were introduced in the attempt to cover all possible factors or low-level image features that
might potentially influence saccade target selection. On the other end of the complexity
spectrum, Vig et al. (2009, 2012) used the geometric invariants of the structure tensor to
predict eye movements, and outperformed state-of-the-art saliency models. The invariants
simply encode the amount of local change in a signal and thus yield very generic video
representations. Based on these representations, prediction performance was improved upon
even further by employing machine learning algorithms.

Recent results by Vig et al. (2011) also indicate that the contribution of saliency to fixation
selection is not entirely straightforward even in naturalistic videos. These authors cross-
correlated in time analytical dynamic saliency maps with “empirical” saliency maps that
were based on observed eye movements. For less natural footage, such as video games or
professionally cut material, the peak of the correlation function occurred at a shift of about
133 ms between a dynamic event and a gaze response, similar to classical laboratory
experiments where observers can react to unpredictable events (such as the sudden
appearance of a saccade target marker) only with a latency of 150–250 ms. In more natural,
uncut outdoor scenes, however, the peak of the correlation function occurred at around 0 ms,
which implies that observers have an internal model of natural environments that allows
them to predict where informative image regions will be after the next saccade, and that
truly unpredictable events are rare in the real world. Predictive gaze behaviour becomes
even more prominently visible when subjects truly interact with an environment, e.g. in
everyday tasks such as tea- or sandwich making, or sports (M. F. Land & Hayhoe, 2001, M.
F. Land, Mennie, & Rusted, 1999, M. Land & McLeod, 2000).

Eye movement behaviour is further affected by oculomotor constraints and peripheral
resolution limits. Horizontal saccades are more frequent than vertical ones, which in turn are
more frequent than oblique saccades, independent of the visual input, and the amplitude
distribution is heavily skewed towards medium-sized saccades (Tatler & Vincent, 2009); see
also Foulsham and Kingstone (2012) in this special issue.

Even if the contribution of saliency to saccade target selection is mainly of a correlative
rather than causal nature, saliency models can still be of practical value. For example, more
than a million images and three million video frames are uploaded every minute to two
particular web sites alone, and to evaluate them all with human observers is impossible.
Knowledge of where observers will look, however, can be beneficial for e.g. video
compression (Itti, 2004, Nyström & Holmqvist, 2010, Li, Qin, & Itti, 2011), or determining
what message will ultimately be conveyed by visual material.

In this manuscript, we shall investigate three important aspects of modelling eye movements
in dynamic natural scenes. First, we will look at several recently made available data sets of
eye movements that were recorded while subjects watched high-resolution videos, and we
will compare the inter-observer agreement of gaze patterns in each of these data sets.
Because of the vast dimensionality of the space of natural movies, even large video
collections cannot be representative, and consequently we find large differences between the
data sets. These differences indicate that a fair comparison of eye movement prediction
methods requires standardized benchmark protocols, similar to the ones used in the machine
learning and computer vision communities, e.g. (Laptev, Marszalek, Schmid, & Rozenfeld,
2008, Everingham, Van Gool, Williams, Winn, & Zisserman, 2010).
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As a first step towards such goal, we evaluate three classes of state-of-the-art saliency
models on all data sets. The range of eye movement predictability for individual movies
spans cases where performance is essentially random to almost perfect performance. We
find that even though prediction performance generally is highly correlated for the different
models, some models still consistently outperform others.

Finally, we investigate the relationship of eye movements variability and predictability.
Inter-observer agreement of eye movement patterns has been studied for different stimulus
types (Peters et al., 2005, Dorr et al., 2010, Mital et al., 2011), and some types such as
engaging Hollywood movie trailers evoke particularly high agreement (i.e. low variability).
This could be due to two different effects: Strong low-level saliency, such as rapid motion or
a very shallow depth of field, may attract attention; alternatively, gaze coherence may be
induced by the semantic meaning of a scene. In the former, but not in the latter case, we
would expect a positive correlation of eye movement coherence and feature-based prediction
performance.

Methods
Eye movement data sets

We analysed three recent, publicly available data sets of high-resolution video material with
accompanying eye movement recordings. Our own data set (Dorr et al., 2010) comprises 18
videos of about 20 s duration each at HDTV resolution (1280 by 720 pixels, 29.97 frames
per second). Clips were taken in outdoor settings around Lübeck with a camera that was
fixed in all but two recordings (where the camera followed animals). Fifty-four observers
watched these clips while their eye movements were tracked with an EyeLink II system
running at 250 Hz.

The VAGBA database (Li et al., 2011) contains data from 14 observers watching 50 stimuli,
in- and outdoor scenes captured with a static camera, of 10 s duration each while their gaze
was recorded at 240 Hz with an iScan eye tracker. For our analysis, we downsampled videos
from their original 1920 by 1080 pixels resolution (30 fps) to 1280 by 720 pixels.

Video stimuli in the DIEM database (Mital et al., 2011) have different resolution and aspect
ratio, but a fair comparison between stimuli requires a common coordinate system.
Therefore, only videos that differed no more than 5% in either dimension from a resolution
of 1280 pixels horizontally and 720 pixels vertically were used in our analysis and centred in
a 1280 by 720 frame; border pixels were taken from the nearest stimulus pixel to avoid hard
image transients. From this set of 47 movies, two were excluded from the analysis because
they had less than 40 eye movement recordings (mean 69.6, σ=48.5 recordings); for the
variability analysis, a constant number of training recordings was required. Two further
movies were discarded because their video content was contained in the database twice
(with and without soundtrack). At 30 frames per second, videos had an average duration of
102.6 s (σ=39.6 s). In the original recordings, eye movements were monitored at 1000 Hz
with an EyeLink 1000 tracker, but the publicly available data was reduced to one sample per
video frame (i.e. at 30 Hz). Contrary to the other two data sets, DIEM contains
professionally cut material such as movie trailers, documentary footage, TV shows, etc.

Gaze analysis
Saccadic landing points were used to analyse those image features that triggered an eye
movement. The use of saccadic landing points rather than raw gaze samples potentially
ignores the effect of different fixation durations (e.g. see Nuthmann and Henderson (2012)
in this special issue), but is computationally more tractable. The DIEM and VAGBA data
sets already contain information on detected saccades. For the GazeCom data set, saccades
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were extracted using a dual-threshold velocity-based algorithm (Dorr et al., 2010) where raw
gaze velocity had to exceed a fairly high threshold (150 deg/s) first for noise robustness, and
on- and offsets were then detected using a lower threshold (19 deg/s). Because the different
temporal resolution of the three data sets could influence the analysis of gaze variability, raw
data were lowpass-filtered and downsampled to one sample per video frame in VAGBA and
GazeCom to match the resolution of DIEM.

Eye movement prediction
For the prediction of eye movements, we used three different saliency models. The source
code for the Itti (Itti et al., 1998, Itti & Baldi, 2006) and the SUNDAy (Zhang et al., 2009)
saliency models is publicly available (at http://ilab.usc.edu/toolkit and
http://mplab.ucsd.edu/~nick/NMPT, respectively) and we will only briefly describe their
function here. Default parameters were used for these models. Our own model, which is
based on the geometrical invariants of the structure tensor, has previously been described for
grayscale videos in (Vig et al., 2009, 2012); we here use it to operate in two different colour
spaces.

Itti Maxnorm model—Itti's Maxnorm model is an implementation of the classical
saliency map of Koch and Ullman (Koch & Ullman, 1985). In its first, preattentive phase,
various low-level features, such as intensity, orientation, colour, flicker, and motion, are
extracted in parallel on multiple scales. Then, from the combination of centre-surround
feature maps (so-called conspicuity maps), a master saliency map is generated, on which
biological mechanisms, such as winner-takes-all competition and inhibition of return, bias
the selection of the next location to be fixated. Different fusing schemes of the individual
feature-specific saliency maps have been proposed. Here we use the Maxnorm
normalization scheme, in which the fusion of conspicuity maps is based on normalized
summation.

SUNDAy model—In SUNDAy, saliency is computed as the self-information of low-level
visual features. In the context of eye movement prediction, self-information quantifies the
intuitive assumption that novel items draw human gaze. In the formulation of (Zhang et al.,
2009), self-information and the probability of the presence of a visual feature are inversely
proportional, i.e. rarer features are more informative. As opposed to existing approaches,
feature statistics are here learned from a large collection of natural videos, and are not based
on movies in the three data sets analysed here.

Geometric invariants of the structure tensor—Grayscale videos are signals that can
change in any of their three dimensions. Due to the spatio-temporal correlations in natural
scenes, however, natural videos often locally change little or at all: neighbouring pixels (in
space and time) typically have the same or similar intensity. The intrinsic dimensionality of
an image region (Zetzsche & Barth, 1990) formalizes and quantifies this observation and
describes the number of degrees of freedom that are used locally, see Fig. 1. It can be shown
that image regions with an intrinsic dimension (inD) of less than two, such as uniform
regions and straight edges, are redundant (Barth, Caelli, & Zetzsche, 1993, Mota & Barth,
2000), and that regions with higher iD are not only more informative, but also less frequent.
As a consequence, encoding only image regions of higher iD is an example of efficient
sparse codes, which might be a generic mechanism in neural systems (Field, 1987,
Olshausen & Field, 1996, Barth, Dorr, Vig, Pomarjanschi, & Mota, 2010).

The intrinsic dimensionality of an image region can be computed by several methods, and
we will here describe the approach based on the structure tensor, which is a common tool in
computer vision (Jähne, 1999). For every pixel, the partial spatio-temporal derivatives are
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taken (typically, after an appropriate low-pass filter operation to increase noise robustness;
in this paper, we used a five-tap binomial filter), and the products of all possible pairs of the
derivatives fx, fy, ft are computed. Because natural videos contain not only grayscale
information, but q colour channels, this first requires the definition of a suitable scalar
product for vectorial pixels, and we here use

for vectors

The ak are weights that can be used to adjust the relative importance of individual colour
channels. We here perform the saliency computations in two different colour spaces that
both have one luminance channel and two channels of colour opponency information. The
first, straightforward choice is the canonical colour space for video files, Y'CbCr; the second,
Lab, is optimized towards the human visual system and is perceptually uniform (Poynton,
2003). In both colour spaces, the two colour opponency channels have much smaller
dynamic range than the luminance channel, and larger akfor these channels can compensate
for this difference; we here used the inverse of the channel's mean energy.

Finally, the products of derivatives are smoothed with a spatio-temporal low-pass filter ω,
here chosen to be five-tap spatio-temporal binomials, and we arrive at the structure tensor J:

.

The intrinisic dimensionality can now be computed based on the eigenvalues λi of J, or,
alternatively, on its minors. Those pixels where the geometric invariants H, S, or K are non-
zero denote regions of at least iD one, two, or three, respectively:

Put in less mathematical and more intuitive terms, uniform regions that do not change in any
direction are intrinsically zero-dimensional (i0D, no response in H, S, or K); at a static edge,
the signal changes only in one direction orthogonal to the edge and is thus i1D (response in
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H), and static corners are i2D (response in H and S). Temporally transient corners change in
all possible directions and are i3D (response in H, S, and K). It should be noted, however,
that these correspondences are not necessarily perfect in complex natural scenes because of
geometric distortions, camera noise, and small camera motions, see Fig. 1.

The bandwidth of the derivatives constrains feature extraction to a narrowband spatio-
temporal scale, but natural scenes are characterized by a very wide distribution of spatio-
temporal frequencies. We therefore computed the invariants H, S, and K on each level of a
spatio-temporal Gaussian pyramid that was created by iteratively low-pass filtering and
downsampling the input video. For the DIEM and the GazeCom data sets, we created a
pyramid with five spatial and five temporal scales; for the shorter movie clips in the
VAGBA data set, the temporal border effects would have rendered most of the data
unusable, so that we computed a five-by-three pyramid only.

Even the invariants computed on only a single scale can be used as the equivalent of a
saliency map. However, better performance can be achieved by learning the structural
differences of fixated and non-fixated image patches using machine learning techniques. In
principle, one could directly feed the pixels of image patches (or movie sub-volumes) into
an automatic classifier, where patches that were fixated by human observers are assigned a
positive class label, and randomly selected, non-fixated patches are assigned a negative
label. In practice, however, the curse of dimensionality renders this approach impossible,
because the required number of dimensions grows with the number of pixels. We therefore
pooled the feature energy es,ton each spatio-temporal scale s,t in a spatial 2.4 by 2.4 degree
(for GazeCom and VAGBA) or 1.2 by 1.2 degree (for DIEM) neighbourhood around
fixation; these optimal window sizes relate to the dominant scale and the amount of clutter
in each data set and were thus inferred separately by cross-validation:

with Ws, Hs the window size in pixels at spatial scale s, t the temporal scale, and I the
feature map (i.e. one of the geometrical invariants H, S, or K).

Furthermore, randomly selecting negative examples overestimates predictability because of
the centre bias of both the photographer and the subjects. We shuffled scanpaths from other
movies to generate negative examples, thereby maintaining a constant spatio-temporal
distribution of fixations in the two classes.

Finally, the set of feature energies on all spatio-temporal scales at video location pi together
with a class labelli

was fed into a standard classification algorithm. We used a soft-margin Support Vector
Machine (Chang & Lin, 2001) that fits the optimally separating hyperplane through the
training data in a feature space whose dimensionality was reduced to the number of spatio-
temporal scales by the energy pooling. Optimal parameters were found by cross-validation
on a training set (two thirds of the data for the larger sets VAGBA and DIEM; all movies
but one for GazeCom); prediction performance is reported as the area under the curve
(AUC) for the receiver-operating characteristic for the remaining, test data that was
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previously unseen by the classifier. This procedure was repeated until each movie had been
part of the test set once and thus received a prediction score.

Variability analysis
Unless observers look at the same set of locations in exactly the same order, it is difficult to
assess the (dis-)similarity of two scanpaths. Depending on the task at hand and the visual
stimulus, the minimum spatio-temporal distance or change in order of fixations that gives
rise to a meaningful difference may not be the same. We here use the Normalized Scanpath
Saliency (Peters et al., 2005) extended to the dynamic domain (Dorr et al., 2010), which is
based on a superposition of spatio-temporal Gaussians at each gaze sample (note that for this
analysis, raw gaze samples instead of saccades are used).

For each movie, N observers i=1,…,N were chosen randomly as a training set, and a spatio-
temporal Gaussian (σx,σy=64 pixels, σt=33 ms) centred around each of their gaze samples

 was placed in a fixation map F:

with

F was subsequently normalized to zero mean and unit standard deviation to obtain an NSS
map N, and the NSS score was computed as the mean of the NSS map values at the gaze
samples of a test observer k,

This was repeated for 500 randomly drawn realisations of subjects into training and test sets.

Results
Prediction performance for the different saliency models on all data sets is listed in Table 1,
where subscripts Y and L denote the colour spaces Y'CbCr and Lab, respectively. Several
patterns clearly emerge. First, the predictor based on the geometric invariant K performs
best on all three data sets; a paired Wilcoxon's test over individual movies shows the
difference to be statistically significant at p<<0.01 for all inter-model comparisons except
for S (both SY and SL) and SUNDAy, which are not significantly different. Second, the
choice of colour space has a significant impact on predictability. Even though Y'CbCr and
Lab are conceptually similar, the perceptually uniform Lab space improves results for
GazeCom and VAGBA, but decreases predictive power for DIEM. This effect is in line with
the overall pattern that performance differs significantly for the three data sets. On the
professionally made footage of the DIEM data set, predictability based on low-level features
is worst. Better prediction is achieved for the GazeCom and VAGBA data sets, where
movies were recorded with a static camera in essentially random in- and outdoor scenes.
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In Fig. 2, we plot prediction performance for all movies from the three data sets combined
for selected pairs of saliency models. We do not show all possible pairs of models because
the invariants H, S, and K form sub- and superset relationships, respectively. For example,
SY responds to intrinsically at least two-dimensional features and therefore is a superset of
KY, which responds to i3D features; as a consequence, their correlation is almost perfect
(correlation coefficient 0.923).

Despite different absolute performance for the whole data set, performance on the individual
movies is correlated also across different classes of saliency models. The Itti model is
modestly correlated with e.g. SUNDAy and K (correlation coefficient 0.491 and 0.513,
respectively), but SUNDAy and K are highly correlated with a coefficient of 0.901.

Empirical cumulative distribution functions of the Normalized Scanpath Saliency in the
three data sets are shown in Fig. 3. Inter-subject gaze variability is highest, i.e. NSS is
lowest, in the GazeCom data set that contains both some relatively inanimate as well as very
cluttered scenes, e.g. a boat in the distance or a busy roundabout seen from a church tower.
Videos in the VAGBA set were also recorded with a static camera in everyday situations,
but occasionally show people interacting with, i.e. posing in front of, the camera, which
leads to a very high gaze coherence. On average, the highest gaze coherence can be found in
the DIEM data set with its professionally made advertisements and Hollywood-style
material. All pairwise comparisons with a Kolmogorov-Smirnov test show statistically
significant differences at p<0.001.

Finally, Fig. 4 shows a scatterplot of gaze predictability for individual movies, based on KY,
against gaze coherence. The solid lines depict separate linear fits for the three data sets. For
the two non-professional data sets (GazeCom and VAGBA, black and red symbols), gaze
coherence is positively correlated with predictability, i.e. less variable eye movements are
easier to predict based on low-level image features alone. Removal of those six movies from
the VAGBA data set that show faces directly turned towards and interacting with the
camera, and which have the highest NSS scores, leads to a remarkable result (dashed line in
Fig. 4). The slopes of the fits for the two non-professional data sets are now almost identical
(0.00176 GazeCom, 0.00179, VAGBA without outliers; p<0.08 and p<0.02, respectively).
For DIEM, however, eye movements on movies with greater gaze coherence are less
predictable; the negative slope is not statistically significant, though.

Discussion
In this paper, we have investigated some aspects of eye movement predictability and
variability on natural video data sets. We analysed three data sets of highresolution videos
that recently were made publicly available and we found large differences in eye movement
behaviour between data sets. This finding replicates previous research that professionally
edited material elicits different gaze patterns than more naturalistic stimuli without cuts or
deliberate gaze-guidance techniques, such as placing single objects of interest free of
distractors at shallow depth of field (Dorr et al., 2010, Vig et al., 2011, Mital et al., 2011).

We then evaluated the predictability of eye movements, using several state-of-the-art models
of saliency and two different colour spaces. Doing so on several data sets is especially useful
because this approach tests how well a model generalizes to arbitrary input data; repeatedly
running and fine-tuning a model on one particular data set might lead to overfitting. Indeed,
we found that a conceptually very simple model based on the invariant K of the structure
tensor consistently outperformed the more complex Itti and SUNDAy models. Even the
invariant H, which very generically describes the amount of signal change in any dimension,
performs better than the Itti saliency model and comparably to the SUNDAy model.
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However, the absolute differences between models are relatively small, and their
performance is highly correlated, i.e. videos that can be predicted well with one saliency
model will also be predicted reasonably well with another model. Of particular interest is the
almost perfect correlation between SUNDAy and K (correlation coefficient 0.901). This
indicates that SUNDAy uses good features to predict eye movements already, but K in
combination with machine learning achieves superior performance by optimizing parameters
such as thresholds to the particular data set. Overall, these results question the assumption
that more complex models of low-level saliency can close the gap between the current and
perfect prediction performance.

The causal link between image saliency and eye movements that has been put forward
previously has recently also come under more fundamental criticism (Tatler et al., 2011).
For many practical purposes, however, the distinction between low-level features and high-
level, semantic factors might be a moot point. For example, the remarkable ability of human
observers to very rapidly and pre-consciously saccade towards static images of animals
(Kirchner & Thorpe, 2005, Drewes, Trommershäuser, & Gegenfurtner, 2011) indicates that
reliable relationships between low-level features and ecologically relevant objects exist.
Even more so, under natural, i.e. dynamic conditions, motion is tightly linked to
semantically meaningful objects precisely because the ability to move makes predator or
prey relevant. Conversely, the absence of low-level features under natural conditions
typically also implies the absence of coherent objects. We would therefore hypothesize that
the low-level features at a given time determine a set of potential saccade targets from which
the actual saccade target is selected based on the history of previous saccades and on simple
mechanisms such as inhibition of return and with a task-specific bias (for a population
averaging account of saccade selection in visual search, also see Zelinsky (2012) in this
special issue).

In a further analysis, we studied the relationship between predictability and variability of eye
movements. Previous work by Mital et al. (2011) showed that gaze samples in often-fixated
regions (dense gaze clusters) were better predictable. Here, we computed the correlation of
predictability and gaze coherence not at the level of individual gaze samples, but for entire
video clips. For the two more natural data sets GazeCom and VAGBA, we also found a
positive correlation; in other words, image regions that draw many fixations are more
distinct from non-fixated control regions in their low-level features than image regions that
are fixated less often. This result would imply that eye movements are at least partially
determined by low-level saliency. Remarkably, the slope of a linear fit of predictability vs.
gaze coherence was almost identical for GazeCom and VAGBA after those movies were
removed from VAGBA that are 'staged'. These movies show faces directly interacting with
the camera, and these very strong high-level cues override any bottom-up saliency
(Einhäuser, Spain, & Perona, 2008).

However, contrary to the finding of Mital et al. at the level of individual gaze samples, we
found no positive correlation of predictability and coherence for the DIEM data set at the
movie level; we also found no such correlation for a global comparison of all data sets.
Surprisingly, the professionally made movies are the least predictable, but also the most
coherent. We believe this reduced variability is due to the explicit and implicit gaze-
guidance strategies of the movie directors (Hasson et al., 2008, Dorr et al., 2010, Mital et al.,
2011). At the same time, this type of movie cannot be predicted well. One possible
explanation for this result might be the frequent occurrence of scene cuts. Cuts induce
spatio-temporal transients in the saliency map; because they are often ignored by the
subjects (Smith & Henderson, 2008), they increase the number of image regions falsely
identified as salient. Moreover, we have shown previously that professional videos do not
exhibit the near zero average time lag between salient events and eye movements (Vig et al.,
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2011) and it may well be that the predictions that we make are based on the wrong time lag
more often than in other movies.

Overall we have given a comprehensive overview of the state of the art in analysing eye
movements made on natural videos and have provided novel results on the generalization
performance of saliency models and the impact of different colour representations. Further,
we have systematically analysed the predictability and variability of eye movements relative
to different saliency measures and have found significant correlations both between eye
movements and saliency and between the predictability and the variability of eye
movements. Despite the emergence of some global patterns, the various differences we
found for different data sets and subtle parameter choices indicate that the large field of
research on saliency models should agree on well-defined benchmark data sets that have
become standard in the machine learning and computer vision communities. However, the
ultimate and objective approach to quantify our understanding of eye movements and
saliency will be to evaluate the models in terms of how well one can deliberately change eye
movement patterns through low-level feature modifications (Barth, Dorr, Böhme,
Gegenfurtner, & Martinetz, 2006).
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Figure 1.
Example of geometrical invariants, which denote the locally used number of degrees n of
freedom of a signal, i.e. the intrinsic dimensionalityinD. See main text for an in-depth
description. Contrast inverted and enhanced for better legibility, with same parameters for b-
d. a) Stillshot from original movie. b) Invariant H, which represents regions with iD≥1.
Regions with iD=0, i.e. uniform regions, are suppressed. c) Invariant S (iD≥2) that encodes
static corners. Note the reduced response to straight edges. d) Invariant K (i3D) that encodes
spatio-temporal corners, i.e. regions where the signal changes in all three dimensions.
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Figure 2.
Prediction performance of the three saliency models on individual movies is highly
correlated. Dashed line indicates equal performance, solid line shows best linear fit of the
data. a) Invariant K vs. invariant H. b) Itti model vs. invariant K. c) SUNDAy model vs.
invariant K. d) SUNDAy model vs. Itti model.
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Figure 3.
Inter-subject gaze variability differs significantly in the three data sets under study
(Kolmogorov-Smirnov test, all pairwise comparisons p<0.001). Variability is lowest (NSS
coherence is highest) for the DIEM data set of professionally directed and cut material such
as TV shows, movie trailers, and documentaries. The VAGBA and GazeCom data sets were
recorded by quasi-randomly placing a camera on a tripod in public places such as at
crossroads, in parks, etc., and gaze variability is higher. In some VAGBA movies, however,
recorded persons interact with the camera/the viewer.
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Figure 4.
Correlation of eye movement coherence and predictability. In the two naturalistic data sets
GazeCom (black crosses) and VAGBA (red triangles), prediction performance is better for
movies where eye movements are more similar between observers. Out of VAGBA's 50
movies, six show people directly posing for and interacting with the camera; when these
movies, which also have the highest coherence scores, are removed from the analysis, the
fits for GazeCom and VAGBA become almost parallel (dashed line). Blue plusses show
data for DIEM with professional material; the negative slope is not statistically significant.
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Table 1

ROC scores for the different saliency models on the three eye movement data sets. The predictor based on the
geometric invariant K, regardless of colour space, consistently outperforms the other predictors; performance
is poorest for the DIEM data set.

Model GazeCom data set VAGBA data set DIEM data set

HY 0.661 0.719 0.630

HL 0.673 0.733 0.623

SY 0.670 0.730 0.640

SL 0.675 0.735 0.639

KY 0.687 0.778 0.653

KL 0.689 0.781 0.646

Itti 0.623 0.704 0.628

SUNDAy 0.640 0.746 0.645
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