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Abstract The discovery of circulating cell-free fetal DNA
(cffDNA) in maternal plasma allowed for the development
of alternative methodologies that may facilitate safe non-
invasive prenatal diagnosis (NIPD). The low concentration
of cffDNA in maternal plasma, however, and the coexis-
tence of maternal DNA limit its clinical application to the
detection or exclusion of fetal targets that are not present in
the mother, such as Y chromosome sequences, the RHD
gene in a RhD-negative woman and genetic conditions
inherited from the father. Strategies for NIPD of monogenic
disorders and fetal chromosomal aneuploidies have also
been achieved using next-generation sequencing and could
be introduced to the clinics as soon as cost-effective and
high throughput protocols are developed.

Keywords Non-invasive prenatal diagnosis - Cell-free fetal
nucleic acids - Monogenic disorders - Chromosomal
aneuploidies - Fetal gender- Fetal RhD status

G. Tounta - A. Kolialexi (<)) - E. Kanavakis -+ A. Mavrou
Department of Medical Genetics,

Athens University School of Medicine,

Athens, Greece

e-mail: akolial@med.uoa.gr

N. Papantoniou

Ist Department of Obstetrics & Gynecology,
Athens University School of Medicine,
Athens, Greece

G. T. Tsangaris

Proteomics Research Unit,

Biomedical Research Foundation of the Academy of Athens,
Athens, Greece

Introduction

Prenatal diagnosis is now part of established obstetric
practice in many countries. To perform it, fetal genetic
material is conventionally obtained by invasive techniques
such as amniocentesis and chorionic villus sampling. Since
procedural related miscarriage rate of about 1% has been
reported, invasive prenatal diagnosis is reserved for pregnan-
cies at risk for certain fetal genetic conditions. These include
fetal chromosomal aneuploidies and monogenic disorders
with relatively high prevalence in the relevant populations.
For chromosomal aneuploidies, mainly Down Syndrome
(DS), risk calculation is based on maternal age, ultrasono-
graphic findings and maternal serum biochemical markers.
For certain monogenic disorders, such as thalassaemia and
cystic fibrosis, identification of a positive family history and
confirmation of the carrier status of the parents are among the
strategies used in order to identify high risk pregnancies that
may be referred for invasive prenatal diagnosis.
Non-invasive testing, using maternal peripheral blood as
a source of fetal genetic material, has long been the goal for
early prenatal diagnosis avoiding the risk of miscarriage. In
contrast to popular belief that placenta forms an imperme-
able barrier between mother and fetus, there is proof for
bidirectional traffic between the fetus and the mother during
pregnancy [1]. Multiple studies indicate that both intact
fetal cells and cell-free fetal nucleic acids (cffNA) cross the
placenta and can be found in maternal circulation. Intact-
fetal cells present an attractive target for non-invasive
prenatal diagnosis (NIPD) of fetal chromosomal abnormal-
ities. Isolation and analysis of fetal cells from maternal
circulation have been extensively investigated and several
methods for fetal cell enrichment have been developed [2—
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4]. For the time being, results have been disappointing due
to the scarcity of intact fetal cells in maternal circulation (1
cell per 1 ml of maternal blood) and the low efficiency of
enrichment methods. In addition, chromosome analysis by
Fluorescent In Situ Hybridization (FISH) is difficult due to
the abnormally dense apoptotic nuclei of fetal cells [5, 6].

In 1997, Lo et al. reported the presence of cell-free fetal
DNA (cffDNA) in maternal plasma and serum in amounts
significantly increased, as compared to fetal DNA extracted
from the cellular fraction of maternal blood [7, 8]. Following
this discovery, a new area of research was developed.

This review summarizes the current status of NIPD using
cffNA in maternal plasma and emphasizes recent develop-
ments that may allow in the future routine application of
NIPD for assessment of chromosomal abnormalities and
monogenic disorders.

Cell-free fetal nucleic acids in maternal plasma

Cell-free fetal DNA represents extracellular DNA which
can be detected in maternal peripheral blood as early as
18 days following embryo transfer in in vitro fertilization
pregnancies [9]. In contrast to fetal cells, it is cleared from
maternal circulation shortly after delivery, with a mean half-
life of 16 min [10]. The proportion of cffDNA, however, is
only 3-6% of the total amount of cell-free DNA (cfDNA),
the remaining portion of DNA being contributed by the
mother, mainly from maternal blood cells. Later studies
using digital PCR showed that the actual amount of cffDNA
is somewhat higher (~19%) but still represents a minor
fraction of the total amount of cfDNA in maternal plasma
[11]. The concentration increases with gestational age, from
the equivalent of 16 fetal genomes per millilitre of maternal
blood in the first trimester to 80 in the third trimester, with a
sharp peak during the last 8 weeks of pregnancy [8, 12].

It is generally accepted that cffDNA in maternal plasma
is derived from syncytiotrophoblasts undergoing apoptosis
and is, therefore, fragmented [13, 14]. Studies regarding the
size distribution of cffDNA have confirmed that it is on the
average 300 bp or smaller, in contrast to the maternal
cfDNA fragments, which are considerably larger [15, 16].

In addition to cffDNA, cell-free fetal mRNA (cffmRNA)
sequences of placental origin also exist in maternal plasma.
The proof of principle of cffmRNA in maternal plasma was
first demonstrated in pregnant women carrying a male child,
with the detection of Y chromosome-specific zinc finger
protein mRNA [17]. This finding was further confirmed a
few years later, through the analysis of placental-specific
mRNA, human placental lactogen (hPL) and the b subunit
of human placental chorionic gonadotrophin [18].

Recent data have also demonstrated that placental
miRNAs are also released from the placenta and are present
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in maternal plasma in detectable quantities. Quantification
of placental miRNAs in maternal plasma may offer a non-
invasive tool for monitoring gene regulation in the placenta.
Placental miRNAs exhibit exceptional stability which is
probably due to their association with subcellular particles
such as syncytiotrophoblast microparticles [18-21].

Technical aspects

The scarity of cffDNA in maternal blood and its co-
existence with maternal DNA represent the two major
limitations for the use of cffDNA for diagnosis. Both
maternal plasma and serum contain cffDNA, however,
plasma is the material of choice for prenatal diagnosis since
it contains less maternal background DNA. Usually,
isolation of plasma cfDNA is performed manually with
commercially available kits, although automation of the
process has also been reported [22, 23]. It is important to
note that special care should be taken to avoid external
contamination during isolation and amplification.

Various methods have been used to overcome the
presence of maternal background cfDNA, including methods
based on the size difference of maternal fragments [15, 24].
Efforts to increase the relative proportion of fetal DNA
compared to the larger maternal fraction have also included
the use of formaldehyde, as a fixative, to prevent lysis of
maternal cells during the isolation of the maternal plasma
[25]. The formaldehyde enrichment technique, however, has
not been reproducible by other laboratories.

Different methodologies applied for the detection of
cffDNA include conventional PCR, restriction analysis,
quantitative fluorescence real-time PCR (QF-PCR) and
automated sequencing [11, 26-31].

Since QF-PCR is more sensitive compared to conven-
tional PCR, enabling the detection of very low copy
numbers of DNA, it represents the optimal method for
reliable NIPD. The main advantage of QF-PCR is that it
is quantitative and collects data in the exponential growth
phase of the reaction, which is the most specific and
precise one. The technique is less time consuming and
offers an extra level of protection against contamination.
A wide range of Ct values in each QF-PCR and poor
repeatability of some replicates is reported, partly due to
the variability of target copy number in maternal plasma.
It is, therefore, recommended to perform several replicates
from each maternal sample in order to increase the
probability of fetal DNA detection and to avoid false-
negative results [32].

Recently, new sophisticated molecular techniques such as
mass spectrometry, massively parallel genomic sequencing
(MPS) and digital PCR have emerged and are applied in the
field of NIPD [33, 34]. They have higher sensitivity, but the
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expensive and complicated handling processes required by
these techniques make them less useful for clinical practice.

Current clinical applications of non-invasive prenatal
diagnosis using cffDNA

Fetal sex determination

Fetal sexing, the first clinical application of NIPD, is based
on the detection of Y chromosome specific targets in
maternal plasma [7]. Positive detection suggests that
pregnancy involves a male fetus, while absence is inter-
preted as a female bearing pregnancy. The majority of the
studies for non-invasive sex determination, uses QF-PCR to
detect SRY and/or DYS14 sequences in maternal plasma
[35-37]. Accuracy of fetal sex assessment has been
confirmed by many research group to be better than 95%,
so that its use has been adopted in a clinical setting [37, 38].

The most important clinical indication for fetal sex
determination is an X-linked genetic disorder and it has
been estimated that their cumulative incidence is around 5
in 10 000 live births [39]. Early determination of fetal sex
non-invasively could limit the number of invasive diagnos-
tic procedures required for each specific disease to male
fetuses only, sparing most female bearing pregnancies from
unnecessary invasive diagnostic testing.

Sex determination is also important in cases where
development of external genitalia is ambiguous, in families
with a history of conditions associated with ambiguous
development of the external genitalia, some fetal ultrasound
findings and occasionally, discrepancy between genetic sex
and the appearance of the external genitalia on fetal ultrasound.

Non-invasive prenatal fetal sex detection has also
been suggested for the management of some endocrine
disorders, such as congenital adrenal hyperplasia, where
masculinization of the female fetus can be suppressed
by maternal administration of dexamethasone from the
6th week of gestation [35, 40]. This approach can allow
either for slightly delayed administration of maternal
steroids to women reluctant to expose fetuses unnecessar-
ily to the potential side effects of dexamethasone, or for
prompt cessation of treatment if the fetus is confirmed to
be male.

Fetal RHD determination

Rhesus D (RhD) system incompatibility between a RhD-
negative pregnant woman and her fetus can result in
maternal alloimmunization and haemolytic disease of the
fetus (HDFN) in subsequent pregnancies when the fetus is
RhD-positive [41]. Routine postnatal injection of immuno-
globin anti-D to all RhD-negative pregnant women,

significantly prevents the occurrence of HDFN and has
been successfully introduced in developed countries.

Prenatal determination of the fetal RhD status can be
achieved by PCR amplification of RHD sequences in
amniotic fluid or chorionic villus samples [42, 43]. These
invasive procedures, however, carry not only the risk of
miscarriage but most importantly, testing RhD-negative
pregnant women may lead to immunization due to feto-
maternal haemorrhage [44, 45].

The advent of NIDP using cffDNA to determine fetal
RhD status offers significant potential for a change in the
way RhD-negative pregnant women are managed. Since
the RHD gene is usually completely absent from the
genome of RhD-negative mothers, the detection of RHD
sequences in maternal blood implies that the fetus must be
RhD-positive.

There are multiple reports of high degrees of accuracy
for the non-invasive prenatal determination of the fetal
RhD status, but to date, clinical application has been
confined to women known to be at high risk for HDFN
[32, 46-48]. The benefits of mass testing antenatally for
fetal RhD status by analysis of cffDNA in maternal plasma
of RhD-negative mothers could reduce the use of anti-D
and the number of anti-D donors exposed to blood products
for hyperimmunization. Women carrying a RhD-negative
fetus (approximately 40%) would be spared unnecessary
exposure to anti-D with its associated discomfort and risk
from viral (hepatitis C) or prion (variant Creutzfeld-Jacob
disease) contamination.

QF-PCR technology is considered the optimal method
for the reliable detection of RHD sequences using cffDNA
[49, 50]. Efforts have also been made for non-invasive
prenatal diagnosis of fetal RhD status by mass spectrometry
(MS). Grill et al. used an automated system for the
extraction of cell-free DNA from maternal plasma and
detected the presence of fetal RHD exon 7 by MS technology
provided by Sequenom to detect SNPs (Sequenom, Inc., San
Diego, CA) [51]. Validation of the assay showed the
presence of 2.5% RhD-positive genomic DNA in a
background of RhD-negative genomic DNA. Five out of
178 samples examined were incorrectly diagnosed as RhD-
negative. Grill’s report is the only one in the literature which
applies MS for NIPD RhD testing. The main advantage of
this approach over QF-PCR is that it has the potential of
multiplex analysis of several different loci in a single assay
but further studies are necessary in order to determine the
clinical utility of the technique.

The most widespread approach used in prenatal RHD
diagnosis is an assay that detects at least two different
exons of the RHD gene. Many laboratories prefer to include
amplification of exon 7, because it contains the most
sequence differences to the highly homologous RHCE
gene, thus improving specificity for RHD and allowing
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for the detection of fetal RHD even in the 7th week of
gestation, without giving false-positive results [47, 52].

Fetal monogenic autosomal disorders

Many human diseases are caused by mutations in a single
gene and it has been estimated that their combined
occurrence is around 3.6 per 1000 live births [39].
Prenatal diagnosis of single gene disorders using invasive
techniques is an accepted part of clinical practice and is
performed when there is a positive family history for a
particular disease.

NIPD for autosomal dominant disorders using maternal
plasma has been reported, mainly based on the detection of
paternally inherited DNA sequences in maternal sirculation.
Such an approach can avoid conventional prenatal diagno-
sis in some cases. It is also important to note that detection
of large-scale mutations, caused by expansion, insertion or
duplication, is restricted to sequences less than 300 base-
pairs in length, due to the fragmented nature of cffDNA
[53]. NIPD of maternally transmitted autosomal dominant
diseases is not as straightforward. The large maternal DNA
background in maternal plasma renders it technically
challenging to determine whether a fetus has inherited a
mutation from its mother.

To date, use of cffDNA for NIPD has been reported for
the following dominant single gene disorders in at least one
pregnancy:

= Huntington’s disease — detection of a paternally
inherited expansion of 37 repeats [54]

= Achondroplasia — identification of a specific point
mutation which accounts for more than 98% of cases
[26, 27, 55]

= Myotonic dystrophy — a paternally inherited expansion
of 70 repeats has been detected using cffDNA [56]

In autosomal recessive disorders, cffDNA can only be
used to determine the carrier status of the fetus through
detection of the paternally inherited disease allele, in cases
where the maternal and paternal ones differ. This informa-
tion could be used to reduce the number of invasive
procedures required, either by increasing the risk for an
affected fetus (from one in four to one in two), or by
determining that the fetus has not inherited the paternal
disease allele and therefore cannot be affected. To date,
fetal carrier status has been performed using cffDNA in
Cystic fibrosis and Congenital adrenal hyperplasia [57, 58].
For haemoglobinopathies, cffDNA has been used to detect
paternally inherited mutations that cause -thalassemia, in
carriers of a different 3-thalassemia or sickle cell mutation
(leading to sickle (-thalassemia disease) and Hb Lepore.
Sickle cell anaemia, however, the most common haemoglo-
binopathy, is not yet prenatally diagnosed using cffDNA,
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since it is caused by two identical copies of a single point
mutation [29, 59, 60].

In order to extend NIPD to cases where the father and
mother shared the same mutation Lum et al. developed a
digital PCR based approach, called relative mutation
dosage (RMD) [61]. RMD analysis can be used for
diagnosis in cases of pregnant women heterozygous for a
known mutation through determination of the dosages of
the mutant and wild-type alleles of the disease-causing
gene. For a woman carrying a fetus homozygous for the
mutation there should be proportionally more mutant
sequences than the non-mutant ones in maternal plasma,
while in cases with an heterozygous fetus, equal amounts of
mutant and non-mutant sequences should be detected in
maternal plasma. Similarly, when the fetus is normal
homozygous, there should be proportionally more non-
mutant sequences than mutant sequences in maternal plasma.

Fetal markers

Significant effort has been made to detect fetal identifiers in
maternal plasma samples. For fetal chromosome Y or RHD
detection assays, failure to detect the targeted cffDNA
sequences could be a result of failed or degrated fetal DNA.
It is prudent therefore to confirm the presence of fetal
material in maternal plasma before reporting a negative
result. Detection of Y-chromosome specific sequences, such
as SRY or DYS14, is used in order to confirm the presence
of cffDNA in the sample tested [49]. This, however, can
only be applied in pregnancies bearing a male fetus. An
alternative approach involves detection of paternally
inherited polymorphisms that are unique to the fetus, but
insertion/deletion polymorphisms or single nucleotide poly-
morphisms (SNPs) are only useful as internal positive
controls if they are absent in the maternal genome and the
paternal-unique allele has been inherited by the fetus [62,
63]. Depending on the parental genotype and fetal
inheritance, a particular polymorphism may not be appli-
cable to all pregnancies. Consequently, a panel of poly-
morphisms is needed to ensure that at least one member of
the panel is appropriate for any given pregnancy.

A major area of current research aims at finding
universal fetal-specific markers, independent of sex or
paternally inherited polymorphisms, that could be used
either as diagnostic tests or to confirm the presence and
quantify cffDNA. Recent approaches have targeted fetal
DNA sequences in maternal plasma that are epigenetically
different from maternal ones [64]. CpG methylation in the
promoter regions of genes is involved in the regulation of
gene expression. As tissues in the body have different gene
expression profiles, the methylation status of certain genes
also exhibits tissue-specific patterns. Chim et al. [64]
studied the methylation profile of the promoter of serpin
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peptidase inhibitor, SERPINBS5, and showed that it is
hypomethylated in placental tissues but hypermethylated
in maternal blood cells. Using methylation specific PCR,
the placental-derived hypomethylated SERPINBS could be
detected and distinguished from maternally derived hyper-
methylated molecules in maternal plasma. The hypomethy-
lated SERPINBS5 sequences were shown to be pregnancy-
associated, as they disappeared from maternal plasma
within 24 h after delivery. SERPINBS5 was the first universal
circulating cffDNA marker that could be applied in all
pregnancies regardless of fetal gender and genotype.
However, methylation-specific PCR requires use of bisul-
phite conversion, which alters unmethylated cytosines to
uracil nucleotides and thereby results in differences in the
genetic sequence of methylated and unmethylated DNA
molecules. Yet, bisulphite conversion degrades up to 95%
of the DNA molecules in a sample [65]. This would
substantially reduce the amount of fetal DNA in a maternal
plasma sample and may result in false-negative results,
particularly in early pregnancy when fetal DNA concen-
trations are very low.

For this reason, researchers looked for fetal epigenetic
markers that could be detected in maternal plasma without
bisulphite conversion. Hypomethylated RASSFIA4 sequen-
ces derived from maternal blood cells can be removed from
maternal plasma using methylation-sensitive restriction
enzyme digestion, revealing only the fetal hypomethylated
target (Fig. 1) [66]. Several studies demonstrated the value
of using digestion resistant RASSF'/A DNA sequences as a
positive control for NIPD of fetal RhD status [66—68].
False-negative diagnosis can be avoided in samples that are
negative for both RHD and RASSF1A sequences, as failure
to detect hypermethylated RASSF1A sequences signifies the
lack of fetal DNA in maternal plasma sample. These
developments improve the reliability of the applications of
cffDNA analysis when used in clinical setting.

Differentiation PCR Detection
Amplification
Unmethylated
fragment
(?

-l No

Various techniaues
for signal detection

Methylation-sensitive
restriction enzyme

- Amplification

Methylated
fragment

Fig. 1 General schema of DNA methylation analysis using
methylation-sensitive restriction enzymes that selectively digest
unmethylated DNA, so that only methylated fragments remain
available for detection

Pregnancy complications

Various problems associated with placental growth and
development result in altered levels of cffDNA in maternal
plasma. Elevated concentrations of cffDNA have been
detected in pregnancy-related disorders associated with
abnormal placentation such as preeclampsia, the leading
cause of prematurity [69—71]. Preeclampsia complicates
around 5-10% of pregnancies, and if it is not treated on
time it can become life threatening for both mother and
child. Although preeclampsia stems from a defective
placenta, the underlying cause is unknown and the only
available treatment is delivery of the fetus. Numerous studies
have shown that the level of cffDNA (usually measuring Y
chromosome DNA in pregnancies with a male fetus) is
elevated by 2—-3-fold before the onset of preeclampsia and 2—
14-fold during preeclampsia [8, 71]. Elevations in cffDNA
have also been reported in pregnancies with preterm
contractions that did not respond to colytic treatment and
resulted in premature deliveries, in contrast to those that
responded to such treatment [72]. A significant number of
additional pregnancy-related disorders have been linked to
increased concentrations of cffDNA. These include hyper-
emesis gravidarum (severe morning sickness), invasive
placentation (in which the placenta contacts the maternal
bloodstream), intrauterine growth restriction, feto-maternal
haemorrhage and polyhydramnios [73]. Hence, quantitative
cffDNA analysis may assist in predicting pregnancy related
complications. It should be noted, however, that the absolute
level of circulating cffDNA fluctuates over short periods
throughout pregnancy and varies with both ethnicity and
maternal weight, raising important questions about the
diagnostic utility of adding cffDNA concentration to the
current panel of biomarkers [74-76].

Non-invasive prenatal diagnosis of fetal chromosomal
aneuploidies

Since fetal and maternal alleles are by nature indistin-
guishable, detection of extra fetal chromosomes in maternal
plasma poses a substantial challenge. Initially published
work in the field revealed increased levels of circulating
DNA in pregnancies known to carry DS or trisomy 13
fetuses as compared to chromosomally normal ones [77, 78].
It was therefore suggested that this increase of cffDNA
levels in maternal plasma could be used as a marker for
NIPD of fetal aneuploidies. Discordant results, however,
among different research groups were reported given that
the levels of cffDNA vary widely and, as mentioned
previously, are also elevated in a number of pregnancy related
complications [75]. More successful and specific diagnostic
strategies are required, therefore, in order to identify non-
invasively fetal aneuploidies.
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An alternative more specific diagnostic strategy for
NIPD of fetal aneuploidies focuses on the analysis of
classes of nucleic acids in maternal plasma that are fetal-
specific, because maternal blood cells do not express the
target mRNA or have a different methylation profile for an
epigenetic fetal marker. These fetal nucleic acids include as
already mentioned, SERPINBS5 and placenta-specific 4
(PLAC4) mRNA [79].

SERPINBS, one of the proposed universal fetal markers,
has been studied in order to diagnose trisomy 18 as it is
located on the specific chromosome [79]. Bisulphite
modification was followed by methylation-specific PCR
and primer extension to assess the allelic ratios. This
generated a sensitivity of 100% and a false-positive rate of
9.7% Multiple differentially methylated genes have also
been found on chromosome 21 [20]. This approach
however requires several manipulations, thus making it
less feasible for clinical practice.

Selective targeting by differentially methylated markers
in placenta and maternal blood cells has recently been
combined with microfluidics digital PCR for non-invasive
detection of fetal trisomy 21 [80]. Chromosome dosage
analysis was performed by comparing the dosage of an
epigenetic chromosome 21 marker (HLCS, a hypermethy-
lated fetal-DNA marker) with that of reference chromo-
somes, RASSFIA on chromosome 3 and ZFY on the Y
chromosome. The ratio of HLCS to RASSF1A4 showed great
overlap between euploid and trisomy 21 samples. The
comparison between HLCS and ZFY can discriminate
aneuploid fetuse, but its use is limited to women carrying
male fetuses.

Lo et al. reported quantification of PLAC4 mRNA
deriving from chromosome 21, for the NIPD of fetal DS
[81]. Euploid cases have equal ratios of each allele (1 : 1
ratio), whereas if an aneuploidy is present, the ratio is 2 : 1
(Fig. 2). This approach appears to be quite promising, as
the authors were able to detect fetal DS with a sensitivity of
90% and a specificity of 96%. The technique, however, is
not applicable to all pregnancies, as it requires that the fetus
has inherited two different SNP alleles in the region
analyzed.

Recently developed single molecule counting techniques
can be used for fetal aneuploidy detection without the
restrictions of fetal-specific nucleic acids in maternal
plasma:

Determination of chromosome dosage by digital PCR, a
highly sensitive technique that uses limiting dilution to
isolate single template DNA molecules to be amplified [81,
82]. Digital PCR was tested in a model system for
molecular detection of fetal trisomy 21. A nonpolymorphic
chromosome 21 locus was compared to one located on a
reference chromosome. A change in the ratio of both
chromosomes from 2:2 in an euploid fetus to 3:2 in a
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Fig. 2 Calculation of the fetal chromosome dosage using the allelic
ratio of a specific heterozygous SNP on cffmRNA

trisomic fetus was reported. It is noteworthy that the
technique does not specifically distinguish fetal-derived
from maternal DNA, thus the degree of increment depends
on the concentration of cffDNA. The analytical platform
would need to be quantitatively more precise to reliably
determine the small expected increment.

Use of massively parallel, or next-generation, sequenc-
ing (MPS). MPS can analyse the nucleotide sequences of
millions of DNA molecules in each run. The capacity of
MPS to differentiate small quantitative alterations in
genomic distributions of chromosomes, has allowed detec-
tion of higher amounts of chromosome 21 sequences in
trisomy 21 pregnancies as compared to euploid pregnan-
cies. Fan et al. tested this technique on cfDNA from plasma
of pregnant women with a gestational age of 10-35 weeks
[33]. Chiu et al. applied the same technique, but followed a
different strategy for data analysis [83]. They used this
strategy in order to detect trisomy 21 and the Y and X
chromosomes difference between male and female fetuses.
They tested an algorithm to calculate the percentage unique
sequences for the chromosome of interest in the test sample
and compared it with the reference population of that same
chromosome. They were able to discriminate trisomy 21
from disomy 21 samples. Both studies demonstrated the
feasibility of deep sequencing for NIPD. Measurements of
the genomic representations for chromosomes 13 and 18
were less precise [84]. The important advantage of the MPS
technique is that it is gender and polymorphism-
independent, applicable in all pregnancies and likely to
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allow analysis of all frequent forms of aneuploidies in the
same test. Currently the technique is technically demand-
ing, the cost per tested sample is high and the throughput
per instrument is low (16 samples per week). This prevents
its use as a regular test for all pregnant women. Thus,
although MPS is certainly one of the most promising
approaches, population-based studies, involving prospec-
tive studies in low-risk populations are needed to indicate
if the technique is robust and can be used for clinical
diagnosis.

Conclusions

New advances have been reported regarding NIPD using
cffDNA from maternal plasma. Currently fetal sex assess-
ment for X-linked disorders, and RhD incompatibility
have been implemented in many diagnostic laboratories as
a routine technique. Approaches for the NIPD of
monogenic disorders, including both autosomal dominant
and recessive, have also been developed. NIPD of fetal
chromosomal aneuploidies, the main referral reason for
prenatal diagnosis, has also been achieved with the use of
next-generation sequencing, but issues related to the cost
and throughput of this methodology should be solved
before cffDNA can replace fetal genetic material obtained
using invasive techniques.
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