
Non-parametric Evaluation of Biomarker Accuracy under Nested
Case-control Studies

Tianxi Cai
Department of Biostatistics, Harvard University, Boston, MA, USA

Yingye Zheng
Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Summary
To evaluate the clinical utility of new risk markers, a crucial step is to measure their predictive
accuracy with prospective studies. However, it is often infeasible to obtain marker values for all
study participants. The nested case-control (NCC) design is a useful cost-effective strategy for
such settings. Under the NCC design, markers are only ascertained for cases and a fraction of
controls sampled randomly from the risk sets. The outcome dependent sampling generates a
complex data structure and therefore a challenge for analysis. Existing methods for analyzing
NCC studies focus primarily on association measures. Here, we propose a class of non-parametric
estimators for commonly used accuracy measures. We derived asymptotic expansions for
accuracy estimators based on both finite population and Bernoulli sampling and established
asymptotic equivalence between the two. Simulation results suggest that the proposed procedures
perform well in finite samples. The new procedures were illustrated with data from the
Framingham Offspring study.
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1 Introduction
Establishing reliable and parsimonious classification rules for predicting patient survival is a
crucial step in the path toward personalized medicine. With the advancement of technology,
much progress has been made in identifying new markers useful for disease prognosis. For
example, the MammaPrint genetic test holds great potential in predicting disease
progression for lymph node negative breast cancer patients and was approved for clinical
usage in 2007 (Food and Drug Administration, 2007). In epidemiology studies, risk scores
have been developed for many diseases and adopted in public health practice to assist in
prevention and treatment efforts. Examples include the Framingham risk score for
cardiovascular events (Wilson et al., 1998) and the Gail model for breast cancer (Gail et al.,
1989). Here and in the sequel, the terms “biomarker” and “marker” refer generally to the
continuous output of a prognostic classifier, such as a biological marker, a genetic score or a
clinical risk score.

Several large cohorts have been assembled over the past decade in which biological
specimens were collected and stored for future studies. While such prospective cohort
studies are crucial for evaluating the prognostic potential of a novel marker, it is often
undesirable and/or infeasible to measure markers for the entire cohort due to costs associated
with the measurement. Two subcohort sampling designs, the case cohort and the nested
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case–control (NCC), are often employed as cost-effective alternatives to the full-cohort
design. In particular, under the NCC design, markers are only measured for cases and a
fraction of controls selected from the risk sets of the corresponding cases. Such a design is
often preferred in a biomarker study as it naturally accommodates practical issues such as
batch effects, storage effects and freeze-thaw cycles (Rundle et al., 2005). However, the
design also generates complex datasets in which the missingness of the marker values
depends on the outcome of interest, making inference about the predictive accuracy of the
marker challenging.

Statistical methods for quantifying the prognostic accuracy of a marker with data from NCC
studies are not well developed. Existing literature on NCC studies focuses primarily on
relative risk parameters. Inference procedures for the hazard ratio under the Cox model
(Cox, 1972) have been proposed (Goldstein & Langholz, 1992; Samuelsen, 1997; Chen,
2001). For example, Goldstein & Langholz (1992) developed a conditional logistic
regression estimator and Samuelsen (1997) proposed an inverse probability weighted (IPW)
estimator. However, such relative measures ignore some fundamental aspects of risk
prediction and do not fully capture the predictiveness of a marker (Pepe et al., 2004; Ware,
2006). To construct more clinically relevant accuracy measures, various time-dependent
accuracy measures, including the time specific true positive rate (TPR), false positive rate
(FPR), receiver operating characteristic (ROC) curve, positive predictive value (PPV) and
negative predictive value (NPV), have been proposed (Heagerty et al., 2000; Heagerty &
Zheng, 2005; Cai et al., 2006; Zheng et al., 2008). These measures extend existing
classification measures for binary outcomes to incorporate the time domain by
dichotomizing the continuous event time T into two disease states at any given time-point of
interest t. For example, one may consider the classification between subjects with T ≤ t and
those with T > t. This leads to the following accuracy measures:

using the convention that a larger value of Y is associated with higher risk of failure. The

corresponding time-dependent ROC curve is then . Existing
estimators for these accuracy measures are limited to the case when Y is fully observable.
Because of the non-random missingness in Y, they are not directly applicable to data from
NCC studies.

Here, we propose non-parametric IPW estimators for the aforementioned accuracy measures
with observations inversely weighted by their probabilities of being sampled into the NCC
subcohort. We take a non-parametric approach here for the following reason: although risk
scores used in practice are often derived from regression models such as the Cox model,
validating their prediction performance ideally should not require stringent model
assumptions. Our approach is robust in that it remains valid even when the regression model
from which the score is derived fails to hold. We consider two different sampling schemes
for selecting controls from the risk sets based on: (i) finite population sampling ( -
sampling); and (ii) independent Bernoulli sampling ( -sampling). For (i), we obtain IPW
estimators using true sampling weights and calculated their asymptotic variance by
accounting for the between subject correlation due to sampling. For (ii), we construct IPW
estimators using estimated sampling weights. We show that these two types of estimators
are equivalent with respect to their asymptotic variance. Such an equivalence has been
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established in Breslow & Wellner (2006) for IPW estimators under two-phase stratified
case-cohort sampling where the number of matched case-control strata is finite. Here, under
NCC design, the number of case-control strata increases with sample size and we show that
such an equivalence remains. In addition we consider estimators that accommodate different
censoring assumptions. In practice, censoring time C can be quite frequently dependent on
marker values. For example, subjects with lower marker values might drop out of the study
earlier. To incorporate marker-dependent censoring, we propose IPW kernel smoothing
based estimators under the standard survival analysis assumption that T and C are
independent given Y. When C is independent of both T and Y, we derive a double IPW
estimator as a simple alternative.

The rest of the paper is organized as follows. Section 2 discusses estimation procedures
under both sampling schemes and under two types of censoring assumptions. Detailed
inference procedures are provided in section 3. We present simulation results in section 4 to
demonstrate the finite sample performance of proposed procedures. These procedures are
applied to data from the Framingham Offspring study to evaluate the accuracy of a recently
develop risk score for predicting cardiovascular events. Concluding remarks are presented in
section 5.

2 Estimation
2.1 Sampling Probabilities for the NCC subcohort

Suppose we have a cohort of n individuals followed prospectively for a clinical event. Due
to censoring, for T, we observe a bivariate vector (X, δ), where X = T Λ C, δ = I(T ≤ C). Let

 denote the full cohort data, where Yi only observable if subject i
was selected into the NCC subcohort. We assume that Y has a finite support [ , ], C has a
finite support [0, τ]. We consider the prediction of survival up to τ0 < τ such that

. Throughout, we require the standard conditional independent
censoring assumption, i.e. T and C are independent given Y. Note that in a purely non-
parametric setting, the distribution of T is not identifiable if C is dependent on T given Y
and this assumption is not verifiable in general without additional assumptions on the
dependence structure (Tsiatis, 1975).

Without loss of generality, we consider a typical NCC study where all cases are included in
the subcohort. For each observed case failed at tj, m controls are randomly sampled from

his/her risk set excluding the candidate case, which is of size .
The m controls are sampled without replacement for -sampling. For -sampling, each

eligible subject in the risk set of tj is sampled independently with probability m/  as a
control for tj. Both sampling schemes are easy to implement in practice, but -sampling may
be more frequently used. For either of the sampling scheme, V0i denotes whether subject i is
ever sampled as a control and Vi = δi+(1−δi)V0i indicates being sampled into the NCC
subcohort.

Under -sampling, the sampling probability for subject i is 
(Samuelsen, 1997), and thus the weight used for the IPW estimators is

where  is the probability of subject i being sampled as a control and
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For the -sampling scheme, Let Bjk denote an indicator that takes the value 1 if subject k is
sampled as a control for subject j (0 otherwise). Then {Bjk} are independent Bernoulli

random variables with success probability , and V0i = 1 −
Πj:Xj≤Xi,δj=1(1 − Bij). Note that the true sampling probability for subject i is also , i.e.,

, and one may use the true sampling weight, i.e.,  to construct IPW
estimators. However, similar to the findings for case-cohort studies (Breslow & Wellner,
2006; Nan et al., 2009), it can be shown that using estimated sampling weights yields
improved efficiency. To construct IPW estimators under -sampling that correspond to
those obtained under the -sampling, we instead use weights

where we estimate  as ,  and

2.2 IPW Conditional Nelson-Aalen Estimators of the Conditional Risk and Accuracy
Functions

Estimators of the accuracy measures can be constructed by consistently estimating the
bivariate survival function  and the marginal distribution of Y,

. We first direct attention to estimating the conditional survival Sy(t) = P(T
≥ t | Y = y). In the following, the IPW weight to account for sampling will be chosen as

 for -sampling and  for -sampling.

Conditional Survival Estimation—To estimate Sy(t) without imposing any parametric
assumptions on the relationship between T and Y, we consider the kernel-smoothed
conditional Nelson-Aalen (CNA) estimator (Beran, 1981; Dabrowska, 1989; Du & Akritas,
2002). Aside from providing a natural estimator for estimating Sy(t) nonparametrically, the
CNA estimator is also known for its robustness when censoring is dependent on Y. Under
NCC sampling, we propose to modify the estimator with IPW to account for the outcome-
dependent missingness in Y. Specifically, we propose to estimate the cumulative hazard
function Λy(t) = −log Sy(t) as

where , ,
Kh(x) = K(x/h)/h and K is a known smooth symmetric density function. As for the standard
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kernel estimation (e.g. Beran, 1981; Dabrowska, 1989; Du & Akritas, 2002), the bandwidth
parameter h is assumed to be of order O(n−ν) with ν ∈ [1/5, 1/2) to ensure the consistency

and asymptotic normality of . More discussions on the order of h for the accuracy
estimators are given in section 3. Subsequently, Sy(t) can be estimated as

.

Accuracy Measure Estimation—Based on the estimated conditional survival, we
construct the following empirical estimator for the bivariate survival function

 as

(2.1)

for , where we estimate the marginal distribution of Y as

(2.2)

Subsequently, we may estimate the marginal survival distribution of T, , as

. With the joint and marginal distributions of Y and T estimated, we may
easily construct the following plug-in estimators of the aforementioned accuracy measures:

(2.3)

(2.4)

The ROC curve can be estimated as .

2.3 Double Inverse Probability Weighted Estimators
When the censoring C is independent of both Y and T, one may consistently estimate the
accuracy measures using double IPW (DIPW) to account for missingness due to both NCC

sampling and censoring. Specifically, let , where

 is the Kaplan-Merier estimator of . It is straightforward to

see that  and one may use  to account for
missing information about I(Ti ≤ t) due to censoring. Thus,  and
F(c) can be estimated as
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respectively. Subsequently, we obtain estimates of the accuracy measures by replacing

, ,  in (2.3) and (2.4) with , , and , respectively. Note

that double weighting was used for  to ensure that the estimated accuracy measures are

between 0 and 1. The resulting estimators are denoted by , , ,

.

The DIPW approach has the advantage of being simple to calculate without kernel
smoothing. However, as shown in the simulation section, the resulting estimators are subject
to bias when the censoring distribution depends on the marker values.

3 Asymptotic Properties and Inference Procedures
The NCC sampling scheme brings in additional complexity and poses a significant
challenge in the theoretical study of the proposed estimators. Specifically, our proposed

estimators based on -sampling involve the sampling variables { , …, }, which are
weakly dependent conditional on . To establish the consistency and asymptotic normality
of the proposed estimators, one may account for the dependence using the law of large
numbers and central limit theorems for sequences of asymptotically linear negative quadrant
dependent random variables (Zhang, 2000; Cai, 2005). Under -sampling, the sampling
variables are independent conditional on  and the asymptotic properties of the
corresponding estimators can be established using empirical processes theory.

Variance Form
For the -sampling scheme, we show in Appendix A.1 that the asymptotic variance (aVAR)

of a generic IPW estimator of the form  is , which is defined in (A.1). In
addition, we demonstrate in Appendix A.2 that under -sampling scheme, the aVAR of the

IPW estimator  is also . It is easy to show that for -sampling, the

aVAR of , the IPW estimator with true weights, is ,
where pi is defined in Lemma 1. Similar phenomenon has been observed for various IPW
estimators (e.g. Breslow & Wellner, 2006; Nan et al., 2009) with case-cohort studies. As
emphasized in Robins et al. (1994), the variance form of this type of IPW estimators can be
viewed as a residual sum of squares and thus the enrichment of the model for the sampling

probability is likely to enhance the efficiency of the estimation. Since the use of  and

 yields the same efficiency, we only provide detailed asymptotic derivations for the

latter with .

Consistency
In Appendix B, we showed that for the IPW conditional Nelson-Aalen estimator,

when h = O(n−ν) with ν ∈ [1/5, 1/2). Thus  is uniformly consistent for Sy(t) in y.

Furthermore, , , , , and , are uniformly consistent for

, TPRt(c), FPRt(c), NPVt(c), and PPVt(c) for  and
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, where , , τ and  are constants such that

.

Asymptotic Normality and Interval Estimation
To construct confidence intervals (CIs) for the proposed accuracy measures, we show in

Appendix C that  and 
converge jointly to zero-mean Gaussian processes in c ∈ ΩY when h = O(n−ν) with ν ∈ (1/4,
1/2). It is important to note that we require the standard under-smoothing assumption to
avoid bias for the resulting accuracy estimators as for smoothed empirical processes (van der
Vaart, 1994; Zheng et al., 2008; León et al., 2009). Furthermore, we established weak
convergence for the accuracy estimators. With the aforementioned rate for h, the asymptotic
distribution of the accuracy estimators does not depend on h at the first order.

The aVAR of these estimators can be estimated empirically, and the CIs can be constructed
based on normal approximations. For example, we showed in Appendix C that

in distribution, where

 is defined in
Appendix C and ηζFPRt (c, u) = E{ζFPRt(c; Di)I(Xi ≥ u)(1 − pi)/pi}. A 95% confidence

interval for FPRt(c) may be obtained as , where

, and  is obtained by
replacing all theoretical quantities in ζFPRt(c, Di) by their empirical counterparts. Similar
point-wise CIs can be constructed for the ROC curve as well as the predictive value
functions.

Similar arguments could be used to establish the asymptotic properties of the DIPW

estimators when C is independent of Y and T. Under this assumption,  is a uniformly

consistent estimator of , and  converges weakly to a zero-mean
Gaussian process (Kalbfleisch & Prentice, 2002). This, together with similar arguments as
given in the Appendices, can be used to establish the consistency and asymptotic normality
of the DIPW accuracy estimators.

4 Numerical Studies
4.1 Simulation Studies

Simulation studies were conducted to assess the performance of the proposed inference
procedure in finite samples and to compare the accuracy estimators. To this end, we

generated Y from a truncated normal such that  with . The
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event time T was generated from a Cox model with log T = 1 − log(3)Y/2 + ∊ and ∊
generated from an independent extreme-value distribution. We generated C as C = min(C0,
C1) with C0 ~ Uniform(.5,1). Two configurations were used for C1 to incorporate (i)
independent censoring and (ii) marker dependent censoring. For (i), we let C1 ~ 0.1+
Gamma(2,2); and for (ii), we let C1 = eY/10−1 +eY/5Gamma(2,5). Both types of censoring
lead to about 90% of censoring and event rate of 5% by t0 = 0.5. The cohort sample size was
chosen to be 5000, and for each observed case, either 1 or 3 matched controls were selected.
For each dataset, we obtained point and interval estimators for the accuracy of Y in
predicting the risk of having an event by t0 based on both the - and -sampling. For each
configuration, we simulated 1000 datasets to summarize the empirical performance of the
proposed estimators.

We first focus on the CNA estimators. In Table 1(a), we present results for FPR, TPR, PPV,

and NPV at  from simulated datasets with 1 matched control and under
independent censoring, for p = 0.2, 0.4, 0.6, 0.8. First, we note that all estimators have
negligible bias; the estimated standard errors (SE) are close to the sampling standard errors,
and the 95% CIs have empirical coverage level close to the nominal level. Second,
consistent with the theoretical results, the two sampling schemes yield asymptotically
equivalent estimators with both the sampling SE and the estimated SE close to each other. In
clinical applications, it is often of interest to summarize the overall accuracy of the marker
using the area under the ROC curve (AUC) and also to examine the accuracy of a marker
with cut-off value selected to achieve a certain level of sensitivity or specificity. In Table
1(b), we present results for AUC as well as for FPR, PPV and NPV at a sensitivity level of
0.90, representing a relatively low level of false negative rate. The proposed point and
interval estimates also perform well with respect to bias and coverage levels.

Results for independent censoring with 3 matched controls are shown in Table 2. In addition
to observing reasonable performance for propose estimators, we found that an increase in
the number of matched controls appears to be most helpful in improving the estimation of
the FPR with about 65% of reduction in the variance. The % reduction in the variance is
about 30% for the AUC estimation and ranges from 0% to 21% for the TPR estimation.
Similar patterns were also observed under the scenario of marker dependent censoring
(Table 3).

As discussed in Section 2.3, we may estimate the accuracy measure via the DIPW approach,
which has the computational advantage compared to the CNA approach. To compare the
performance of these two approaches under both the - and -sampling, we generated data
from the same models as described above and assessed the percent bias (relative to the truth)
and mean squared errors of all the proposed estimators. In Table 4, we summarize the results
for the case with m = 3. With independent censoring, all the estimators have negligible bias.
Gauged by the mean square errors, both the CNA approach and the DIPW approach yield
estimators with comparable efficiency. On the other hand, when the censoring distribution
depends on the value of Y, the DIPW approach leads to substantially biased estimators with
relative bias as high as 15.6%, while the CNA approach always yields consistent estimators
with negligible bias.

4.2 Example
The Framingham risk model, based on several clinical factors, is used extensively for
detecting risk for coronary heart disease. However it has only moderate levels of sensitivity
and specificity. A new risk model, based on both Framingham risk model variables (Wilson
et al., 1998) and an inflammation marker, C-reactive protein (CRP), has been developed
recently using data from the Women's Health Study (Cook et al., 2006). We illustrate here
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how our proposed procedure can be used to evaluate the clinical utility of the cardiovascular
risk prediction model using an independent dataset from the Framingham Offspring study
(Kannel et al., 1979).

The Framingham Offspring Study was established in 1971 with 5,124 participants who were
monitored prospectively on epidemiological and genetic risk factors of CVD. We consider
here 1728 female participants who were free of CVD and have CRP measurement and other
clinical information at the second examination. The average age of this subset was about 44
years with standard deviation 10. The outcome we considered was the time from exam date
to first major CVD event, including CVD-related death. During the follow-up period, 269
participants experienced at least one CVD event and the 5-year event rate was about 2%.
Since CRP measurements are complete in the cohort, the Framingham data allows us to
illustrate the methods with a real dataset and compare estimators obtained using data from
NCC subcohorts to those from the full cohort.

We first calculated the risk score using an algorithm developed previously in Cook et al.
(2006), combining information on age, systolic blood pressure, smoking status, high-density
lipoprotein (HDL), total cholesterol, medication for hypertension and CRP concentration.
The score was derived using a Cox proportional hazards model. To evaluate the clinical
utility of the score in a different dataset, it is sensible to seek a procedure that is independent
of the original modeling assumption. Our nonparametric procedures fit well for this purpose.
To compare different sampling designs, for each design with either 1 or 3 matched controls,
we assembled 500 nested case control datasets by repeatedly sampling the matched controls.
For each dataset, we obtained the point and interval estimates of accuracy summaries for the
new score in predicting the risk of developing CVD events within 5 years since predictor
measurements. In Table 5, we report the average of the estimates over the 500 sets from
three subsampling settings: (i) the full cohort; (ii) NCC samples with m = 1; and (iii) NCC
samples with m = 3 Since the -sampling results in asymptotically equivalent estimators, we
focus only on the -sampling. For comparison, results from both the CNA and DIPW
method are reported. Since the results are fairly comparable between these methods, below
we summarize estimates from the CNA method only.

Across all accuracy measures, the point estimates from all three subsampling settings are
close to each other. The sampling variability of these estimators decreases as the number of
controls increases. However, similar to the results in simulation studies, the gain in precision
is most pronounced in estimates of FPR. It appears that a NCC design with m = 3 would
yield accuracy estimators with precision comparable to that of the full cohort in most of the
cases. The estimated AUC is about 0.75 with standard error about 0.04 and 95% CI (0.67,
0.84) based on NCC samples with m = 3. These estimates suggest that the new score
incorporating the CRP information has a moderate accuracy in predicting the 5-year risk of
CVD events. One utility of the risk score is to recommend preventive strategies such as a
statin therapy to patients who are positive on the score-based test. If a low false negative
rate, say 10%, is desirable, then a decision rule based on the corresponding threshold would
yield about an FPR of 65% (s.e. 14%); PPV of 99% (s.e. 0.3%) and NPV of 2.9% (s.e.
0.8%).

5 Remarks
Ensuring adequate validation of a prediction model is one of the major challenges in
prognostic tool development. In this paper, we proposed nonparametric estimators for
prognostic accuracy measures of novel markers with data generated by a NCC design within
a prospective cohort study. By using a kernel smoothing technique along with IPW, our
proposed estimators are robust and broadly applicable to complex settings where censoring
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is marker dependent and marker information is missing by design. Results from extensive
simulation studies and practical examples suggest that the commonly time-dependent
accuracy measures can be estimated well using data from NCC studies. In general, we find
that the CNA approach works well for smaller cohort sizes provided that there are a
sufficient number of cases. For example, we also conducted simulation studies with n =
2000 using similar setting as those described above but with slightly higher event rate
yielding about 300 cases by the end of the study. As shown in Table 6, the proposed point
and interval estimates for the accuracy measures perform well under this setting.

Biological samples collected from cohort members in large studies are often limited and
should be used as efficiently as possible. Our proposed approach will enable researchers to
efficiently utilize existing resources collected in large cohort studies such as the Nurses'
Health Study (Colditz et al., 1997) or the Health Professional Follow-up Study (Hunter et
al., 1992), while maintaining scientific rigor in validating novel prediction models for
patients' future risk and prognosis. Depending on the quantity of interest, it is possible that a
1:1 matching with m = 1 provides sufficient estimation precision. The majority of the
precision gain due to a larger m contributes to the FPR estimation. When the desired FPR
level is low, the width of the CI could be rather small in general and thus one may achieve a
reasonable precision for the estimation of most accuracy measures with a small m. In
practice, it appears that when m = 3, most of the accuracy estimates achieve reasonable
efficiencies relative to those obtained from the full cohort. This echos the finding in the
literature that for testing the significance of a single binary covariate, the efficiency of a
design with m matched controls per case relative to use of all controls is m/(m + 1) (Ury,
1975; Breslow et al., 1983).

We established the asymptotic equivalence between estimators derived under the -sampling
and -sampling. This suggests that in practice, sampling with and without replacement can
lead to estimators with similar efficiency when appropriate weights are used. While we
show that asymptotically the variances of the CNA estimators are not influenced by the
choice of bandwidth h provided that it has the correct order, in practice the selection of h in
a particular dataset requires special attention to ensure stable estimation. When C is
independent of Y and T, the DIPW estimator may be a useful alternative to the CNA
estimator with advantage of not requiring smoothing and thus may be more stable when the
number of cases is not large. However, one needs to use this estimator with caution as they
are prone to bias when the censoring pattern changes with the marker values. The current
development considers the predictive accuracy for I(T ≤ t) at a pre-specified time point t.
When there are multiple time points of interest, one may obtain accuracy estimates across all
the points. The asymptotic derivations given in the appendix can be used to justify that
properly standardized accuracy estimates over time converge jointly to a multivariate
normal. This would allow one to construct simultaneous CIs for these parameters to account
for multiple comparisons.

Compared with a case-cohort design, individually matched NCC design is known for its
weakness that biomarker information on controls is limited to testing the specific study
hypotheses. The proposed IPW approach to analyzing NCC data overcomes such design
limitations. Indeed, when selected individuals are weighted inversely by their sampling
probability, they provide representative data on the entire cohort and can be used for
additional evaluation with a different outcome. The IPW approach, however, may not be
most efficient. When auxiliary variables are available, it would be interesting to improve the
estimation efficiency via augmentation. For example, one may consider efficient estimators
along the lines of Robins et al. (1994) or constructing an optimal augmentation procedure
within a pre-specified class of functionals as in Bang & Tsiatis (2000) and Bang & Tsiatis
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(2002). The work presented here is an initial step toward future development along that
direction.

Appendix

Throughout, let Ni(t) = I(Xi ≤ t)δi, , π(t) = P (Xi ≥ t),

We assume that C has a finite support [0, τ], which is shorter than that of T. The marker Y is
assumed to be continuous and bounded. Throughout, unless noted otherwise, the sup over
time t is taken over [0, τ]. We use the notation ≲ to denote bounded up to a constant and ≃
to denote equal up to op(1) in the uniform sense unless specified otherwise. For the kernel
function K and marker Y, we make the same assumptions as in Du & Akritas (2002),
including: (i) K is a symmetric probability density function with finite support and bounded
second derivative; (ii) the distribution function of Y,  has bounded second
and third derivatives with infx f(x) > 0, where .

A Equivalence Between the Finite Population Sampling with True Weights
and the Bernoulli Sampling with Estimated Weights

Here, we demonstrate that in general, the IPW estimators obtained based on the two
sampling schemes are asymptotically equivalent at the first order.

A.1 Asymptotic Variance with Finite Population Sampling

Our proposed estimators based on the -sampling involve the sampling variables { , …,

} which are weakly dependent conditional on . To establish the consistency and
asymptotic normality of the proposed estimators, one may account for the weak dependence
using the law of large numbers (Cai, 2005) and central limit theorem theorems (Zhang,
2000) for sequences of asymptotically linear negative quadrant dependent random variables.
Here, we focus primarily on the derivation of the asymptotic variances and outline the
justification for the following Lemma:

Lemma 1 Let ξ(·) be a given function of D = (X, δ, Y)T such that E{ξ(D)} = 0, E{ξ(D)2} <

∞ and the total variation of ξ(D) is bounded by a constant. Then the random variable  of
the form

has asymptotic variance

(A.1)

where ηξ(u) = E{ξ(Di)I(Xi > u)(1 − pi)/pi} and pi = δi + (1 − δi){1 − Gm(Xi)}.
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To obtain the asymptotic variance, we note that from Samuelsen (1997),

, and for i ≠ j,

where

On the other hand, since .

A.2 Bernoulli Sampling with Estimated Weights
Here we derive the asymptotic variance for a statistic of the form

for some deterministic function ξ. First, since conditional on , {Bij} are independent

Bernoulli random variables with success probability  and { ,

…, } are independent Bernoulli with success probability . By the standard empirical
process theory (Pollard, 1990), it is not difficult to show that, uniformly over t ∈ [0, τ],
conditional on 

(A.2)

which converges weakly to a zero-mean Gaussian process. This, together with a taylor
expansion and a uniform law of large numbers (ULLN) (Pollard, 1990), implies that

(A.3)

where ,  and
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We next approximate . Since  and

,

(A.4)

(A.5)

Conditional on , Bij′ and  are independent when j′ ≠ j. Thus, the covariance between

 and  given  is

Since  implies Bij = 0,

This, together with a ULLN, implies that

(A.6)

On the other hand, . Thus, we have

Lemma 2 Let ξ(·) be a given function of D such that E{ξ(D)} = 0, E{ξ(D)2} < ∞ and the

total variation of ξ(D) is bounded by a constant. Then the random variable  of the form

has asymptotic variance

(A.7)
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B Uniform Consistency of the Absolute Risk and Accuracy Estimators
under Bernoulli Sampling

For the consistency, we assume that h = O(n−ν) with ν ∈ [1/5, 1/2). We first establish the

following uniform convergence rate for :

(B.1)

where

and . By Lemma A.3 in Bilias et al. (1997), it suffices to show
that

(B.2)

(B.3)

where Ay(t) = E{Ni(t) | Yi = y}, πy(t) = P(Xi ≥ t | Yi = y).

First, we note that since ,

where . Then (B.2) follows immediately from Du &

Akritas (2002). To show (B.3), we let  and write
, where

and
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For ∊1y(t), we first note that from a functional central limit theorem (FCLT) (Pollard, 1990),

 converges weakly to a zero-mean Gaussian process in s and thus

(B.4)

This, together with (A.2), a ULLN and Lemma A.3 of Bilias et al. (1997), yields

(B.5)

where ηHπ (s; x, t) = E{I(t > Xi ≥ s, Yi ≤ x)(1 − pi)/pi}. Conditional on ,

 are independent with mean 0.

Furthermore,  can be written as differences of
monotone functions with a constant bound and thus has finite psuedo-dimension (Pollard,

1990). Then by a FCLT, conditional on ,  converges weakly to a
zero-mean Gaussian process in (x, t). This, together with the standard arguments given in

Bickel & Rosenblatt (1973), implies that . On the other

hand, from Du & Akritas (2002), . This concludes the proof
for (B.2) and thus we have (B.1).

The convergence of  in (B.1) implies that  is uniformly consistent for Sy(t). Since

, the uniform consistency of  for  follows immediately. The

convergences of  and  along with a continuous mapping theorem and Lemma A.3

of Bilias et al. (1997) imply the uniform consistency of  and all the proposed
accuracy measure estimators.

C Asymptotic Distribution of Accuracy Estimators under Bernoulli
Sampling

To obtain an asymptotic expansion for the proposed accuracy estimators, we first obtain

approximations for  and . To remove the
potential bias in the accuracy estimators due to the kernel smoothing, we now require h =
O(n−ν) with 1/4 < ν < 1/2. From the asymptotic approximations given in Appendix B for

 and  as well as the arguments given in Bickel & Rosenblatt (1973), we have

(C.1)
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where ,

.

Next, noting that  in probability, we write

where . From (A.2) and similar arguments as given
for the approximation of (A.3), we have

, where

and . Conditional on ,

 are independent with mean 0 and

finite pseudo-dimension. Thus, by a FCLT,  converges weakly to a zero-mean

Gaussian process . On the other hand,  is tight and weakly convergent to a

zero-mean Gaussian process . Since,  and

 are independent conditional on ,  converges weakly to .

We next approximate the distribution of . Since 

and , we have

It follows from (C.1) that

where . By a change of variable ψ = (y − Yi)/h,

Therefore,
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where . Using similar
arguments as given above, a FCLT may be used to show that conditional on ,

 converges weakly to a zero-mean Gaussian

process . On the other hand,  also converges weakly to a zero-

mean Gaussian process . Therefore,  converges weakly to
.

Furthermore, it is not difficult to show that the weak convergence of

 and  holds jointly. The
asymptotic distribution of the accuracy estimators follows directly from the joint distribution

of  and . This, together with a functional delta theorem, implies the following

approximations for , ,

, and ,

The same arguments as given above can then be used to establish the weak convergence for
these processes and obtain the asymptotic variance based on (A.7). For example, since

 with

,  in

distribution, where , and

.

To establish the weak convergence of the ROC curve estimator, we first note that the
arguments above can be extended to show that the weak convergences of the two processes,

 and (c), hold jointly. This, together with the stochastic equicontinuity of these
processes, implies that for u ∈ [ul, ur] ⊂ (0, 1),

where RȮCt(u) = ∂ROCt(u)/∂u. It follows that  converges weakly to
a zero-mean Gaussian process.
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