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Abstract

Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be
neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we
investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage
(2 hours, 3% O2). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring
hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were
spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized
by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons,
reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity.
Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced
depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger
neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca2+-activated K+ channels
(BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 mM). Our data show that
paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts
hypoxia through BK channels activation in mouse hippocampal neurons.
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Introduction

Leptin is an adipokine produced by fat tissue and encoded by

the Ob (obese) gene. It is characterized by a receptor-mediated

action exerted through a class I cytokine receptor [1] associated

with JAKs (Janus Tyrosine Kinases) and it activates a signalling

cascade mediated by PI3K (phosphoinositide 3-kinase) and the

pathway of Ras-Raf-MAPK [2,3]. Besides its body-weight re-

ducing effects [4], increasing evidence has recently shown that

leptin may reduce neuronal activity [5] and may promote

neuronal survival from different injuries, such as excitotoxic and

oxidative insults [6]. Leptin has also clear therapeutical effects, as

demonstrated by its ability to reverse the loss of dopaminergic

neurons in a model of Parkinson’s disease [7]. Moreover, leptin

exerts a neuroprotective action against ischemic injury in rat

cortical and hippocampal neurons, reducing neuronal cell death

[8,3]. There is also evidence for a role of leptin in opposing cell

death mechanisms, through a ERK1/2, MAPK and STAT3

signalling pathway [9,3].

In the past ten years, several works pointed out the correlation

between hypoxia and the increased risk of AD (Alzheimer’s

Disease): a period of reduced oxygen supply, occurring during

chronic cerebral hypoperfusion (CCH) or cerebral ischemia,

which may lead to the up-regulation of b-amyloid precursor

protein cleavage enzyme 1 (BACE-1) and downstream neurotoxic

plaques formation [10,11]. So far, most studies on leptin’s

neuroprotective effects were performed on the leptin-mediated

neuronal survival by means of cell viability assays, while only few

reports focused on the effects on neuronal activity [12]. A

functional characterization of neuronal firing properties under

normoxic and hypoxic conditions would be of great interest in this

regard, since malfunctioning in signal transduction has been

shown to be related to the first symptoms of neurodegenerative

disorders, while cell death occurs at later stages of the disease [13].

In this work we investigated this critical issue by taking

advantage of the MEA devices, which allow repeated non-invasive

multisite recordings at different days in vitro [14,15]. We

compared the firing properties of mouse hippocampal neurons

at 11 and 18 DIV, and monitored the effects of leptin, both under

normoxic and hypoxic conditions. Our data demonstrate that

spontaneous firing at 11 and 18 DIV is severely compromised by
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Figure 1. Spontaneous activity of hippocampal primary cultures at different ages. A. Photograph of an hippocampal primary culture on
DIV 11, plated over an array of planar microelectrodes (top). The photograph is a detail relative to 4 over the 60 recordings electrodes of the MEA.
Representative spontaneous electrical activity recorded from three different channels of the same MEA, on DIV 11 (bottom). In the inset is visible
a magnification of a single extracellularly recorded action potential, since single spike firing is the characterizing feature of young cultures. B.
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hypoxia, although at a different extent (54% versus 69%

reduction, respectively). Leptin, on its own, exerts different effects

on normoxic and hypoxic neurons. It significantly decreases the

firing frequency in normoxic neurons but, when applied during

hypoxia, leptin either counteracts the hypoxia-induced reduction

of spontaneous activity or even potentiates the firing frequency of

11 DIV hippocampal neurons. Thus, even if with different effects

on younger and elder neurons, overall leptin reverses the

inhibitory action of hypoxia on the firing properties of hippocam-

pal neurons. On the contrary, application of leptin together with

the BK channel blocker paxilline (1 mM), prevents leptin action

and restores the hypoxia-induced reduction of spontaneous firing.

Materials and Methods

Cell Culture on MEAs
All experiments were performed in accordance with the

guidelines established by the National Council on Animal Care

and approved by the local Animal Care Committee of Turin

University. Hippocampal neurons were obtained from black-six

mouse 18-day embryos. Hippocampus was rapidly dissected under

sterile conditions, kept in cold HBSS (4uC) with high glucose, and

then digested with papain (0,5 mg/ml) dissolved in HBSS plus

DNAse (0,1 mg/ml) [16,17]. Isolated cells were then plated at the

final density of 1200 cells/mm2 [18] onto the MEA (previously

coated with poly-DL-lysine and laminine) and allowed to adhere

on the centre of the chip by using a ring made of Sylgard 184

(Dow Corning), 4.5 mm internal diameter (11 mm external

diameter), which was removed after 4 hours. The cells were

incubated with 1% penicillin/streptomycin, 1% glutamax, 2.5%

fetal bovine serum, 2% B-27 supplemented neurobasal medium in

a humidified 5% CO2 atmosphere at 37uC. Each MEA dish was

covered with a fluorinated ethylene-propylene membrane (ALA

scientific, Westbury, NY, USA) to reduce medium evaporation

and maintain sterility, thus allowing repeated recordings from the

same chip. Recordings were carried out since DIV 11 until DIV

18. Culture medium was partially (1/3) changed once a week,

depending on the age of the culture (young cultures did not need

weekly change of medium). Following experiments, MEA dishes

were re-used by cleaning overnight in 1% Tergazyme (Sigma-

Aldrich, St. Louis, MO), rinsing in distilled water and then

sterilizing overnight under UV ray.

MEA Recordings
Multisite extracellular recordings were performed using the

MEA-system, purchased from Multi-Channel Systems (Reutlin-

gen, Germany). The 60 electrodes array (TiN/SiN) is composed

by a 868 square grid with 200 mm inter-electrode spacing and

30 mm electrode diameter. Data acquisition was controlled

through MC_Rack software (Multi-Channel Systems Reutlingen,

Germany), setting the threshold for spike detection at215 mV and

sampling at 10 kHz. Experiments were performed in a non-

humidified incubator at 37uC and with 5% CO2, without

replacing the culture medium.

Before starting the experiments, cells were allowed to stabilize in

the non-humified incubator for 90 seconds; then recordings of the

spontaneous activity was carried out for 6 minutes.

For hypoxic treatment, cells were kept for 2 hours into

a humified incubator with 5% CO2 and 3% O2 (37uC); after

that, spontaneous activity was measured under normoxic condi-

tions. The recovery was recorded 2 hours after hypoxia.

Murine recombinant leptin (PeproTech, London, UK) was used

at a final concentration of 50 nM, being applied 1 hour before the

recordings, under hypoxic or normoxic conditions, and main-

tained in the MEA dish for the whole recording. Then it was

washed out and we waited 2 hours before recording the recovery.

Paxilline (Sigma-Aldrich, St. Louis, MO) was dissolved in DMSO

(Sigma-Aldrich, St. Louis, MO) and used at the final concentration

of 1 mM [19]. Cultures were kept into the normoxic incubator

between recording sessions. It is worth noticing that, due to the

variability among different MEAs, the effects of any treatment

(hypoxia, leptin) have been evaluated with respect to their own

control MEAs.

Analysis of MEA Activity
Bursts analysis was performed using Neuroexplorer software

(Nex Technologies, Littleton, MA, USA) after spike sorting

operations. A burst consists of a group of spikes with decreasing

amplitude [20], thus we set a threshold of at least 3 spikes and

a minimum burst duration of 10 ms. We set interval algorithm

specifications such as maximum interval to start burst (0.17 sec)

and maximum interval to end burst (0.3 sec) recorded in 0.02 s

bins.

We performed the burst analysis using two different approaches,

either by considering the contribution of each recording channel

or by calculating for each MEA one mean value over the active

recording channels; we obtained comparable results of the spike

parameters, suggesting a reliable homogeneity of data.

Burst analysis has been performed by monitoring the following

parameters: number of spikes, frequency, number of bursts and

percentage of spikes in bursts.

Cross-correlation probability vs. time diagrams were con-

structed by means of Neuroexplorer software (Nex Technologies,

Littleton, MA, USA), using 60.5 s and 63.5 s and 5 ms bin size.

Data are expressed as means 6 S.E.M and statistical

significance was calculated either by using Student’s paired t-test

or with a one way ANOVA followed by a Bonferroni post-hoc

analysis. Values of p,0.05 were considered significant.

Figures were edited by means of Corel Draw Graphics Suite 12

(Corel Corporation, Ottawa, Canada).

Cell Viability Assay
Cell viability was assessed using the Trypan blue exclusion assay

and plating hippocampal neurons on plastic dishes (IBD,

Germany) patterned with a grid of 49 square areas of

5006500 mm2. Neuronal cultures were stained with 0.4% Trypan

blue (Sigma-Aldrich, St. Louis, MO). Cells that were stained blue

were considered dead cells and not included in the cell count,

while those with a translucent clear appearance were considered

alive and, therefore, included in the cell count. Neurons were

counted via a light microscope under620 magnification; ten non-

overlapping fields of four different dishes were analyzed,

considering the same fields of the dish before and after hypoxia

(2 h 3% O2). This assay was performed either on 11 DIV (four

dishes) or on 18 DIV neurons (four dishes).

Photograph of an hippocampal primary culture on DIV 18, plated over an array of planar multi-electrodes (top). Examples of spontaneous electrical
activity recorded from three different channels of the same MEA, on DIV 18 (bottom). Inset: magnification of a burst, the typical pattern of activity in
elder cultures.
doi:10.1371/journal.pone.0041530.g001
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Figure 2. Network activity changes along with culture development. Raster plots of two representative MEAs at DIV 11 (top) and DIV 18
(bottom). Each line represents the signals detected by a single electrode of the MEA array, during 90 seconds recordings. Uniquely active channels are
shown. Synchronization of the spontaneous activity is almost absent in younger cultures, while it is clearly visible at DIV 18 (rectangle).
doi:10.1371/journal.pone.0041530.g002

Figure 3. Synchronization of the activity among the electrodes increases with time in culture. Probability vs time diagrams indicating the
cross-correlation between one reference electrode and another representative channel, respectively at DIV 11 (A) and DIV 18 (B). The diagrams are
plotted at two different time scales: 63.5 s (top) and 60.5 s (bottom). Inset shows the net increment of cross-correlation between the electrodes
after 18 DIV (black bars) in comparison with younger cultures (light grey bars) (p,0.001). Data are expressed as means 6 S.E.M and statistical
significance was calculated by using Student’s paired t-test. Values of p,0.05 were considered significant. C. Different synchronization on DIV 11 and
DIV 18 is shown for two representative MEAs.
doi:10.1371/journal.pone.0041530.g003
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Results

Synchronization and Firing Frequency of Hippocampal
Neurons Increased with Days in Culture
Spontaneous firing of hippocampal neurons was monitored for

up to three weeks after plating. We tested 72 MEAs in our

experiments, and we found that hippocampal neurons became

spontaneously active at DIV 8 (days in vitro). From the analysis we

discarded only 10% of the arrays, in which the majority of

channels (75% or more) remained silent. In addition, we selected

DIV 11 as the day for monitoring the spontaneous firing of

younger neurons, and we compared their activity with those of 18

DIV neurons, to assess the in vitro functional changes of the

network activity during development. Figure 1 shows two

representative photographs of the same hippocampal culture at

the two stages of development (11 and 18 DIV).

Firing properties of hippocampal neurons significantly varied

with time: spontaneous activity was mainly characterized by

isolated spikes with limited number of bursts at DIV 11 (Fig. 1A).

Neurons spontaneously fired trains of single spikes with the typical

shape of extracellularly recorded action potentials (APs), i.e.,

a large and fast inward deflection followed by a small and slow

outward deflection lasting few milliseconds (see inset) that

correspond to the negative first derivative of intracellularly

recorded APs [19,21–23] One week later (18 DIV, Fig. 1 B), the

firing changed significantly. There was a visible increase of spiking

frequency, as well as a prevalence of synchronized bursts of APs

(Fig. 1 B, inset) that lasted tens of milliseconds and were rarely

present in younger cultures. This effect is more evident when

comparing the raster plots of Fig. 2, where the APs monitored by

each active recording channel are translated in a sequence of brief

vertical lines versus time. Neuronal activity is distributed more or

less randomly over time in younger cultures, whereas becomes

more synchronized at DIV 18, when nearly all recording channels

display synchronous AP bursts for tens of seconds (rectangle in

Fig. 2).

To better quantify the occurrence of synchronized activity with

increasing age of the culture, we measured the probability of

coincidence of the single events between different electrodes

[24,25]. As shown in the cross-correlograms of Fig. 3, calculated at

different time windows (60.5 s and 63.5 s with 5 ms bin size), the

maximal correlation of neuronal activities at t = 0 s is increased by

more than 300% at DIV 18 (from 0.0660.01 to 0.2660.03;

p,0.001; see inset in Fig. 3). This indicates that synchronization of

APs activity in mouse hippocampal network is greatly enhanced

during neuronal maturation in culture. In this regard, represen-

tative recordings from the same MEA are shown in Fig. 3C.

Firing Properties of Hippocampal Neurons Under
Normoxic Conditions
Because of the different spontaneous firing activity between

young and elder cultures, separated analysis at DIV 11 and DIV

18 networks were carried out. Control data were taken from

recordings under normoxic conditions. As shown in Fig. 4, all the

Figure 4. Firing frequency and bursts number increment with time in culture. Parameters characterizing electrical spontaneous activity of
the hippocampal culture at DIV 11 (n = 29 MEAs; grey bars) and at DIV 18 (n = 36 MEAs; black bars) given as mean 6 S.E.M. The difference between
the two groups is statistically significant for all parameters (* p,0.05, **p,0.01 and ***p,0.001; using Student’s paired t-test). Spikes and bursts
numbers both increased between 11 and 18 DIV. Number of spikes increased from 74611 to 150623 (p,0.01 ), while the number of bursts from
6.161.4 to 9.461.2 (p,0.05). The Maturation of the culture led to a prolongation of bursts duration (from 0.0960.01 s at 11 DIV to 0.2660.06 s at 18
DIV; p,0.02) and an increment of the percentage of spikes in the burst (4665% vs 6065%; p,0.03). Prolonged bursts and higher frequency on 18
DIV were accompanied by decreased mean interburst interval (IBI). Young cultures presented a mean IBI value of 1562 s while, in mature cells (18
DIV), this interval was reduced to 9.761.4 s (p,0.01).
doi:10.1371/journal.pone.0041530.g004
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parameters characterizing the spontaneous firing were significantly

different between younger and elder cultured neurons. At 18 DIV,

the firing frequency almost doubled (from 0.8060.13 to

1.760.3 Hz, p,0.01) and this effect was accompanied by an

increased number of bursts, from 6.161.4 to 9.461.2 (p,0.05). In

agreement with the observation that burst activity is the main

feature at 18 DIV, the burst duration and the percentage of spikes

within the burst significantly increased, whereas the mean

interburst interval (IBI) was reduced at 18 DIV (see legend of

Fig. 4). Tetrodotoxin (300 nM) completely blocked the spontane-

ous activity, both at DIV 11 and DIV 18, confirming the all-or-

none nature of the APs driven by TTX-sensitive Nav1 channels

(data not shown).

Hypoxia Reduced the Firing Activity but Increased the
Synchronization
Before focusing on the effects of leptin, we studied how oxygen

reduction could alter the network activity, by exposing the

hippocampal cultures to hypoxia (3% O2) for 2 h. Since

hypoxic-ischemic conditions can be achieved with different

incubation times in primary neuronal cultures, ranging from

2 min up to 4 h exposure to low oxygen tension, we decided to use

a protocol of 2 h [26–29]. Hippocampal activity was monitored

for 90 s under three different conditions: initially under normoxia

(controls), immediately after 2 h of hypoxia (3% O2) and after

recovery from hypoxia (Fig. 5, top).

By measuring the activity of hippocampal neurons at 18 DIV

(n = 16 MEAs), we found that hypoxia reduced the mean

frequency by 69% (from 1.760.3 Hz to 0.560.2 Hz, p,0.01) in

the majority of electrodes (79%, Fig. 5), while leaving the

remaining unaffected. This reduction was accompanied by

a significant decrease of the number of bursts (from 10.761.8 to

2.860.7; p,0.001), while the percentage of spikes in the burst was

not significantly altered (5266% versus 3067%, Fig. 5B).

Hypoxia therefore limits bursts onset without significantly affecting

burst properties. Two hours after the end of the hypoxic

treatment, when returning to normoxic conditions, mean values

of firing frequency (1.060.3 Hz) and burst activity (5.761.3

bursts), were still comparable to the hypoxic group (Fig. 5;

ANOVA with Bonferroni post-hoc, p.0.05), suggesting that

recovery was not complete. Though, a complete recovery from

hypoxia could be obtained over a longer period (12–24 h, data not

shown).

Concerning the pattern of electrical activity, we found that

hypoxia drastically increased the occurrence of synchronized

events even in younger cultures, as shown by the cross-

correlogram plots in Figure 6.

When the same hypoxic treatment was performed on younger

cultures (11 DIV, n= 15 MEAs), where spontaneous firing occurs

through the generation of single spikes rather than synchronized

burst activity, we again assessed that hypoxia caused significant

effects in 62% of channels, where the firing frequency was reduced

by 54% (from 1.160.2 to 0.5160.12, p,0.01). Number of spikes

and number of bursts underwent a similar reduction: the former

decreased from 102615 to 46611 and the latter from 8.361.6 to

3.961.0 after hypoxia. Similarly to the elder group, recovery after

hypoxia was not complete within 2 hours. Remaining electrodes

(38%) showed no significant changes.

Our data indicate that hypoxia indeed reduces the firing

frequency of hippocampal neurons, but at higher degree in elder

cultures. Such variability of responses can be attributed to the

heterogeneity of the culture, where the mixture of pyramidal

neurons and interneurons may be differently firing, or else to the

developmental changes of cultured neuronal networks occurring in

vitro [24].

In order to assess if the altered firing activity induced by hypoxia

was due to cell death, we performed the trypan blue exclusion

assay (see Material and Methods). This organic dye selectively

stains dead/dying cells. Under control conditions, the density of

unstained living cells at 11 DIV was approximately 10267 cells/

mm2 and remained unaltered after the hypoxic treatment (9967

cells/mm2, n = 4 dishes, p.0.05 Student’s paired t-test, Fig. 7B).

Concerning the effect of hypoxia on cell density on 18 DIV

cultures, again, we did not reveal any statistical significant

reduction of this parameter (2362 vs 2262 cells/mm2, n = 4

dishes, p.0.05 Student’s paired t-test, Fig. 7B). Moreover, looking

at the morphology of the culture, cell bodies and dendritic trees

were not affected by the treatment (Fig. 7A). These data indicate

that cell density and viability were not affected by hypoxia.

Leptin Reduced Spontaneous Activity of Normoxic
Hippocampal Neurons
A preliminary series of experiments was devoted to investigate

the activity of the neuronal network after 10 min application of

50 nM leptin, and keeping the adipokine in the culture medium

also during the recordings [5,2,30]. These experiments were

performed under normoxic conditions. On average, leptin re-

duced the firing frequency both in younger and elder cultures,

although the effect was more pronounced on 11 DIV neurons.

More specifically, on DIV 11 (n = 7 MEAs), leptin markedly

reduced the firing frequency by 71% with respect to controls (from

0.5460.11 Hz to 0.1660.04 Hz; p,0.01). A similar reduction has

been observed also for the mean burst duration (70%) and the

number of bursts, which underwent 79% decrease after the

treatment (Fig. 8B). This reduction of the spontaneous activity was

present in most of the microelectrodes (72%), whereas, in the

remaining, electrical activity was not affected by leptin. When the

BK channel blocker paxilline (1 mM) was added, the leptin-

mediated reduction was either drastically lowered (from 71% to

21%), or even completely removed in 45% of cases, where the

firing frequency was potentiated (from 0.560.2 Hz to 1.160.2,

p,0.01), suggesting a BK-channel mediated action of leptin on

normoxic neurons [5]. This opposite modulation of the firing

Figure 5. A period of hypoxia reduces spontaneous electrical activity in hippocampal cultures. A. Outline of the experimental protocol
used to study the effect of hypoxia on hippocampal primary cultures (top). Below some examples of recordings from two representative MEAs in
control conditions, 10 minutes after hypoxia and 2 hours after the treatment, at 11 and 18 DIV. It is clearly visible the reduction of the firing frequency
after the exposure to lower oxygen supply (3% of oxygen for 2 hours). B. Main parameters characterizing electrical spontaneous activity of the
hippocampal culture at 11 DIV and 18 DIV (n = 15 and n = 16 MEAs, respectively) in control conditions (white bars), after hypoxia (black bars) and 2
hours after the post-hypoxic recording (striped bars). For 18 DIV neurons, firing frequency decreased from to 1.760.3 Hz to 0.560.2 Hz (p,0.01) after
hypoxia. Number of bursts and number of spikes were respectively reduced from 10.761.8 to 2.860.7 (p,0.001) and from 155630 to 48617
(p,0.01). In 11 DIV firing frequency decreased from to 1.160.2 Hz to 0.5160.12 Hz (p,0.01) after hypoxia. Number of bursts and number of spikes
were similarly reduced, the first one from 8.361.6 to 3.961.0 (p,0.05), the second one from 102615 to 46611 (p,0.01). At both ages, the
percentage of spikes in burst did not change after hypoxia. For all parameters, recovery was not significantly different from the hypoxic group. Data
are given as mean 6 S.E.M. (* p,0.05, **p,0.01 and ***p,0.001, using one way ANOVA followed by a Bonferroni post-hoc analysis).
doi:10.1371/journal.pone.0041530.g005
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Figure 6. Hypoxia increases the synchronization of the spontaneous activity. A. Raster plots showing the activity from different channels of
a MEA at 11 (left) and 18 DIV (right) in control condition and after the hypoxic treatment (bottom). B. Cross-correlogram plots showing the
enhancement of cross-correlation after hypoxia (grey traces) vs control conditions (black traces), at 11DIV (left) and 18 DIV (right). Probability of
coincidence detection increased by 600% and by 76%, respectively. In both cases, firing frequency is drastically reduced.
doi:10.1371/journal.pone.0041530.g006
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frequency, which can be inhibited by leptin or even potentiated by

leptin plus paxilline, is shown in Fig. 8B and 8C, respectively.

Regarding 18 DIV neurons, the effects of leptin were milder:

spontaneous activity was reduced only by 22% (from 1.260.2 Hz

to 1.060.2 Hz; p,0.01) and in a minor percentage of cases (55%

versus 72%), the remaining being unaffected. Addition of paxilline

together with leptin, not only removed this inhibition, but uniquely

led to an increased firing frequency in 50% of the channels (from

0.7460.19 Hz to 1.260.3 Hz; p,0.01, Fig. 8C), suggesting that,

also in elder cultures, when BK channels are blocked, leptin action

is reversed. In the remaining electrodes no significant effects were

caused by adding paxilline to leptin.

The effects of leptin (50 nM) were also evaluated after 3 hours of

application, in order to assess if prolonged exposures could lead to

different effects on hippocampal excitability. We found that

spontaneous electrical activity was reduced by leptin independent

of the duration of the treatment, at both ages. On DIV 11 (n= 6

MEAs), leptin reduced the firing frequency (from 0.9060.09 Hz to

0.4860.13 Hz; p,0.001) in 60% of the electrodes, without

significant effects on the remaining. This behaviour persisted also

at DIV 18 (n = 8), where 64% of the electrodes showed a reduction

of firing frequency, from 1.160.2 Hz to 0.7660.13 Hz,

(p,0.001), while the remaining were unaffected.

Figure 7. Exposure to 2 hours of hypoxia does not affect the viability of hippocampal neurons. A. Images of the mouse hippocampal
primary culture in control conditions (top) and after 2 hours exposure to 3% O2 (bottom), at 11 (left) and 18 DIV (right). Cell bodies, axons and
dendrites morphology were not affected by the reduction of oxygen supply. B. Bar histogram showing the mean number of cells/mm2, counted
before and after the hypoxic treatment by the trypan blue exclusion assay. The number of vital cells did not significantly change after hypoxia, either
at 11 DIV (left) or 18 DIV (right) (n = 4 dishes, p.0.05, using Student’s paired t-test).
doi:10.1371/journal.pone.0041530.g007
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Our findings on the reduced firing frequency and burst duration

by leptin are in good agreement with recent data, showing that in

rat hippocampal cultures and slices leptin has a partial inhibitory

action which is ascribed to a PI3-kinase-dependent activation of

BK channels [30,2].

Activation of BK channels is also in line with the reduction of

bursts duration that we measured after leptin treatment. Block of

BK channels in fact induces prolonged bursts in hippocampal

neurons [31]. Taken together, our data support a role of BK

channels as one of the molecular targets of leptins action.

Leptin Reverses the Hypoxic Inhibition through the
Activation of BK Channels
In order to assess whether leptin (50 nM) could limit the

hypoxic-induced effects, we applied the adipokine 1 h before

exposing the hippocampal culture to 3% of O2 [8] and maintained

the same leptin concentration during the hypoxic treatment

(Fig. 9A). Under these conditions, on 18 DIV (n= 6 MEAs),

hypoxia still inhibited the firing frequency compared to controls

(Fig. 10A), as shown in Figure 9A. Interestingly, this reduction

occurred with a drastically lower extent than the one observed

without leptin (31% versus 69%, p,0.05, Fig. 10B). Furthermore,

pre-treatment with leptin preserved the bursts activity in elder

cultures, thus completely reversing the effects of hypoxia on the

number of bursts and the number of spikes in the burst.

The effects of leptin on DIV 11 hypoxic neurons (n = 9 MEAs)

were significantly different with respect to elder cultures. Firing

frequency was potentiated in 76% of cases (Fig. 10A), with more

than a two-fold increase versus controls (from 0.4060.09 Hz to

0.9060.13 Hz; p,0.05; Fig. 9B). In the remaining we found that,

similarly to the elder group, hypoxia still caused a reduction of the

firing frequency (from 0.4460.12 to 0.2960.09 Hz), even if

significantly lower than the one in the absence of leptin (3367%

versus 5469%, p,0.05, Fig. 10B). Representative traces of this

dual pattern of activity are shown in Figure 9A, where the firing

frequency decreases in the upper trace while increases in the

remaining.

Taken together these findings suggest that the overall action of

leptin is to reverse the inhibitory effects of hypoxia on spontaneous

firing, even though with more pronounced effects on younger

versus elder cultures. Although in the presence of leptin

a slowdown of firing persisted during hypoxia in elder cultures,

the percentage of reduction was significantly attenuated as

compared to the leptin-free hypoxic group.

Interestingly, when paxilline was applied together with leptin,

the inhibitory effects of hypoxia were completely restored, as the

firing frequency decreased by 61610% (18 DIV) or by 68613%

(11 DIV) with respect to controls. This pattern of activity,

characterized by a strong reduction of spontaneous activity was

present in the majority of electrodes (85% at 18 DIV and 87% in

younger cultures, Fig. 10A).

The counteracting effects of leptin versus hypoxia and the role

of BK channels in the leptin-mediated pathway are summarized

respectively in Fig. 11 A and Fig. 11 B. The presence of leptin

during hypoxia restores the firing frequency observed under

control conditions, at both ages. When comparing the firing

frequency of controls (white areas) versus leptin+hypoxia (grey

areas), channel activity remains unaltered, as clearly visible in

Figure 11 A. On the contrary, when paxilline is added together

with leptin on hypoxic neurons (Fig. 11 B), firing frequency is

severely impaired: spontaneous activity of hippocampal neurons is

reduced to a comparable extent occurring during hypoxia alone

(Fig. 5).

Overall these data suggest that: i) leptin opposes to the hypoxia-

induced inhibition, and ii) leptin-mediated pathway involves the

activation of paxilline-sensitive BK channels.

Discussion

Using the MEAs, we have provided evidence that chronic

hypoxia affects neuronal excitability of mouse hippocampal

primary cultures, mainly reducing the firing rate of DIV 11 and

DIV 18 neurons and increasing their synchronized firing.

Moreover, we investigated from a functional point of view the

effects of leptin, demonstrating that leptin pre-treatment success-

fully opposes the depressive effects induced by hypoxic injury on

hippocampal excitability. These findings may be associated to the

functional impairment of central neuronal populations occurring

at the first symptoms of neurodegenerative disorders, and thus

address to the potential neuroprotective role of leptin.

Network Burst Activity Under Normoxia
Our data clearly show that hippocampal network activity

changes along with maturation, switching from single spikes to

synchronized bursts. This pattern of activity, also present in many

brain areas such as cortex [32] and midbrain dopaminergic

neurons [33], has been matter of debate for a long time and seems

to derive from the balance between neuronal excitation and

synaptic inhibition, rather than being the consequence of strong

depolarization [20]. During a burst, the amplitude of APs is

typically reduced, due to a balance between excitation and

inhibition [34], while burst duration is regulated by vesicle pools

availability [35].

We pointed out that: i) network synchronization is tightly

correlated to the development of the network, as indicated by the

net increment of the cross-correlation index between the recording

electrodes at DIV 18, probably ascribed to the increased number

of connections between neurons in culture [14], and ii) bursts are

the main feature of spontaneous activity in mature hippocampal

cultures, in agreement with the fact that bursts are triggered when

neuronal spike activity is quicker, during mature stages of neuronal

networks development [34]. These changes in the firing patterns of

hippocampal networks are relevant for a variety of physiological

mechanisms, like synaptic plasticity and circuits development [36].

Furthermore, bursts synchronization in neuronal networks can be

promoted by learning, as shown by Li et al. [25] taking advantage

of the MEA technology.

Figure 8. Leptin reduces firing activity in hippocampal cultures at any age. A. Top. Experimental protocol used to study the effect of leptin
(10 minutes incubation) on hippocampal primary cultures. Below: recordings from two representative MEAs in control conditions and after
application of leptin (10 min), at 11 or 18 DIV. The insets show a magnification of a single burst: it is clearly visible the reduction of bursts duration
after leptin’s treatment at 18 DIV. B. Mean frequency, spikes number, bursts number and bursts duration, in control conditions (white bars) and after
10 minutes application of leptin (grey bars). Data averaged from n = 7 and n = 10 MEAs, respectively, for 11 DIV and 18 DIV cultures. Data are given as
mean 6 S.E.M. (* p,0.05 and **p,0.01; using Student’s paired t-test). C. Mean firing frequency measured in control conditions (white bars) and after
addition of leptin 50 nM and paxilline 1 mM to the culture medium (light grey bars). At both ages, paxilline together with leptin significantly
potentiated the mean frequency with respect to controls in approximately half of the electrodes (n = 8 MEAs for 11 DIV and n = 7 for MEAs 18 DIV;
p,0.01 using Student’s paired t-test). In the remaining, paxilline plus leptin either had no effect (18 DIV) or strongly limited the reduction (see text).
doi:10.1371/journal.pone.0041530.g008
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Hypoxia Decreases the Firing Frequency and
Synchronizes the Events
Our data on hippocampal neuronal activity demonstrate that

chronic oxygen reduction significantly decreased both firing

frequency and burst activity at any age (11 and 18 DIV), with

more pronounced in elder cultures. Even though patch-clamp

studies would be required for investigating the molecular basis of

this process, our findings are in good agreement with the

observation that, in response to oxygen deprivation, rat CA1

pyramidal neurons exhibit an hyperpolarization (hypoxic hyper-

polarization), associated with a reduction of cell input resistance

[37]. This hyperpolarization is mediated by the activation of both

ATP-sensitive and Ca2+-dependent K+ channels, due to the rise of

Ca2+ released from intracellular stores [37]. These findings could

thus explain the reduced firing frequency and burst activity

recorded in our experiments after the hypoxic period. On the

contrary, acute exposure to oxygen-glucose deprivated medium

(OGD) produces opposite effects, by transiently increasing the

firing frequency [12], up-regulating L- and N–type Ca2+ channels

in CA1 hippocampal neurons [38], or activating a TRPM7

channel, permeable to Ca2+ and Mg2+ ions [26]. It is worth

noticing that this initial up-regulation of the firing frequency,

which occurs following acute instead of chronic hypoxia, might

downstream activate Ca2+-dependent K+ channels, thus reducing

the firing frequency on a longer time scale, as we observed in

hippocampal neurons after 2 h hypoxia. Moreover, we show that

hypoxia increases the synchronization of neuronal spontaneous

activity either at 11 or 18 DIV. The alteration of the functional

network connectivity after hypoxia was previously reported by

Figure 9. Pre-treatment with leptin partially retrieves the depressive action of hypoxia. A. Outline of the experimental protocol used to
study the effect of leptin pre-treatment before exposure to hypoxic injury (top). Below: representative recordings in control condition and after
hypoxic treatment in presence of leptin (11 and 18 DIV). The reduction of the firing frequency is still present but not so marked as with hypoxia. B.
Main parameters characterizing electrical spontaneous activity of the hippocampal culture at 11 DIV and 18 DIV (n = 9 and n = 6 MEAs, respectively) in
control conditions (white bars) and after pre-treatment with leptin before hypoxia (light grey bars). Regarding 18 DIV neurons, firing frequency
decreased from to 1.560.2 Hz to 1.060.2 Hz (n = 6, p,0.01) after hypoxia. The number of spikes was reduced from 131615 to 84615 (p,0.01). On
the contrary, the number of bursts and the percentage of spikes in bursts were not significantly reduced by the hypoxic treatment. In 11 DIV cultures,
firing frequency and number of spikes were both increased after hypoxia: the former from 0.4060.09 Hz to 0.9060.13 Hz (n = 9; p,0.05), the latter
from 3868 to 84611 (n = 9, p,0.05). The number of bursts was reduced from 2.660.9 to 1.560.5 (p,0.01). The percentage of spikes in bursts was
not significantly altered by hypoxia. Data are given as mean 6 S.E.M. (* p,0.05, **p,0.01 and ***p,0.001; using Student’s paired t-test).
doi:10.1371/journal.pone.0041530.g009

Figure 10. Leptin counteracts the effect of hypoxia on hippocampal neurons. A. Summarizing pie charts showing the percentage of
electrodes potentiated (striped area), inhibited (black area) and unaltered (white area) by hypoxia, hypoxia+leptin and hypoxia+leptin+paxilline,
either at 11 or 18 DIV. B. Top. Percentage of firing frequency reduction with respect to controls under the indicated conditions: hypoxia (black bars),
leptin + hypoxia (light grey bars), leptin+hypoxia+paxilline (white bars). Leptin lowered the firing frequency reduction, either at 11 or 18 DIV (p,0.05
and p,0.01 respectively), while the addition of paxilline removed this effect.
doi:10.1371/journal.pone.0041530.g010
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Galan et al. [39], and it is independent of changes in the firing

rate.

Thus we provide here a functional evaluation of spontaneous

firing impairment in hippocampal primary cultures, following

chronic hypoxia, by means of the MEA technology. This issue is

not deeply explored in literature, since only few reports show the

effect of hypoxia on neuronal activity using the microelectrode

array technique [40,12].

Leptin Counteracts the Hypoxia-induced Inhibition of
Firing Frequency through BK Channels Activation
In the last few years an increasing number of reports has

pointed out the pivotal role of leptin signalling in learning,

memory and neuroprotection, as its receptor is found to be

expressed also in extra-hypothalamic regions such as the

hippocampus [41,42]. The discovery of leptin’s action in cognition

and neuronal survival triggered a strong interest on the possible

correlation between leptin levels and neurodegenerative disorders,

like the Alzheimer disease (AD). Recent works have indentified

Figure 11. Leptin opposes to the depressive action of hypoxia through BK channels. A. Representative MEAs showing hippocampal
spontaneous activity monitored for 90 seconds in normoxia and for 90 seconds after hypoxia+leptin treatment (light grey area). B. Representative
MEAs showing hippocampal spontaneous activity monitored for 90 seconds in normoxia and for 90 seconds after hypoxia+leptin+paxilline treatment
(light grey area). The hypoxic-induced inhibition of the firing rate is restored when leptin is applied together with paxilline.
doi:10.1371/journal.pone.0041530.g011
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leptin levels as good indicators of susceptibility to prevent AD in

elderly population: higher plasma concentrations of leptin

correlated with a significantly lower risk of dementia and AD

[43]. Alzheimer disease could be defined as a brain expression of

metabolic disorder, involving the disregulation of lipid metabolism

and thus positively correlating with obesity [44]. Moreover, it is

proved that leptin ameliorates the pathology of CRND8 trans-

genic mice, a model of AD, by reducing the levels of tau

phosphorylation and b-amyloid in vitro [45,46]. Thus, there is an

increasing interest in exploring the possible use of leptin in

therapeutic treatments to prevent this neurodegenerative disorder.

A role of leptin as neuroprotective agent of hypoxic-ischemic

brain injury is highlighted in recent works, mostly focusing on cell

survival and intracellular pathways [47]. Leptin protects hippo-

campal neurons against cell death, induced by excitotoxic and

oxidative insults, by activating a PI3-kinase-mediated pro-survival

signalling pathway, which involves the activation and phosphor-

ylation of Akt [28,48].

These issues, concerning the role of leptin against hypoxic

injury, have been investigated here for the first time by analyzing

the functional properties of hippocampal networks. Our main

finding is that leptin differently acts on hippocampal neurons

during development. Leptin approximately halves the hypoxia-

induced inhibition of the firing frequency on elder neurons (DIV

18). Leptin is supposed to exert its effect through large-

conductance BK channels, since the addition of paxilline causes

the hypoxic inhibition to be completely restored. In this respect,

patch-clamp experiments will be useful to assess whether leptin

effectively hyperpolarizes the membrane resting potential against

a prolonged depolarization evoked during hypoxia [2,5,30]. A

prominent role of BK channels in neuroprotection is supported

indeed by a number of works on transient cerebral ischemia,

which reveal the involvement of BK channels in promoting

neuronal survival [49,50]. As proposed by Hu [51], activation of

BK channels may serve as an ‘‘emergency brake’’, preventing cell

damage or apoptosis under pathophysiological conditions that

result in a large Ca2+ transient, such as hypoxic/ischemic injury.

Thus, the activation of BK channels by leptin could counteract the

hypoxic depolarization [12,52], repolarizing the cells, so protect-

ing the neurons from the post-hypoxic reduction of firing

frequency. In accordance with this concept, BK channel openers

are reported to provide significant cortical neuroprotection during

acute brain ischemia [53].

Still more pronounced effects, induced by leptin, have been

found on DIV 11 hippocampal neurons, since leptin completely

reverses the effects of hypoxia even by potentiating their firing

activity. On average, leptin counteracts hypoxia on younger

neurons both by reducing the number of inhibited channels and

by inducing a potentiation of the firing frequency in 76% of the

channels. Similarly to elder neurons, the addition of paxilline

causes leptin to become ineffective against hypoxia, thus restoring

the inhibition of spontaneous activity.

Thus, from a functional point of view, we can conclude that

leptin acts by effectively counteracting the depressive effects of

chronic hypoxia on neuronal activity. Future works will be

addressed to reveal whether leptin may preferentially affect specific

neuronal populations.
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