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Abstract Aortic stenosis (AS) is the most frequent valvular
heart disease. Severe AS results in concentric left ventric-
ular hypertrophy, and ultimately, the heart dilates and fails.
During a long period of time patients remain asymptomatic.
In this period a pathology progression should be monitored
and effectively thwarted by targeted measures. A cascade of
cellular and molecular events leads to chronic degeneration
of aortic valves. There are some molecular attributes
characteristic for the process of valvular degeneration with
clear functional link between shifted cell-cycle control,
calcification and tissue remodelling of aortic valves.
Bioactivity of implanted bioprosthesis is assumed to result
in its dysfunction. Age, gender (females), smoking,
Diabetes mellitus, and high cholesterol level dramatically
shorten the re-operation time. Therefore, predictive and
preventive measures would be highly beneficial, in
particular for young female diabetes-predisposed patients.
Molecular signature of valvular degeneration is reviewed
here with emphases on clinical meaning, risk-assessment,
predictive diagnosis, individualised treatments.
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Degenerative valve disease: clinical aspects
and molecular signature

Clinical assessment of aortic stenosis

Aortic stenosis (AS) is the most frequent valvular heart
disease. Its prevalence increases with age, and has been
reported between 2–4% in a population ≥65 years old [1,
2]. Aortic sclerosis is the precursor of AS and has been
found in 25–30% [3]. Calcific AS refers to a narrowing of
the aortic valve lumen as a result of the deposition of
calcium in the cusps and valve ring. Severe AS results in
concentric left ventricular hypertrophy, and ultimately, the
heart dilates and fails. During a long period with increasing
outflow tract obstruction, which results in increasing left
ventricular pressure load, patients remain asymptomatic,
acute complications are rare. Therefore, these asymptomatic
patients with AS should be monitored closely for the
development of symptoms and progression of disease,
especially by Doppler-echocardiography, an accurate non-
invasive measurement of the stenosis severity (Fig. 1).

However, as soon as symptoms occur, such as exertional
dyspnoea, angina, and syncope, outcome becomes poor.
Average survival after the onset of symptoms has been
reported to be less than 2–3 years [4]. In this situation,
valve replacement does not only result in dramatic
symptomatic improvement but also in good long term
survival [5]. This holds true even for patients with already
reduced left ventricular function, as long as functional
impairment is, indeed, caused by AS. Thus, there is general
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agreement that urgent surgery must be strongly recommended
in symptomatic patients [5–7].

A cascade of cellular and molecular events leads to chronic
degeneration of aortic valves

Mechanical stress is currently considered as the main cause
that triggers degenerative processes. This is accompanied
by a thickening of the valve cusps, and remodelling of the
left ventricular geometry. Clinical-pathological studies of
aortic stenosis have demonstrated an abundant deposition
of extracellular matrix (ECM) proteins physiologically
present in bones [6], and cuspal calcific deposits associated
with mineralisation of devitalised cells [8]. Moreover, bone-
marrow derived endothelial progenitor and dendritic cells
have been identified in both native degenerative aortic
valves and degenerative prostheses; the co-localisation of
those cells with inflammatory infiltrates has been demon-
strated [9]. A cascade of cellular and molecular events
leading to the degeneration of aortic valves is summarised
in Fig. 2.

Mineralisation of skeletal and dental tissue is genetically
programmed and physiologically well-regulated. In con-
trast, non-physiological calcification occurs in numerous
pathological cardiovascular conditions including athero-
sclerosis, valvular stenosis, and reperfused ischemic myo-
cardium. This is proposed to be an undesired common
feature of degenerative or / and inflammatory tissue
changes throughout the body. Pathomechanisms leading to
the calcification of heart valves are still largely unknown.
Contrary to physiological formation of bones, cuspal
calcific deposits in the heart are non-physiological and
normally not found in healthy cardiovascular tissues [6, 8,
10–12]. Numerous clinical-pathological studies of calcified
valves have demonstrated cuspal calcific deposits tightly
associated with mineralisation of devitalised cells, indicat-
ing a cascade of (programmed?) molecular events leading
to chronic degeneration of myocardial tissue [6]. Tissue

homeostasis strictly depends on a balance between cell
growth and death. These aspects have been investigated
at the level of gene transcription as reported earlier
[7]: Table 1 summarises the list of gene products, a
corresponding function of which is suppressed specifically
in calcified versus non-calcified aortic valves. Among
them, 40 proteins essential for energy metabolism are
suppressed by aortic calcification. Furthermore, an ex-
pression of cytoskeleton-formation as well as ECM-
building and tissue remodelling proteins (altogether 23
proteins) is completely suppressed in calcified valvular
tissue. The above given protein core is switched off
specifically in the case when the balance between cell
growth and death in tissue homeostasis is shifted towards
cellular death.

Taking these data together, a well-coordinated programme
of molecular events targeted in cellular death can be

Fig. 1 Clinical assessment by
(a) Doppler echocardiography;
(b) two dimensional echocardi-
ography (parasternal short axis
view)
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Fig. 2 Cascade of cellular and molecular events leading to the
degeneration of aortic valves: Inflammatory cells release cytokines and
growth factors that act on valve fibroblasts. A subset of myofibroblasts
may differentiate into the osteoblast cell-phenotype that secretes bone
matrix proteins involved in the valve calcification process. However,
several question remain open, such as - whether there is a differential role
of the multiple subset of immune / inflammatory cells in the depicted
cascade of events followed by the question, - whether the above
demonstrated cellular events can serve as indicators for predictive
diagnostics at pre-stages of valvular calcification
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Table 1 The data represent 63 gene products, the function of which is suppressed in calcified versus non-calcified degenerated aortic valves. There are
following functional groups: energy metabolism, proteins responsible for cytoskeleton formation, matrix building, and tissue remodelling [7]

GeneBank Accession / SwissProt
Accession

Gene (protein) name / function

I. Energy metabolism proteins (40 genes)

S70154 Q16146 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase)

D90228 P24752 acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl Coenzyme A thiolase)

L07033 P35914 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase (hydroxymethylglutaricaciduria)

X83618 P54868 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)

U62961 P55809 3-oxoacid CoA transferase

M93107 Q02338 3-hydroxybutyrate dehydrogenase (heart, mitochondrial)

X17025 Q13907 isopentenyl-diphosphate delta isomerase

X69141 P37268 farnesyl-diphosphate farnesyltransferase 1

M88468 Q03426 mevalonate kinase (mevalonic aciduria)

U49260 P53602 mevalonate (diphospho) decarboxylase

D78130 Q14534 squalene epoxidase

D63807 P48449 lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)
Q9UEZ1

AF034544 O60492 7-dehydrocholesterol reductase

U60205 Q15800 sterol-C4-methyl oxidase-like

M67466 P14060 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2
Q14545

P26439

Y09501 P00387 diaphorase (NADH) (cytochrome b-5 reductase)

L21934 P35610 sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1

R07932 diacylglycerol O-acyltransferase homolog 1 (mouse)

M74047 P31213 steroid-5-alpha-reductase, alpha polypeptide 2 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 2)

L33179 Q13713 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide
P40394

M68895 P28332 alcohol dehydrogenase 6 (class V)

M63967 P30837 aldehyde dehydrogenase 1 family, member B1

X05409 P05091 aldehyde dehydrogenase 2 family (mitochondrial)
Q03639

M73704 Q00169 phosphotidylinositol transfer protein

L34081 Q14032 bile acid Coenzyme A: amino acid N-acyltransferase (glycine N-choloyltransferase)

U47105 Q15738 NAD(P) dependent steroid dehydrogenase-like; H105e3

X05130 P30037 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta polypeptide
(protein disulfide isomerase; thyroid hormone binding protein p55)P32079

Q15205

P07237

U12424 P43304 glycerol-3-phosphate dehydrogenase 2 (mitochondrial)

L34041 P21695 glycerol-3-phosphate dehydrogenase 1 (soluble)

D88308 O14975 fatty-acid-Coenzyme A ligase, very long-chain 1

L09229 P41215 fatty-acid-Coenzyme A ligase, long-chain 1
P33121

X83368 P48736 phosphoinositide-3-kinase, catalytic, gamma polypeptide

S67334 P42338 phosphoinositide-3-kinase, catalytic, beta polypeptide

X66922 P29218 inositol(myo)-1(or 4)-monophosphatase 1

M74161 P32019 inositol polyphosphate-5-phosphatase, 75kD

L08488 P49441 inositol polyphosphate-1-phosphatase

D16481 P55084 hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme
A hydratase (trifunctional protein), beta subunit
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postulated considering the pathomechanisms of aortic valve
calcification. However, before the end-point is reached when
valve tissue is calcified, a long-time chronic process of
degeneration occurs in the valve tissue.

Molecular attributes characteristic for the process
of valvular degeneration

Altogether 99 genes have been reported earlier with the
expression well detectable in calcified aortic valves (Table 2,
[7]). Thereby, an expression level of 42 genes remains
unaffected by the grade (calcified versus non-calcified) of
degeneration severity such as albumin, specific receptors of
oxidised low-density lipoprotein, advanced glycosylation
end-products and natriuretic-peptide, potassium inwardly-

rectifying channel-5, gap-junction proteins, particular integ-
rins, tropins and cadherins [7]. However, the majority (57
proteins) detected was highly affected as a function of the
degeneration grade: these are potassium voltage-gated
channel-1, cardiotrophin, cardiac myosins, metalloprotei-
nases, endothelins, neuropilins, caveolins, progesterone-,
vasopressin-, tumour-necrosis-factor- and adrenergic-
receptors. Moreover, whereas well-expressed hepatic
lipase has been demonstrated in calcified valves, no
traces of its expression could be detected in non-calcified
tissue. Those gene products should be taken into account
as the stage-specific targets in the cascade of cellular and
molecular events that accompany chronic aortic degen-
eration for a predictive diagnosis and considering
individualised therapeutic approaches.

Table 1 (continued)

GeneBank Accession / SwissProt
Accession

Gene (protein) name / function

U40002 Q05469 lipase, hormone-sensitive

M72393 P47712 phospholipase A2, group IVA (cytosolic, calcium-dependent)

U20157 Q15692 phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)
Q13093

II. Cytoskeleton formation, ECM-building & tissue-remodelling proteins (23 genes)

X58141 P35611 adducin 1 (alpha)

X58199 P35612 adducin 2 (beta)

M58018 P12883 myosin, heavy polypeptide 7, cardiac muscle, beta
Q14904

Q16579

M63603 P26678 Phospholamban

X92762 Q16635 tafazzin (cardiomyopathy, dilated 3A (X-linked); endocardial fibroelastosis 2; Barth syndrome)

X56134 P08670 vimentin

J03209 P08254 P09238 matrix metalloproteinase 3 (stromelysin 1, progelatinase)

D83646 P51512 matrix metalloproteinase 16 (membrane-inserted)

X75308 P45452 matrix metalloproteinase 13 (collagenase 3)

X07819 P09237 matrix metalloproteinase 7 (matrilysin, uterine)

J05070 P14780 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase)

X89576 Q14850 matrix metalloproteinase 17 (membrane-inserted)

L23808 P39900 matrix metalloproteinase 12 (macrophage elastase)

J05556 P22894 matrix metalloproteinase 8 (neutrophil collagenase)

J03210 P08253 matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase)

X57766 P24347 matrix metalloproteinase 11 (stromelysin 3)

X03124 P01033 tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor)
Q14252

U14394 P35625 tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory)

U76456 Q99727 tissue inhibitor of metalloproteinase 4

L00073 P00797 renin

J04144 P12821 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

L13977 P42785 prolylcarboxypeptidase (angiotensinase C)

K02566 P01043 kininogen
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Table 2 Among 99 gene reported to be expressed at the transcriptional level in human calcified degenerated aortic valves, there are 57 gene
products listed below the expression level of which is specifically altered as compared to non-calcified valves [7]

GeneBank Accession / SwissProt Accession Gene (protein) name / function

Increased

M65199 P20800 endothelin 2

L25615 P37288 arginine vasopressin receptor 1A

Z11687 P30518 arginine vasopressin receptor 2 (nephrogenic diabetes insipidus)

D31833 P47901 arginine vasopressin receptor 1B

L02911 Q04771 activin A receptor, type I

AF015257 Q99527 G protein-coupled receptor 30
Q99981

O00143

Q13631

L35545 Q14218 protein C receptor, endothelial (EPCR)

AJ002962 O15540 fatty acid binding protein 7, brain
O14951

M86917 P22059 oxysterol binding protein

L06133 Q04656 ATPase, Cu++ transporting, alpha polypeptide (Menkes syndrome)

U50743 P54710 FXYD domain-containing ion transport regulator 2

U89364 P51787 potassium voltage-gated channel, KQT-like subfamily, member 1
Q92960

M93718 P29474 nitric oxide synthase 3 (endothelial cell)

U05291 Q06828 fibromodulin
Q15331

S73813 P49961 ectonucleoside triphosphate diphosphohydrolase 1

M90657 P30408 transmembrane 4 superfamily member 1

D26512 P50281 matrix metalloproteinase 14 (membrane-inserted)

S39329 P20151 kallikrein 2, prostatic

M13143 P03952 kallikrein B, plasma (Fletcher factor) 1

J05262 P14324 farnesyl diphosphate synthase (farnesyl pyrophosphate synthetase, dimethylallyltranstransferase,
geranyltranstransferase)

X68505 Q02078 MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor 2A)
Q14223

Q14224

X07228 P78529 lipase, hepatic
P11150

Decreased

M21121 P13501 small inducible cytokine A5 (RANTES)
O43646

M31210 P21453 endothelial differentiation, sphingolipid G-protein-coupled receptor, 1

U03865 P35368 adrenergic, alpha-1B-, receptor

AF016098 O60462 neuropilin 2

AF016050 O14786 neuropilin 1
O60461

U41070 Q15722 leukotriene b4 receptor (chemokine receptor-like 1)
Q13305

Q92641

U01839 Q16570 Duffy blood group
Q16300

Y12711 O00264 progesterone receptor membrane component 1

L49399 Q13772 nuclear receptor coactivator 4

J04739 P17213 bactericidal/permeability-increasing protein

L27213 P48751 solute carrier family 4, anion exchanger, member 3
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A functional link between cell cycle-control and calcification
of aortic valves: potential diagnostic and prognostic targets

A proper control over cell-cycle progression seems to be a
crucial step in the maintenance of a physiological cell
population. Although cardiac cells undergo terminal differ-
entiation soon after birth, irreversibly withdrawing from the
cell-cycle, growth stimulation induces cell hypertrophy, the
first visible step of a developing imbalance in the
maintenance of the cardiac cell population. The hypertro-
phic growth has been shown to be associated with the
re-activation of the fetal gene programme in cardiac cells –
the key event is the positive regulation of a cell-cycle
progression [13–15]. This switch in the programme seems
to be crucial for myocardial cell regulation. Such growth
stimulation is responsible for the up-regulated activity of
cyclin-dependent kinases, CDKs, that consist of a kinase-
core and an associated cyclin-subunit acting as the positive
regulator [16]. In the matter, different CDK inhibitors keep
a negative control over CDK activities. CDK inhibitors are

classified on the basis of their sequence homology and
substrate specificity. A cardiac helicase CHAMP was
described as inhibiting cell proliferation and cardiac
hypertrophy [13]. The CHAMP-dependent inhibition of
cardiac hypertrophy is accompanied by the strictly
programmed up-regulation of the cyclin-dependent
protein-kinase inhibitor P21WAF1/CIP1, a 21-kDa protein
and member of the CIP/KIP family [16]. Furthermore, the
targeted over-expression of P21WAF1/CIP1 prevents cell
enlargement and suppresses a specific gene expression of
cardiac hypertrophy markers in the cell population in vitro
[17] indicating the key role of p21WAF1/CIP1 in the
regulation of the hypertrophic response.

The physiological expression of p21WAF1/CIP1 shows a
gradual increase during development in both rat and man,
becoming maximal in adulthood [18]. A direct link between
the Bcl-2 dependent down-regulation of p21WAF1/CIP1 and an
increased myocyte density in the left ventricle has been
shown in experimental work with transgenic mice [19].
These findings are in agreement with those achieved by

Table 2 (continued)

GeneBank Accession / SwissProt Accession Gene (protein) name / function

M20747 P14672 solute carrier family 2 (facilitated glucose transporter), member 4

X52882 P17987 t-complex 1
Q15556

Z18951 Q03135 caveolin 1, caveolae protein, 22kD

AF035752 P51636 caveolin 2

AF043101 P56539 caveolin 3

X60592 P25942 tumor necrosis factor receptor superfamily, member 5

AB000895 O15098 protocadherin 16 dachsous-like (Drosophila)

AF047826 O60574 cadherin 19, type 2

AF016272 P75309 cadherin 16, KSP-cadherin

AB006757 O60247 BH-protocadherin (brain-heart)

L34954 P36382 gap junction protein, alpha 5, 40kD (connexin 40)

X87241 Q14517 FAT tumor suppressor homolog 1 (Drosophila)

M14993 P11171 erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)

U49837 P50461 cysteine and glycine-rich protein 3 (cardiac LIM protein)

U43030 Q16619 cardiotrophin 1

M94547 Q01449 myosin light chain 2a

X84075 Q14896 myosin binding protein C, cardiac

D00943 P13533 myosin, heavy polypeptide 6, cardiac muscle, alpha (cardiomyopathy, hypertrophic 1)
Q13943

Q14906

M86406 P35609 actinin, alpha 2

U02031 Q12772 sterol regulatory element binding transcription factor 2

L10413 P49354 farnesyltransferase, CAAX box, alpha

Y08200 Q92696 Rab geranylgeranyltransferase, alpha subunit

Y12856 O00286 protein kinase, AMP-activated, alpha 1 catalytic subunit

U16660 Q13011 enoyl Coenzyme A hydratase 1, peroxisomal
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examination of human tissue: the coordinated down-
regulation of both G1 and G2 checkpoint genes p21WAF1/

CIP1 and 14-3-3-sigma, respectively, correlates well with
increasing cardiac cell density and the calcification appear-
ance of aortic valve tissue [20]. The coordinated suppression
of checkpoint genes in calcified aortic valves at both
transcription (A) and translation (B) levels is represented in
Fig. 3 [21]. Both cellularity and number of macrophages are
significantly increased in calcified tissue (see Fig. 3c, d,
respectively) [21]. According to the monitored CD68
positive signals, macrophages are localised predominantly
in the sub-endothelial layer of the valvular fibrosa, whereas
14-3-3-sigma and p21WAF1/CIP1 can be observed in both sub-
endothelial layer and valvular interstitium of non-calcified
tissue, being mainly co-localised with alpha-actin in the
valvular spongiosa and pointing to the target expression in
myofibroblasts. There is a growing body of evidence that in
response to stimulus/injury the heart valves undergo tissue
remodelling including phenotypic modulation and transfor-
mation of fibroblast-like into myofibroblast-like cells [22].
Therefore, the target protein expression of 14-3-3-sigma and
p21WAF1/CIP1 observed in degenerated valvular tissue, can
originate predominantly from myofibroblasts.

Moreover, both the increased cell density and coordinated
down-regulation of p21WAF1/CIP1 and 14-3-3-sigma gene
expression were found to be characteristic for calcification,
in contrast to non-calcified valvular tissue [23]. Therefore, the
double-control via both check-point proteins over DNA
quality and cell proliferation in valvular cells might be

efficient only in non-calcified tissue, whereas in the calcifying
one this function is getting suppressed at both G1 and G2

phases of cell-cycle. These findings give further evidence that
the efficiency of cell-cycle control in human non-calcified
valvular tissue depends not only on the positive/negative
CDK regulation in the G1 phase but also on the coordinated
regulation of both G1 and G2 dependent checkpoints. Further
in vitro experiments on rat cardiac fibroblasts showed that a
target up-regulation of inhibitors for G1 dependent CDKs
effectively suppresses the DNA synthesis and may decrease a
potential risk of cardiovascular diseases [23].

The dissociation of P21WAF1/CIP1 from the CDK com-
plexes correlates well with the activation of CDK2, CDK4,
CDK6, and the release from cell-cycle arrest, whereby the
number of cardiac cells in S phase rises considerably [24].
Further, in contrast to P16 (a specific inhibitor of CDK4/6),
the “universal” CDK inhibitor P21WAF1/CIP1 was shown to
be able to block completely an E2F-1-induced G1 exit [25].
However, E1A binding activity to target protein complexes
has effects on the cell-cycle progression beyond those
produced by E2F-1 alone and can drive S-phase entry that
is resistant to P21WAF1/CIP1 [24]. These facts explain the
necessity of the coordinated regulation of both G1 and G2

dependent checkpoints, in order to keep the control over the
cell population maintenance in cardiac tissue.

Pronounced up-regulation of both genes in non-calcified
in contrast to their down-regulation in calcified degenerated
valvular tissue indicates the central regulatory role of
checkpoint genes in keeping functional the valvular cells.
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Fig. 3 Comparative analysis in
two groups of patients with non-
calcified (1) versus calcified (2)
degenerative aortic valves. All
analyses have been performed as
described earlier [20]. The
corresponding mean values are
presented with statistically
significant differences between
the groups of comparison.
(a) Comparative gene expression
analysis (mRNA level in relative
units) of p21WAF1/CIP1 and 14-3-
3-sigma. Quantitative Real-Time-
PCR was applied. Beta-actin
was used as the house-keeping
gene for normalisation of
corresponding values of the
target gene expression rates.
(b) Comparative analysis of
protein expression levels (in
relative units) of P21WAF1/CIP1,
14-3-3-sigma and alpha-actin.
(c) Comparative analysis of
cellular density (in relative units).
(d) Comparative analysis of
macrophages (in relative units)
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Blockade of cell-cycle progression results in a prolonged
resistance to macrophage invasion and foam cell deposition
[26]. Therefore, it is likely that reduced cell-cycle control in
valvular tissue leads to the increased macrophage invasion
that, in turn, can contribute to non-physiological calcifica-
tion by both triggered unspecific inflammation and NO-
toxicity [27–31]. Taken together, the coordinated activation
of both G1 and G2 dependent checkpoint genes may be an
attribute of the valvular tissue resistance against the
calcification processes. These data should be taken into
consideration to design novel therapeutic approaches
targeted at pro-calcification mechanisms in the heart.

Risk assessment: factors involved in degenerative valve disease

Recent studies demonstrate an association between athero-
sclerosis and AS. Traditional cardiovascular risk factors such
as lipid disorders, diabetes, arterial hypertension, smoking
and male gender [32, 33] are reported to increase also the
incidence of AS. At least one of these factors or, more
frequently, even the combination of them is usually observed
in this cohort of patients [20]. Although advanced age is the
main risk factor, worldwide statistics indicate that degen-
erative aortic valve disease (DAVD) cannot be explained by
ageing alone. No longer considered as a natural consequence
of ageing, DAVD is the result of actively driven pathological
processes including programmed (de)regulation of target
genes, metabolic alterations, inflammatory cell infiltration,
subcellular disruption, and consequent tissue degeneration,
calcification and remodelling [20]. Due to extremely high
morbidity and mortality caused by DAVD particularly in
Western world, the central question has to be answered: Is an
individual predisposition to the disease predictable? From
this viewpoint a clear definition of disease specific risk
factors is of particular interest.

Although the causal mechanisms are still largely unclear,
all molecular as well as cellular processes attributed to
DAVD are generally triggered secondarily to a central
metabolic failure (diabetes, hypercholesterolemia, hyper-
calcaemia, leanness), hormonal deregulation (hyperparathy-
roidism), hypertension, and extreme stress conditions such
as tobacco use and environmental stress factors [34–37].
Thus, an inverse relationship was demonstrated between
body mass index and DAVD incidence: calcific changes
were more frequently observed in lean people even
independently of the risk factor of age, and, therefore,
cannot be explained by leanness frequently observed in
patients with highly advanced age. These facts indicate,
further, an association of DAVD with metabolic disorders
causing weight loss such as osteoporosis [36].

In diabetes, an increased production of highly aggressive
reactive oxygen species (ROS) under hyperglycaemic
conditions is considered as the main trigger for severe,

chronic complications such as DAVD. Moreover, using
advanced biomedical technologies such as clinical proteo-
mics, individual stress reactions and resulting complications
can be quite precisely predicted; disease specific molecular
markers are already close to their clinical application
specifically for the diabetic complication [38]. Similarly to
diabetic patients, smokers also suffer from highly increased
ROS production leading to enhanced incidence of DAVD,
although specific pathomechanisms deserve further clarifi-
cation. Deregulation of angiotensin-II metabolism and
activity of angiotensin-specific receptors is considered to
be the key molecule in the pathomechanisms that underlie
DAVD in hypertension [37, 39, 40].

Individualised treatment of aortic stenosis and prognosis

A large body of evidence indicates that aortic stenosis is an
active process with a distinctive histological appearance,
associated clinical factors, and, variable disease progression
proposing that this disease may be amenable in terms of the
variety of risk factors but also successful treatments by
individualised therapeutic approaches to prevent or at least
slow down the disease progression [41, 42]. Indeed, several
retrospective studies have consistently demonstrated that
statin-based treatments are associated with notably lower
haemodynamic progression of aortic stenosis [43–46];
however, statins failed in the prospective SALTIRE trial.
It was suggested that the beneficial effects by statin are
independent of lowering cholesterol impacts [43, 44].
Interestingly, both CRP expression at the valvular tissue
level and serum CRP levels were found to be significantly
lower under statin-based treatments [47] suggesting its
pleiotropic and/or anti-inflammatory properties. As demon-
strated by several independent studies (SALTIRE, SEAS,
ASTRONOMER) lowering LDL-cholesterol levels do not
halt the progression of aortic stenosis in patients with mild
to moderate aortic-valve disease [48, 49]. The fact that
angiotensin converting enzyme (ACE) and angiotensin II
can be found in sclerotic but not in normal aortic valves
indicates an important role of the renin-angiotensin system
(RAS) in the pathogenesis of AS [50]. Further, the RAS has
already been shown to play an important role in athero-
sclerosis. Consequently, ACE inhibitors slow down the
calcium accumulation in aortic valves [43]. However,
studies evaluating the effects of ACE inhibitors [46] and
angiotensin II type 1 receptor blockers [51] did not find any
difference in haemodynamic progression of AS in untreated
patients versus patients who were taking these drugs.

In conclusion, it is too early for recommendations in
terms of prevention of AS progression by currently applied
treatments: further studies are highly desired. The recom-
mended approach to treat the symptomatic, advanced AS
remains the prosthetic valve replacement. Moreover, there
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is a clear consensus that urgent valve replacement is
required for symptomatic AS, while the management of
asymptomatic patients with severe AS is still controversially
discussed. In the matter, inhibitors of angiotensin-converting
enzyme are currently under extensive consideration for their
therapeutic application to effectively prevent both hyperten-
sion and DAVD [37, 39, 43, 52]. Independently from
individual risk factors, the crucial role of metalloproteinases
in the central pathomechanisms of the progressive tissue
remodelling during the chronic development of DAVD is
well recognised [20, 53]. Novel therapeutic interventions
consider, therefore, metalloproteinases as the preferred
target to delay or even prevent the progression of DAVD
[37].

Aortic valve replacement: risk factors, geometry
remodelling, complications

Dysfunction and bioactivity of implanted bioprostheses

Twenty percent to thirty percent of implanted bioprostheses
show dysfunction after about 10 years post-implantation.
Recent reports predict that a greater than 50% incidence of
failure will be seen in bioprostheses at 12–15 years [54]. In
addition, risk factors of atherosclerosis as well as chronic
renal disease and parathyroid tumours might play a
substantial role in the degeneration of bioprostheses. In
order to improve the quality of life after cardiac valvular
surgery, innovative procedures and new generations of
prostheses have been developed in the past decade. The
most frequently used porcine bioprostheses have been
demonstrated to be bioactive in the human organism.
DNA and RNA analysis of non-implanted bioprostheses
before aortic valve replacement (AVR) has revealed
sequences able to hybridise to as many as 112 human
genes/transcripts relevant to cardiovascular pathologies [7].
Among those genes there are several overlapping sequen-
ces, the expression of which strictly depends on the grade
of degeneration: endothelins, sodium / calcium exchangers,
potassium voltage-gated channel-1, metalloproteinases,
vasopressin- and adrenergic-receptors. Altogether, there
are 74 genes found to be specifically altered by expression
in human calcified degenerated aortic valves as summarised
in Table 3.

Currently, poor information is available concerning the
bioactivity of prosthetic material when they are implanted
in human valves. In vivo-hybridisation to human nucleic
acids might be one feasible reason for several well-known
complications triggered by implantation. Thus, worldwide
statistics indicate that each kind of AVR is not rarely followed
by different metabolic impairments and physiological
complications such as progressively abnormal lipid profiles,

a non-specific inflammation, blood trauma, haemorheologic
changes or severe congestive heart failure and even death
during individually long postoperative time [55–61]. After
AVR, the wall thickness becomes significantly greater than
normal for patients with aortic stenosis, and after 5 years of
follow-up the remodelling of the left ventricular geometry is
usually observed after AVR [62].

Tissue remodelling of replaced valves: matrix
metalloproteinses as biomarkers and potential therapeutic
targets

Matrix metalloproteinases (MMPs) play the key role in tissue
remodelling under both physiological and pathological con-
ditions. MMPs are produced as zymogens (pro-MMPs) that
require proteolytic activation through the elimination of the N-
terminal propeptide via membrane type-matrix metalloprotei-
nase (MT-MMPs) activity. Tissue inhibitors of metalloprotei-
nases (TIMPs) act to inhibit metalloproteinase activity by
forming a non-covalent irreversible complex with MMPs. A
shifted balance in resulting MMPs / TIMPs activity is well
documented under stress conditions [58].

However, less is known about a regulation of ECM
degrading enzymes in native degenerating aortic valves and
in valvular tissue after replacement. Aortic valves tissue is
characterised by considerable heterogeneity of the cellular
population: endocardial, interstitial, smooth muscle cells as
well as fibroblasts and myofibroblasts have been identified in
highly sophisticated dynamic structures of cardiac valves [63].
The ECM is thought to be an integral component of this
coordinated dynamism [64]. The cores of activated ECM
degrading genes differ both qualitatively and quantitatively
at each stage of valvular degeneration; after AVR it is
regulated in a different manner [36]. The activation grade of
the MMP cores is found to be specific for each stages of the
valve degeneration: whereas MMP-9 activation differs
quantitatively, an activation of MMP-2 was observed solely
at the earliest stages of degenerative process [53, 65]. In
contrast, the stage of progressive calcification is character-
ised by dropping of the ECM-degradation potential. There-
fore, the highly activated ECM-degradation potential might
be considered as an early marker for the triggered degener-
ation of valvular tissue. Consequently, ex vivo evaluation of
the dynamic in the ECM-degradation potential, e.g. mea-
sured by comparative zymography in blood samples, seems
to be of great prognostic value [66].

This is of note that the set-up of ECM-degrading
enzymatic-core changes dramatically after AVR: in contrast
to the expression rates well-detectable in native valvular
tissue, neither MMP-2 expression nor this of MMP-9 was
detected in the replaced tissue. In addition, TIMP-1 was
shown to be activated in the valves after replacement.
TIMP-1 represents the very last step in the negative
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Table 3 DNA and RNA analysis of porcine bioprosthetic material before the aortic valve replacement revealed sequences able to hybridise to 74
human genes/transcripts, the expression of which is altered in human calcified degenerative aortic valves [7]

GeneBank Accession / SwissProt Accession Gene (protein) name / function

M65199 P20800 endothelin 2

M18185 P09681 gastric inhibitory polypeptide

AB010710 P78380 oxidised low density lipoprotein (lectin-like) receptor 1

L25615 P37288 arginine vasopressin receptor 1A

Z11687 P30518 arginine vasopressin receptor 2 (nephrogenic diabetes insipidus)

D31833 P47901 arginine vasopressin receptor 1B

M31210 P21453 endothelial differentiation, sphingolipid G-protein-coupled receptor, 1

U03865 P35368 adrenergic, alpha-1B-, receptor

L13436 P20594 natriuretic peptide receptor B/guanylate cyclase B (atrionatriuretic peptide receptor B)

X52282 P17342 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)

L02911 Q04771 activin A receptor, type I

AF015257 Q99527 G protein-coupled receptor 30
Q99981

O00143

Q13631

Y10659 P78552 interleukin 13 receptor, alpha 1
Q99656

O95646

M91211 Q15109 advanced glycosylation end product-specific receptor
Q15279

L35545 Q14218 protein C receptor, endothelial (EPCR)

AF016050 O14786 neuropilin 1
O60461

U41070 Q15722 leukotriene b4 receptor (chemokine receptor-like 1)
Q13305

Q92641

AJ002962 O15540 fatty acid binding protein 7, brain
O14951

M86917 P22059 oxysterol binding protein

S73197 P41181 aquaporin 2 (collecting duct)

L27213 P48751 solute carrier family 4, anion exchanger, member 3

U89364 P51787 potassium voltage-gated channel, KQT-like subfamily, member 1
Q92960

M20747 P14672 solute carrier family 2 (facilitated glucose transporter), member 4

U39195 P48544 potassium inwardly-rectifying channel, subfamily J, member 5
Q92807

M91368 P32418 solute carrier family 8 (sodium/calcium exchanger), member 1

M23234 P21439 ATP-binding cassette, sub-family B (MDR/TAP), member 4

J04456 P09382 lectin, galactoside-binding, soluble, 1 (galectin 1)

M93718 P29474 nitric oxide synthase 3 (endothelial cell)

X52882 P17987 t-complex 1
Q15556

X65784 Q04762 cell matrix adhesion regulator

U05291 Q06828 fibromodulin
Q15331

M58664 P25063 CD24 antigen (small cell lung carcinoma cluster 4 antigen)

S57235 P34810 CD68 antigen

U85611 Q99828 calcium and integrin binding 1 (calmyrin)

Z34974 Q15152 plakophilin 1 (ectodermal dysplasia/skin fragility syndrome)
O00645
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Table 3 (continued)

GeneBank Accession / SwissProt Accession Gene (protein) name / function

U49240 Q92797 symplekin; Huntingtin interacting protein I
O00733

O00689

AB000897 O15100 protocadherin gamma subfamily A, 12

AF047826 O60574 cadherin 19, type 2

U07969 Q12864 cadherin 17, LI cadherin (liver-intestine)

U59325 Q13634 cadherin 18, type 2

X52947 P17302 gap junction protein, alpha 1, 43kD (connexin 43)

M96789 P35212 gap junction protein, alpha 4, 37kD (connexin 37)

L34954 P36382 gap junction protein, alpha 5, 40kD (connexin 40)

U03493 P36383 gap junction protein, alpha 7, 45kD (connexin 45)

U34802 P48165 gap junction protein, alpha 8, 50kD (connexin 50)

X04325 P08034 gap junction protein, beta 1, 32kD (connexin 32, Charcot-Marie-Tooth neuropathy, X-linked)

M86849 P29033 gap junction protein, beta 2, 26kD (connexin 26)

X53416 P21333 filamin A, alpha (actin binding protein 280)

S73813 P49961 ectonucleoside triphosphate diphosphohydrolase 1

M90657 P30408 transmembrane 4 superfamily member 1

X82157 Q14515 SPARC-like 1 (mast9, hevin)

X87241 Q14517 FAT tumor suppressor homolog 1 (Drosophila)

Y00796 P20701 integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1;
alpha polypeptide)

U81984 Q99814 endothelial PAS domain protein 1
Q99630

X07897 P02590 P04463 troponin C, slow

S64668 P45379 troponin T2, cardiac
Q99596

M14993 P11171 erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)

M95627 Q13685 angio-associated, migratory cell protein

U49837 P50461 cysteine and glycine-rich protein 3 (cardiac LIM protein)

U43030 Q16619 cardiotrophin 1

M86406 P35609 actinin, alpha 2

D26512 P50281 matrix metalloproteinase 14 (membrane-inserted)

S39329 P20151 kallikrein 2, prostatic

M13143 P03952 kallikrein B, plasma (Fletcher factor) 1

L19684 P29622 serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 4

X14329 P15169 carboxypeptidase N, polypeptide 1, 50kD

M32313 P18405 steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta
4-dehydrogenase alpha 1)

U16660 Q13011 enoyl Coenzyme A hydratase 1, peroxisomal

X07228 P78529 lipase, hepatic
P11150

U22662 Q13133 nuclear receptor subfamily 1, group H, member 3

X02750 Q16001 protein C (inactivator of coagulation factors Va and VIIIa)
Q15190

Q15189

P04070

M11723 P00748 coagulation factor XII (Hageman factor)

X68505 Q02078 MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor 2A)
Q14223

Q14224
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regulation of collagenases, stromelysinases, and gelatinases
[67, 68] and has been found to be highly expressed in
actively resorbing tissue [69]. Also, the key-role is
considered for MT1-MMP as a matrix degrading protease,
specifically in geometry remodelling after AVR, and opens
good perspectives for new targeted therapy approaches, in
order to avoid the most common metabolic impairments
and clinical complications well-known to be frequently
developed by the patients after AVR [53].

Acute aortic insufficiency is a frequent complication after
AVR: risk assessment

Besides cases with an acute injury, e.g. aortic dissection and
thoracic injury, the main aetiologies of the progressive
insufficiency are bioprosthesis degeneration and infectious
endocarditis [70, 71]. In order to forestall a dysfunction of
degenerating bioprostheses, patients without diagnosed risk
factors undergo, on average, a re-operation 9–10 years after
AVR. Against this, the period of time can be more than
halved for patients demonstrating at least two of following
risk factors: smoking, Diabetes mellitus, risk by gender
(females), high cholesterol level [72]. Furthermore, these
risk factors have a higher impact in bioprosthesis degener-
ation for younger patients than for the elderly. Therefore,
targeted preventive measures such as proper (pre)diabetes
care would be highly beneficial, in particular for subpopu-
lations of young female diabetes-predisposed AVR-patients.

Diabetes mellitus as the risk factor for infectious
endocarditis, accelerated valvular degeneration, dysfunction
of bioprostheses valves and progressive aortic insufficiency

Diabetes mellitus is a well-acknowledged risk factor for
progressive aortic insufficiency, accelerated degeneration of
both native and prosthetic valves as well as infectious
endocarditis [72–75]. Studies focused on the aetiology and
prevalence of the latter demonstrated diabetic patients to be
particularly predisposed (a relative increase of 40%
compared to the general population) to infectious endocar-
ditis mainly due to following reasons:

1. patients with DM are at highly increased risk of infections
2. most patients with infectious endocarditis have a

history of pre-existing heart valve lesions, which DM
patients are significantly predisposed to [73, 76].

Although, both causes are considered as independent risk
factors for infectious endocarditis prevalence in DM [75], the
synergistic effects can lead to a “vicious circle” in further
progression of infectious endocarditis, heart valve lesions/
degeneration and vulnerability of DM patients for infections
(see Fig. 4) [21]. Due to a high symptomatic heterogeneity of
the diabetic population, the better defined “metabolic
syndrome” as a cluster of atherogenic, inflammatory, and
atherothrombotic abnormalities linked to abdominal obesity
and insulin resistance has been demonstrated to be a

Cardiac complications  
in  

metabolic syndrome

Suppression of immune response with 
consequences: 

increased incidence of acute 
infectious disorders 
chronic inflammations 
infectious endocarditis

Interventional measures: 

replacement of calcified valves
re-operation of replaced valves

degeneration of native valves
degeneration of bioprostheses
aortic insufficiency

Environmental factors: 
external stress factors 
quality of natural sources (water / 
air pollution) 
quality of nutritional products 
exposure to parasites 

Fig. 4 Various factors, burden
and pathologic processes,
contributing to cardiac compli-
cations in metabolic syndrome
[20]. The crucial role of
environmental factors as
increasing the overall risk is
discussed in our previous
reviews [7, 15, 21 38]
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particularly strong independent predictor for poor prognosis
in both degenerative valve disease and accelerated degener-
ation of bioprosthetic valves [73, 77]. The pro-atherogenic
and pro-inflammatory pathomechanisms have been proposed
to underlie the degenerative valvular processes, since statins-
based treatment approaches are known to slow down the
progression of valvular degeneration [73, 74, 78]. Identifi-
cation of metabolic syndrome characteristic factors respon-
sible for structural failure of a bioprosthesis is necessary for a
development of individualised target-specific therapy
approaches avoiding the need for re-operation after AVR.
Improved (pre)Diabetes care is currently discussed as being
one of the highest priorities of desirable healthcare worldwide
[79–82].

Concluding remarks and Outlook

There is a long period of time during which patients
predisposed to valvular degeneration remain asymptomatic.
In this period a pathology progression can and must be
detected followed by targeted therapeutic measures. Molecu-
lar attributes characteristic for early stages of valvular
degeneration represent reliable predictive biomarkers and –
at the same time – the targets for more effective individualised
treatment approaches before the pathology is clinically
manifested. Risk factors should be considered individually.
The characteristic molecular signature is one of them.

Besides several kinds of acute injury (aortic dissection,
thoracic injury) the main aetiology of the aortic insuffi-
ciency in patients after AVR is a bioprosthesis dysfunction
and infectious endocarditis. On average, patients without
diagnosed risk factors undergo a re-operation 9–10 years
after AVR. Against this, the period of time can be more
than halved for patients demonstrating at least two of
following risk factors: smoking, Diabetes mellitus, risk by
gender (females), high cholesterol levels. Therefore, indi-
vidualised targeted measures would be highly effective in
prevention of AVD and re-operation after AVR. Pathology-
and stage-specific molecular patterns should be taken into
consideration for the reliable prediction, individualised
treatment algorithms and correct prognosis.
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