
Integration of the OpenIGTLink Network Protocol for Image-
Guided Therapy with the Medical Platform MeVisLab

Jan Egger,
Brigham and Women’s Hospital and Harvard Medical School, Department of Radiology;
University of Marburg, Math. and Computer Science; University of Marburg, Neurosurgery

Junichi Tokuda,
Brigham and Women’s Hospital and Harvard Medical School, Department of Radiology

Laurent Chauvin,
Brigham and Women’s Hospital, Radiology

Bernd Freisleben,
University of Marburg, Math. and Computer Science

Christopher Nimsky,
University of Marburg, Neurosurgery

Tina Kapur, and
Brigham and Womenï¿½s Hospital, Surgical Planning Laboratory, Department of Radiology

William Wells
Brigham and Womenï¿½s Hospital, Surgical Planning Laboratory, Department of Radiology

Abstract
We present the integration of the OpenIGTLink network protocol for image-guided therapy (IGT)
with the medical prototyping platform MeVisLab. OpenIGTLink is a new, open, simple and
extensible network communication protocol for IGT. The protocol provides a standardized
mechanism to connect hardware and software by the transfer of coordinate transforms, images,
and status messages. MeVisLab is a framework for the development of image processing
algorithms and visualization and interaction methods, with a focus on medical imaging. The
integration of OpenIGTLink into MeVisLab has been realized by developing a software module
using the C++ programming language. As a result, researchers using MeVisLab can interface their
software to hardware devices that already support the OpenIGTLink protocol, such as the NDI
Aurora magnetic tracking system. In addition, the OpenIGTLink module can also be used to
communicate directly with Slicer, a free, open source software package for visualization and
image analysis. The integration has been tested with tracker clients available online and a real
tracking system.

Background—OpenIGTLink is a new, open, simple and extensible network communication
protocol for image-guided therapy (IGT). The protocol provides a standardized mechanism to
connect hardware and software by the transfer of coordinate transforms, images, and status
messages. MeVisLab is a framework for the development of image processing algorithms and
visualization and interaction methods, with a focus on medical imaging.

Corresponding Author : Jan Egger, Brigham and Women’s Hospital and Harvard Medical School, Department of Radiology, Boston,
Massachusetts 02115, USA. egger@bwh.harvard.eduegger@med.uni-marburg.de.

Conflict of interest statement All authors in this paper have no potential conflict of interests.

NIH Public Access
Author Manuscript
Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Int J Med Robot. 2012 September ; 8(3): 282–290. doi:10.1002/rcs.1415.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Methods—We present the integration of the OpenIGTLink network protocol for IGT with the
medical prototyping platform MeVisLab. The integration of OpenIGTLink into MeVisLab has
been realized by developing a software module using the C++ programming language.

Results—The presented integration was evaluated with tracker clients that are available online.
Furthermore, the integration was used to connect MeVisLab to Slicer and a NDI tracking system
over the network. We also measured the latency time during navigation with a real instrument to
show that the integration can be used clinically.

Conclusions—Researchers using MeVisLab can interface their software to hardware devices
that already support the OpenIGTLink protocol, such as the NDI Aurora magnetic tracking
system. In addition, the OpenIGTLink module can also be used to communicate directly with
Slicer, a free, open source software package for visualization and image analysis.

Keywords
OpenIGTLink; MeVisLab; image-guided therapy; surgical navigation; system; Slicer

Introduction
Image-guided therapy (IGT) represents the use of medical images obtained either during or
prior to a treatment, based on the assumption that knowledge of the location and orientation
of a therapeutic process will allow a more specific therapy [1]. In the past few years, image-
guided therapy has been successfully applied to many different clinical applications
including aneurysm surgery [2], deep brain stimulation (DBS) [3], [4], robotic radiation
delivery for the treatment of liver metastases [5], biopsy [6], [7], and radiotherapy (IGRT) of
prostate cancer [8]. Locating surgical tools relative to the patient’s body by using position
and orientation tracking systems is now common. This can be achieved with optical [9],
electromagnetic [10] or ultrasonic [11], [12] sensors. Furthermore, this can also be achieved
with image acquisition using real-time ultrasound, computed tomography (CT) or magnetic
resonance imaging (MRI). For visualization and guidance, this localization and image
information is transferred from acquisition devices to navigation software. However, among
the devices and the software in the operating room (OR) environment, standardization of the
communication is still a common issue in image-guided therapy [13]. Furthermore, with the
increasing number of medical software applications that are developed by researchers
worldwide under different medical (prototyping) environments, such as Slicer [14],
MeVislab [15], OsiriX [16], the XIP-Builder [17] – and the previous version of the XIP-
Builder, the RadBuilder [18], [19] – standardization of information and communication
technology is of increasing importance in order for these research applications to robustly
interact with the devices in the operating room. Such standardization will also enable
communication and information exchange between applications that have been developed
for different medical environments; it will allow different research teams to work together to
collaboratively solve open image-guided therapy problems while using their individual
software development platforms. Furthermore, there has been a strong demand for
communication standards among devices and navigation software with increasing research
on robotic devices that support image-guided interventions to allow sharing of information
such as target positions, images and device status. In order to tackle this problem, Tokuda et
al. [20] defined an open, simple and extensible peer-to-peer network protocol for IGT called
OpenIGTLink.

The advantage of OpenIGTLink is its simple specification, initially developed through a
collaboration of academic, clinical and industrial partners for developing an integrated
robotic system for MRI-guided prostate interventions [21]. It was designed for use in the
application layer on the TCP/IP stack, allowing researchers to develop a prototype system

Egger et al. Page 2

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

that integrates multiple medical devices using the standard network infrastructure. Unlike
existing interconnection standards for medical devices e.g. ISO 11 073/IEEE 1073 Standard
for Medical Device Communication [22], CANOpen (EN 50 325-4) [23], Controller-Area
Network (CAN) (ISO 118 988) [24], and Medical Device Plug-and-Play (MD PnP) [25], the
OpenIGTLink protocol itself does not include mechanisms to establish and manage a
session. It only defines a set of messages, which is the minimum data unit of this protocol.
An OpenIGTLink message contains all information necessary for interpretation by the
receiver. The message begins with a 58-byte header section, which is common to all types of
data, followed by a body section. The format of the body section varies by the data type that
is specified in the header section. Since any compatible receiver can interpret the header
section, which contains the size and the data type of the body, every receiver can gracefully
handle any message, even those with an unknown data type, by ignoring incompatible
messages without the system crashing. Hence, this two-section structure allows developers
to define their own data types while maintaining compatibility with other software that
cannot interpret their user-defined data types. This simple message mechanism eases the
development of OpenIGTLink interfaces and improves compatibility, thus it is suitable for
prototyping a clinical system consisting of multiple devices and software connected via
standard TCP/IP network. For a detailed description of the standard data types, see the
publication of Tokuda et al. [20]. Further information is available on the web page provided
by the National Alliance for Medical Image Computing (NA-MIC) [26].

In this paper, we present the integration of OpenIGTLink with the medical prototyping
platform MeVisLab. MeVisLab is a framework for the development of image processing
algorithms and visualization and interaction methods, with a focus on medical imaging. The
integration of OpenIGTLink into MeVisLab has been realized by developing a software
module in the C++ programming language. As a result, researchers using MeVisLab now
have the possibility to connect to hardware devices that already support the OpenIGTLink
protocol, such as the NDI Aurora magnetic tracking system. In addition, the OpenIGTLink
module can also be used to communicate directly with Slicer, a free, open source software
package for visualization and image analysis. The integration has been tested with tracker
clients available online. Moreover, the integration was used to connect MeVisLab to Slicer
and a commercial NDI tracking system over the network.

Material and methods
This section describes our approach for integrating OpenIGTLink with MeVisLab. Thereby,
the integration has been realized as a client-server model. A client-server model is a
distributed application where a resource or service is provided by a server to a resource or
service requester which is called the client. The basic concept of OpenIGTLink and the
interaction of OpenIGTLink with different devices is shown in Figure 1: Image-guided
therapy often relies on communication among sensors, devices and computers. For example,
an intraprocedural imaging scanner e.g. MRI (see upper right image in Figure 1) transfers
real-time images to navigation software (see upper left image in Figure 1) to allow the
clinicians to monitor the progress of procedure; positions of surgical instruments are tracked
by a optical position sensor device (see lower left image in Figure 1) and transferred to
navigation software to indicate where those instruments are with respect to pre-procedural
images; a robotic interventional assistance device (see lower right image in Figure 1)
receives commands from navigation software and returns the current position of its end-
effector or the current status of the device as feedbacks. Keeping Figure 1 in mind, the
overall workflow of the OpenIGTLink / MeVisLab integration starts with the image data
(see Figure 2). The image data is provided to a user-defined MeVisLab network. To load
image data into a user-defined MeVisLab network, several modules such as OpenImage or
ImageLoad exist that allow us to process various image formats, including the standard

Egger et al. Page 3

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

format for medical image data, called DICOM (Digital Imaging and Communications in
Medicine, http://medical.nema.org). Besides the data fields (for example information about
the images and diagnostic findings) DICOM also defines the syntax and semantic of
commands and messages between DICOM compatible hardware. Nowadays, DICOM is the
most used format for medical image data for communication between commercial software,
open-source software, and devices/imaging systems. To continue processing the loaded
image data, MeVisLab offers a collection of modules, such as image processing modules,
visualization modules and also ITK (Insight Toolkit) (http://www.itk.org) modules [27]. In
addition, MeVisLab allows users to integrate their own modules, for example, under
Microsoft Visual Studio in C++. For the integration of the OpenIGTLink protocol with
MeVisLab, a new module has been developed. As shown in Figure 2, the OpenIGTLink
module handles the data exchange between MeVisLab and an external device such as a
robot controller or 6-DOF position and orientation tracker. During the data exchange,
different types of information such as the status, the image data or the position coordinates
are transferred via the OpenIGTLink protocol. The overall workflow of Figure 2 concludes
with the end of the IGT procedure.

The following sections describe the implementation of the OpenIGTLink module under
MeVisLab in detail. The module has been realized as an image processing module (ML)
under MeVisLab and the basic source code has been created with the Project Wizard from
MeVisLab.

Implementation of the constructor
The following code example characterizes how the constructor of the OpenIGTLink module
has been implemented. The initialization Module(1, 1) in the header of the constructor
implementation indicates the number of input and output image connections for the
OpenIGTLink module. In our example, we have one input and one output image connection.
However, this is not a fixed number, and if a different number is required, the generation of
more input and output connections is also possible. ML_TRACE_IN is a status and tracing
macro that is set up by default if the Project Wizard of MeVisLab is used for generating the
basic source code for a user’s own module. The OpenIGTLink module provides several GUI
components including an input field for the network port and a button to start listening to the
client and setting up the TCP connection. To implement those components, we first suppress
calls of the handleNotification function (see next code example) on field changes and to
avoid side effects during the initialization phase, we obtain a pointer to the container of all
the module’s fields. Then, we create different fields, e.g. for the port and the start button.
For visualization and further processing of the received data through the OpenIGTLink
connection, we additionally create and add an output field for the data of the client (in this
case the transformation data). Finally, the calls of the handleNotification function on field
changes is reactivated again at the end of the constructor.

// constructor
OpenIGTLink::OpenIGTLink()
: Module(1, 1)
{
ML_TRACE_IN(“OpenIGTLink::OpenIGTLink()”); // status and tracing macro
// suppress calls of handleNotification on field changes to avoid side
effects during
initialization phase
handleNotificationOff();
// get a pointer to the container of all the module’s fields

Egger et al. Page 4

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://medical.nema.org
http://www.itk.org

FieldContainer *fields = getFieldContainer();
…
// create different fields, e.g. for the port and a start button
_port = fields->addInt(“port”);
_start = fields->addNotify(“start”);
// create and add an output field for the transformation data of the client
_transformation = new SoTransform();
(_outSoTransformation =
fields->addSoNode(“outputTransformation”))-
>setSoNodeValue(_transformation);
// reactivate calls of handleNotification on field changes
handleNotificationOn();
}

Handling notifications of the OpenIGTLink module
The next code example describes how the important parts of the handleNotification function
for the OpenIGTLink module can be implemented. The handleNotification function is called
on user interactions, e.g. the start button. However, the function is not called when new data
is available through the OpenIGTLink mechanism, that is handled inside the
handleNotification function when the start button has already been pressed. Just as with the
constructor, ML_TRACE_IN is a status and tracing macro that is set up by default if the
Project Wizard from MeVisLab is used for generating the basic source code for a user’s own
module. If the start button has been pressed by the user, the initialization for setting up the
connection and the data transfer is prepared. For example, the user-defined port value is
used to create the server socket. Afterwards, if the socket is valid – and therefore the client is
connected – the different data types are checked for incoming data. This procedure follows
the standard way of using the OpenIGTLink library; there are tutorials and a several code
snippets available online (for example, see
http://www.na-mic.org/Wiki/index.php/OpenIGTLink/Library/Tutorial). To keep the code
snippet simple, we only list the if-condition for the TRANSFORM data type. If the
TRANSFORM data type has been received from the client, the ReceiveTransform function
is called with the socket und the message header (headerMsg) as parameters.

// handle changes of a field
void OpenIGTLink::handleNotification (Field *field)
{
ML_TRACE_IN(“OpenIGTLink::handleNotification ()”); // status and tracing
macro
…
if (field == _start)
{
int port = _port->getIntValue();
igtl::ServerSocket::Pointer serverSocket;
serverSocket = igtl::ServerSocket::New();
int r = serverSocket->CreateServer(port);
…
igtl::Socket::Pointer socket;
…
if (socket.IsNotNull()) // if client connected
{

Egger et al. Page 5

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.na-mic.org/Wiki/index.php/OpenIGTLink/Library/Tutorial

…
// check data type and receive data body
if (strcmp(headerMsg->GetDeviceType(), “TRANSFORM”) == 0)
{
ReceiveTransform(socket, headerMsg);
)
…
}
…
}
…
}

Processing the TRANSFORM data type
The third code example illustrates the implementation of the ReceiveTransform function that
is called to handle and process the data type TRANSFORM. The function has two
parameters: a socket and the message header that are passed by the function call inside the
handleNotification function (see previous section and code example). First, a message buffer
is created inside the ReceiveTransform function to receive the transform data. This
procedure follows the standard method of using the OpenIGTLink library as is described in
the tutorials and complete code examples available online. Next, the notification of the
transformation field – that has been created inside the constructor – has to be turned off.
Then, the transformation value received by the client is set to the corresponding output field
of the OpenIGTLink module. Afterwards, the notification of the transformation field is
turned on again. Accordingly, all inventor sensors are forced to be triggered and do a refresh
on all viewers. An inventor sensor is an Inventor object that watches for various types of
events and invokes a user-supplied callback function when these events occur. Additionally,
the transformation field is marked as modified, simulating a change to notify all auditors of
the instance.

// handle and process data type TRANSFORM
int OpenIGTLink::ReceiveTransform(igtl::Socket * socket, igtl::MessageHeader
*
header)
{
std::cerr << “Receiving TRANSFORM data type.” << std::endl;
// create a message buffer to receive transform data
igtl::TransformMessage::Pointer transMsg;
transMsg = igtl::TransformMessage::New();
transMsg->SetMessageHeader(header);
transMsg->AllocatePack();
…
_transformation->enableNotify(false); // turning notification of this field
off
_transformation->setMatrix(SbMatrixValue); // setting value
_transformation->enableNotify(true); // turning notification of this field on
// force all inventor sensors to be triggered and do a refresh on all viewers
SoDB::getSensorManager()->processDelayQueue(false);
// marks an instance as modified, simulating a change to it this will notify
all

Egger et al. Page 6

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

auditors of the instance
_transformation->touch();
…
}

Description of modules and connections
Figure 3 shows the modules and connections that have been used for realizing the
OpenIGTLink protocol under the medical prototyping platform MeVisLab. Overall, the data
and communication flow goes from the bottom to the top. It starts with the OpenImage
module which can be applied by the user to load an image for example in the DICOM
format. After the image is loaded it is automatic passed via an output (right triangle (1)) to
the OpenIGTLink module. The main module in the MeVisLab network is the OpenIGTLink
module that has several inputs (lower area) and outputs (upper area (2)). One input (the
lower left one, triangle (3)) is used for the image data that is provided by an OpenImage
module as previously described. The transformation data received from the client is passed
on via the third output from the left (upper row) of the OpenIGTLink module to a so called
SoGroup module. The transformation data influences a 3D cylinder that is also connected
with the SoGroup module. The SoExaminerViewer module in turn gets the transformed
cylinder and visualizes it in 3D in a window where several user interactions and settings are
possible. An additional transform field is used to analyze the transform data from the client
with the decomposed matrices modules. However, these modules are not necessary for the
processing of the client data, because it is directly available at one of the module’s output.
On the right side of the screenshot of Figure 3, the interface of the OpenIGTLink module
with all its parameter settings and buttons is shown. The OpenIGTLink module with all its
inputs and outputs is shown in detail in Figure 4, where the lower two connections are the
inputs. For our implementation, we set up an input for image data and for data structures.
The data structures can be used, for example, for maker lists– a marker list is a list of
MeVisLab XMarker objects which consists of a 6D Position, a 3D Vector, a Type and a
Name property. The upper four connections are the outputs of the OpenIGTLink module.
One output, for example, can be used for the image data that has been received by the client
via the OpenIGTLink protocol. The next two outputs are OpenInventor outputs that are used
to provide only the rotation or the whole transformation for the tracker that has been
provided by the client over the OpenIGTLink protocol. Finally, the OpenIGTLink module in
the presented example also has an output connection for data structures like marker lists or
seed points. Figure 3 shows the interface of the OpenIGTLink module with all its parameters
and settings realized as a server, so the tracker clients could connect to it. We also realized
our MeVisLab integration as a client. Therefore, the MeVisLab integration connects itself to
a sever. We used this integration to connect to a real tracker system from NDI. However, for
the realization as a client one more parameter has been used, which was the IP address of the
server. For the IP address we set up an additional field in the interface of the OpenIGTLink
module where the user can define it manually. After the user starts the client the IP address
from the interface field is passed to the handleNotification function (see section Handling
notifications of the OpenIGTLink module) and is then used to connect the client socket to
the server.

Specification of the main data structures
As previous mentioned, we only list the if-condition for the TRANSFORM data type to keep
the code snippet simple and clear. However, besides the TRANSFORM data type the
OpenIGTLink protocol defines overall five default types: ‘IMAGE’, ‘POSITION’,
‘STATUS’ and ‘CAPABILITY’. The main data structures are introduced in the following
paragraph, for a detailed description see the publication of Tokuda et al. [20]. The IMAGE

Egger et al. Page 7

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

format in the OpenIGTLink protocol supports 2D or 3D images with metric information,
including image matrix size, voxel size, coordinate system type, position and orientation.
The POSITION data type is used to transfer position and orientation information. The data
are a combination of three-dimensional (3D) vector for the position and quaternion for the
orientation. Although equivalent position and orientation can be described with the
TRANSFORM data type, the POSITION data type has the advantage of smaller data size.
Therefore it is more suitable for pushing high frame-rate data from tracking devices. The
STATUS data type is used to notify the receiver about the current status of the sender. The
data consist of status code in a 16-bit unsigned integer, subcode in a 64-bit integer, error
name in a 20 byte-length character string, and a status message. The CAPABILITY data
type lists the names of message types that the receiver can interpret. Although the
OpenIGTLink protocol guarantees that any receiver can at least skip messages with
unknown type and continue to interpret the following messages, it is a good idea to get the
capability information at system start-up to ensure application-level compatibility of the
various devices [20]. All these data structures can be used for the connection between the
OpenIGTLink and MeVisLab and therefore transfer different information between a
hardware device and MeVisLab based software.

Results
To use the OpenIGTLink library under the MeVisLab platform (Version 2.1, 2010-07-27
Release), we implemented an ML MeVisLab module in C++ with Microsoft Visual Studio
2008 (Version 9.0.21022.8 RTM). Figure 5 shows a screenshot of the MeVisLab prototype
when a client provides tracker coordinates. The tracker coordinates from a tracker client are
shown in the command window on the left side of Figure 5. The 3D visualization window in
Figure 5 belongs to a SoExaminerViewer of MeVisLab that was used to visualize a cylinder
whose location is connected with the tracker coordinates from a tracker client. In our
evaluation, we used the simulator programs that come with the OpenIGTLink library. This
includes, for example, a TrackerClient that works as a TCP client and is an example that
illustrates how to send dummy tracking coordinates to a server. The tracker coordinates
from the client could be displayed in real-time with a laptop that has an Intel Atom Z530
CPU, 1.60 GHz, 2 GB RAM, Windows Vista Home Premium x32 Version, Version 2007,
Service Pack 1. Note that even if Microsoft Windows Vista is not officially listed under the
supported platforms of the OpenIGTLink library, we were able to successfully build,
execute and use the simulator programs also under Windows Vista.

The frame rates for the SoExaminerViewer were measured with the SoShowFPS module
from MeVisLab. The module was directly connected with the visualization module and
superimposes the actual frame per second rate into the rotating tracker. With the introduced
laptop configuration, we could achieve 35 fps on the average which is sufficient for the
clinical requirements. The detailed times (min, max and mean) in milliseconds (ms) for the
transfer and the visualization of 100 packets (via the data type TRANSFORM) from a
tracker client to MeVisLab is presented in Table 1 (the overall mean and standard deviation
was 30.77±1.79 ms). Similar results could be achieved when we send TRANSFORM data
types from the laptop to a tracker server – NDI tracking system – over a network. For the
transfer and the visualization of 100 packets we measured 19.28±1.43 ms (min=17.56 ms
and max=24.06 ms). However, this time results also depend on the kind of 3D object that is
rendered and visualized – as shown in Figure 5 we visualized a simple cylinder. Therefore,
we also measured the time without transferring the data to the visualization module and
accomplished 1.48±0.22 ms (min=1.35 ms and max=2.86 ms).

Egger et al. Page 8

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Discussion
In this contribution, we have presented the integration of the OpenIGTLink network
protocol for image-guided therapy (IGT) with the medical prototyping platform MeVisLab.
MeVisLab is a non open-source framework for the development of image processing
algorithms and visualization and interaction methods, with a focus on medical imaging and
the OpenIGTLink protocol is a new, open, simple and extensible network communication
protocol for image-guided therapy. The protocol allows users to transfer transform, image
and status messages as a standardized mechanism to connect software and hardware. To the
best of our knowledge, the developed solution is the first approach to successfully integrate
OpenIGTLink with MeVisLab. Researchers using MeVisLab now have the possibility to
connect to hardware devices that already support the OpenIGTLink protocol, such as the
NDI Aurora magnetic tracking system [28]. The integration has been tested with tracker
clients that are available online. Another possible application would be the integration of
commercial FDA-approved surgical navigation system with research prototype software
built on top of the MeVisLab platform [29]. OpenIGTLink communication enables sharing
pre- and intraoperative images as well as instrument tracking information between two
systems online. The presented integration allows of combination of approved systems and
prototype systems that are still under research. This means that researchers can explore new
image processing and visualization technique on MeVisLab in the clinical environment,
while performing standard surgical planning and image guidance on the commercial system.
In fact, an OpenIGTLink interface has become available as an option for research sites in a
popular FDA-approved surgical navigation system provided by BrainLAB AG [30].

There are several areas of future work. For example, the latency and CPU load during image
data transfers should be evaluated under MeVisLab by varying the data size of images.
Moreover, several IGT applications apart from the already available IGT applications, such
as the ultrasound navigation system, the tracking devices and navigation software and the
MRI-compatible robot system for prostate intervention, will be available soon and therefore
should be integrated and evaluated using the OpenIGTLink protocol. Finally, we plan to use
the OpenIGTLink protocol for the communication between Slicer and MeVisLab and test
the proposed solution under different operating systems such as Linux.

Acknowledgments
The authors would like to thank Fraunhofer MeVis in Bremen, Germany, for their collaboration and especially
Prof. Dr. Horst K. Hahn for his support. This work is supported by NIH 2R01CA111288-06, 5P41RR019703-07,
5P01CA067165-13, 5U54EB005149-07, 5R01CA138586-02, and Center for Integration of Medicine and
Innovative Technology (CIMIT) 11-325. Its contents are solely the responsibility of the authors and do not
necessarily represent the official views of the NIH.

References
[1]. Galloway, R. New Applications and Continuing Challenges in Image-Guided Therapy. Medical

Physics, Volume 32, Issue 6, Joint Imaging, Therapy Symposium, Advances in Image-Guided
Intervention. 2005.

[2]. König RW, Heinen CP, Antoniadis G, Kapapa T, Pedro MT, Gardill A, Wirtz CR, Kretschmer T,
Schmidt T. Image guided aneurysm surgery in a Brainsuite® ioMRI Miyabi 1.5 T environment.
Acta Neurochirurgica Supplementum. 2011; 109:107–10.

[3]. Lanotte M, Cavallo M, Franzini A, Grifi M, Marchese E, Pantaleoni M, Piacentino M, Servello D.
A computational model to compare different investment scenarios for mini-stereotactic frame
approach to deep brain stimulation surgery. Journal of Neurosurgical Sciences. 2010; 54(3):91–7.
[PubMed: 21423075]

Egger et al. Page 9

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

[4]. Egger, J.; Kappus, C.; Freisleben, B.; Nimsky, Ch. Proceedings of Bildverarbeitung für die
Medizin (BVM). Springer Press; Berlin, Germany: 2011. An efficient, geometric Approach to
support the Trajectory Determination for the Deep Brain Stimulation (in German); p. 5

[5]. Vautravers-Dewas C, Dewas S, Bonodeau F, Adenis A, Lacornerie T, Penel N, Lartigau E,
Mirabel X. Image-Guided Robotic Stereotactic Body Radiation Therapy for Liver Metastases: Is
There a Dose Response Relationship? International Journal of Radiation Oncology Biology
Physics. 2011

[6]. Olaya W, Bae W, Wong J, Wong J, Roy-Chowdhury S, Kazanjian K, Lum S. Accuracy and
upgrade rates of percutaneous breast biopsy: the surgeon’s role. The American Surgeon. Oct.
2010 76(10):1084–7. [PubMed: 21105615]

[7]. Xu H, Lasso A, Vikal S, Guion P, Krieger A, Kaushal A, Whitcomb LL, Fichtinger G. MRI-
guided robotic prostate biopsy: a clinical accuracy validation. Medical Image Computing and
Computer-Assisted Intervention. 2010; 13(Pt 3):383–91. [PubMed: 20879423]

[8]. Deng J, Chen Z, Yu JB, Roberts KB, Peschel RE, Nath R. Testicular Doses in Image-Guided
Radiotherapy of Prostate Cancer. International Journal of Radiation Oncology. Biology and
Physics (IJROBP). Apr.2011 online.

[9]. Bucholz RD, Smith KR, Henderson J. Intraoperative localization using a three-dimensional optical
digitizer. SPIE. 1993:312–322.

[10]. Birkfellner W, Watzinger F, Wanschitz F, Ewers R, Bergmann H. Calibration of tracking systems
in a surgical environment. Transactions on Medical Imaging. 1998; 17(5):737–742.

[11]. Barnett GH, Kormos DW, Steiner CP, Weisenberger J. Intraoperative localization using an
armless, frameless stereotactic wand, Technical note. Journal of Neurosurgery. 1993; 78(3):510–
514. [PubMed: 8433160]

[12]. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic
integration of computerized tomographic imaging and the operating microscope. Journal of
Neurosurgery. 1986; 65(4):545–549. [PubMed: 3531430]

[13]. Dimaio S, Kapur T, Cleary K, Aylward S, Kazanzides P, Vosburgh K, Ellis R, Duncan J,
Farahani K, Lemke H, Peters T, Lorensen WB, Gobbi D, Haller J, Clarke LL, Pizer S, Taylor R,
Galloway R Jr, Fichtinger G, Hata N, Lawson K, Tempany C, Kikinis R, Jolesz F. Challenges in
image-guided therapy system design. Neuroimage. 2007; 37:144–S151.

[14]. Slicer – a free, open source software package for visualization and image analysis. Surgical
Planning Laboratory (SPL), Brigham and Women’s Hospital, Harvard Medical School; Boston,
Massachusetts, USA: Available from: http://www.slicer.org/

[15]. MeVisLab – development environment for medical image processing and visualization. MeVis
Medical Solutions AG and Fraunhofer MEVIS; Bremen, Germany: Available from:
http://www.mevislab.de/

[16]. OsiriX – image processing software dedicated to DICOM images produced by imaging
equipment (MRI, CT, PET, PET-CT, SPECT-CT, Ultrasounds, …). Available from:
http://www.osirix-viewer.com/

[17]. XIP-Builder – the eXtensible Imaging Platform is a development tool to rapidly create
applications for processing and visualizing medical image data Siemens Corporate Research.
Princeton, New Jersey, USA: Available from:
https://collab01a.scr.siemens.com/xipwiki/index.php/XipBuilder

[18]. Egger, J.; Großkopf, S.; O’Donnell, T.; Freisleben, B. A Software System for Stent Planning,
Stent Simulation and Follow-Up Examinations in the Vascular Domain. 22nd IEEE International
Symposium on Computer-Based Medical Systems; Albuquerque, New Mexico, USA. Aug. 2009;
IEEE Press, ACM/SIGAPP; p. 1-7.

[19]. Egger, J.; O’Donnell, T.; Hopfgartner, C.; Freisleben, B. Graph-Based Tracking Method for
Aortic Thrombus Segmentation. Proceedings of 4th European Congress for Medical and
Biomedical Engineering, Engineering for Health; Antwerp, Belgium. Nov. 2008; Springer; p.
584-587.

[20]. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J,
Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N. OpenIGTLink:
an open network protocol for image-guided therapy environment. The International Journal of

Egger et al. Page 10

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.slicer.org/
http://www.mevislab.de/
http://www.osirix-viewer.com/
http://https://collab01a.scr.siemens.com/xipwiki/index.php/XipBuilder

Medical Robotics and Computer Assisted Surgery. Dec; 2009 5(4):423–434. doi: 10.1002/rcs.
274.

[21]. Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G.
MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME
Transactions on Mechatronics. 2008; 13(3):295–305. [PubMed: 21057608]

[22]. IEEE Standard for medical device communications – overview and framework. 1996. IEEE
Standard No. 1073–1996

[23]. 2002 Industrial communications subsystem based on ISO 11898 (CAN) for controller–device
interfaces, Part 4: CANopen. 2002. p. 1995ENEN 50325–450325–4

[24]. Road vehicles – interchange of digital information – controller area network (CAN) for high-
speed communication. 2003. p. 2003ISOISO 11898–1. 200311898–1

[25]. Schrenker RA. Software engineering for future healthcare and clinical systems. IEEE Computer
Society, Computer. 2006; 39(4):26–32.

[26]. National Alliance for Medical Image Computing (NA-MIC). OpenIGTLink. 2008. Available
from: http://www.na-mic.org/Wiki/index.php/OpenIGTLink

[27]. ITK software guide. Available from: http://www.itk.org/ItkSoftwareGuide.pdf

[28]. Pace D, Tokuda J, Liu H, Hata N. Image Guided Therapy in Slicer3: Advanced Tutorial on
Navigation using OpenIGTLink. NCIGT-SNR Tutorial. Jun.2008

[29]. Elhawary H, Liu H, Patel P, Norton I, Rigolo L, Papademetris X, Hata N, Golby AJ.
Intraoperative real-time querying of white matter tracts during frameless stereotactic
neuronavigation. Neurosurgery. Feb.2011 68(2):506–16. discussion 516. [PubMed: 21135719]

[30]. BrainLAB AG. Available from: http://www.brainlab.com

Egger et al. Page 11

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.na-mic.org/Wiki/index.php/OpenIGTLink
http://www.itk.org/ItkSoftwareGuide.pdf
http://www.brainlab.com

Achieved Highlights

• The successful integration of OpenIGTLink with MeVisLab is presented

• The developed solution allows MeVisLab programs to connect to image-guided
therapy (IGT) devices

• Real-time visualization of tracker client information is possible in MeVisLab

• Standardized communication to share target positions, images and device status
is provided

• The developed solution enables direct communication between different medical
(prototyping) environments, such as Slicer and MeVisLab

Egger et al. Page 12

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
The basic concept of OpenIGTLink (see also
http://www.na-mic.org/Wiki/index.php/OpenIGTLink).

Egger et al. Page 13

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.na-mic.org/Wiki/index.php/OpenIGTLink

Figure 2.
The overall workflow of the presented system, starting with the image data and finishing
with the end of Image Guided-Therapy (IGT).

Egger et al. Page 14

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Modules and connections that have been used for realizing OpenIGTLink under the medical
prototyping platform MeVisLab (see http://www.mevislab.de/).

Egger et al. Page 15

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mevislab.de/

Figure 4.
The OpenIGTLink module with its inputs and outputs realized as an ML module in C++
under MeVisLab.

Egger et al. Page 16

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Screenshot of the MeVisLab prototype and a client that provides tracker coordinates.

Egger et al. Page 17

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Egger et al. Page 18

Ta
bl

e
1

T
im

e
(m

in
, m

ax
 a

nd
 m

ea
n)

 in
 m

ill
is

ec
on

ds
 (

m
s)

 f
or

 th
e

tr
an

sf
er

 a
nd

 th
e

vi
su

al
iz

at
io

n
of

 1
00

 p
ac

ke
ts

 (
vi

a
th

e
da

ta
 ty

pe
 T

R
A

N
SF

O
R

M
)

fr
om

 a
 tr

ac
ke

r
cl

ie
nt

 to
 M

eV
is

L
ab

.

R
un N
o.

1
2

3
4

5
6

7
8

9
10

m
in

9.
34

10
.7

6
9.

39
8.

15
9.

71
8.

39
8.

25
9.

69
9.

46
6.

66

m
ax

51
.8

6
41

.7
6

43
.2

8
52

.1
5

43
.4

3
39

.3
4

56
.9

3
45

.1
9

67
.7

2
85

.9
6

m
ea

n
29

.6
6

30
.1

4
30

.0
1

30
.2

4
30

.0
9

29
.9

8
31

.8
6

29
.7

0
30

.4
5

35
.5

4

Int J Med Robot. Author manuscript; available in PMC 2013 September 01.

